| 研究生: |
詹喩涵 Chan, Yu-Han |
|---|---|
| 論文名稱: |
淨零排放路徑下的臺灣電力供給規劃之影響分析 Analysis of Taiwan's Electricity Supply Planning under the Net Zero Emission Pathway |
| 指導教授: |
吳榮華
Wu, Jung-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 淨零碳排 、碳中和 、能源轉型 、電力供給規劃模型 、儲能系統 |
| 外文關鍵詞: | Net Zero Emissions, Carbon Neutral, Energy Transition, Power Supply Planning, Energy Storage Systems(ESS) |
| 相關次數: | 點閱:81 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
第26屆聯合國氣候變遷大會(The 26th Conference of the Parties, COP26)中呼籲全球以 2030 年作為檢討淨零轉型政策的重要節點,並在2050年達到淨零碳排放(Net Zero),因應此呼聲,各國開始重新制定與檢討相關減碳政策,我國亦於2022年公布「臺灣2050淨零碳排路徑及策略總說明」,以此減緩全球因應氣候變遷之嚴重衝擊。本研究以電力供給規劃模型(SMAGE-II)模擬臺灣未來於2030年之電力供應情形,並引入多種情境與儲能系統探究未來發電成本的變化,最終提出建議以供政府規劃短程電源開發規劃之參考。
根據研究結果顯示,依目前之發電機組與再生能源發展規劃,至2030年間備用容量率大多高於法定規範(15%),較無供電不穩之風險。而二氧化碳排放量部分,會逐漸由2020年之126.3(百萬公噸)漸漸降至2030年之104.5(百萬公噸),表示積極的減碳政策將有助益,單位發電成本也會由2.21(元/度)開始以每年約3%~6%的成長率漸漸上漲至3.57(元/度)。引進儲能系統的情境中,2025年儲能建置量每使用鋰離子電池儲存10%電將造成發電單位成本上升約0.79~0.81(元/度)。比較各種情境結果可發現核能延役情境不僅能協助穩定我國之電力供應,亦能有效降低發電成本,對電價穩定性有不錯成效。
再生能源成為電力供應之主力已成為全球趨勢,因應再生能源占比提高,電力供應穩定性與發電成本上升問題愈發受到關注。建議我國在2030年前盡快建立完善的儲能系統並強化電網之調度韌性;建立電力負載預測平台並持續蒐集各機組資料,將季節性、日夜因素等納入模擬系統中,以期更貼近實際供氣及電源開發受限現況,未來方能真正落實淨零碳排。
The 26th Conference of the Parties (COP26) called on the world to reach the goal of net zero carbon emissions by 2050, with 2030 as an important point to review the net zero transition strategy. In response to this call, many countries have started to reformulate and review their carbon reduction policies. Taiwan has also officially published “Taiwan’s Pathway to Net-Zero Emissions in 2050” in 2022 to mitigate the severe impact of global climate change. In this study, the future power supply planning of Taiwan in 2030 is simulated by using “Simulation Model for Aggregate Generation Expansion Planning (SMAGE-II)”. Various scenarios and energy storage systems are used to investigate the changes in the future cost of power generation, and finally, recommendations are made for the government's short-range power development planning.
The baseline scenario shows that according to the current generation and renewable energy development plan, the reserve margins are mostly higher than the statutory standard(i.e. 15%) until 2030. There is no risk of unstable power supply. The total amount of CO2 emission will gradually decrease from 126.3 (million metric tons) in 2020 to 104.5 (million metric tons) in 2030, indicating that an aggressive carbon reduction policy will be beneficial. The unit cost of electricity generation will also increase from 2.21 (NTD/kWh) to 3.57 (NTD/kWh) at an annual growth rate of 3%~6%. In the scenario with energy storage system, every 10 % of storage capacity using lithium-ion batteries in 2025 will cause the unit cost of electricity generation to rise by about 0.79~0.81 (NTD/kWh).
Analyzing the results of various scenarios, it can be found that the scenario of nuclear deferral can not only help stabilize the power supply in Taiwan, but also effectively reduce the cost of power generation, which has a good effect on the stability of electricity prices.
It has become a global trend for renewable energy to become the mainstay of power supply. As the proportion of renewable energy increases, the stability of power supply and the rising cost of power generation are of increasing concern. It is recommended that Taiwan establish a comprehensive energy storage system and strengthen the resilience of the power grid before 2030. A load forecasting platform should be established and data from various units should be collected continuously, and seasonality and day/night factors should be incorporated into the simulation system, so as to more closely match the actual situation of gas supply and power development constraints, in order to achieve net-zero carbon emissions in the future.
中文文獻
1. 王鈺惠(2011),台灣電力部門供給面減碳政策效益評估,國立成功大學資源工程研究所碩士論文。
2. 台灣電力公司(2022),淨尖峰能力之考量與定義。
3. 台灣電力公司(2022),歷年發電量與結構。
4. 台灣電力公司(2022),電價及單位成本結構。
5. 台灣電力公司(2022),台電2050淨零排放路徑初步規劃。
6. 台灣電力公司簡明月報(2021)。
7. 台灣電力公司過去電力供需資訊(2021)。
8. 李信、楊逸亞、吳榮華、黃韻勳 (2020),我國能源轉型政策對電力供給規 劃之影響,鑛冶:中國鑛冶工程學會會刊,64(3),9-21。
9. 吳瑞南及范建得(2013),因應除核之能源政策調和研究,行政院國家科學委員會專題研究計畫期末報告。
10. 周裕豐、郭瑾瑋、劉子衙及洪明龍 (2012), 儲能技術對電力供給結構之影響-臺灣TIMES模型之應用, 2012年海峽兩岸第七屆汽電共生/熱電聯產學術交流會論文集。
11. 施品甄(2015),臺灣電力業排放標準訂定之影響分析 ,國立成功大學資源工程研究所碩士論文。
12. 高雄市環境保護局(2021)。
13. 能源局(2022),統計月報
14. 能源局(2021),能源統計手冊2021。
15. 國家發展委員會 (2022),臺灣2050淨零排放路徑及策略總說明。
16. 郭瑾瑋、周裕豐、洪明龍、劉子衙(2015),應用臺灣 TIMES 模型進行我國 長期電力供需規劃,臺灣能源期刊,2-4,363-382。
17. 陳中舜、張耀仁、卓金和(2019),因應我國再生能源政策之儲能系統需求評 估,台灣能源期刊,6-4,313-334。
18. 黃郁青、陳治均及葛復光(2017),利用TIMES模型進行我國電網級儲能分析,臺灣能源期刊,4(1),45-58。
19. 黃郁青、陳治均、葛復光(2018),電動車的發展對我國電網級儲能系統之影 響,臺灣能源期刊,5-3,233-249。
20. 黃郁青、陳治均 (2020),我國太陽光電中長期之技術發展策略,臺灣能源 期刊,7 (4),325-344。
21. 雲林縣環境保護局(2021)。
22. 經濟部能源局(2021),108-109年度全國電力供需報告。
23. 能源局(2022),統計月報。
24. 經濟部能源局(2022),110年度全國電力供需報告。
25. 經濟部行政院公報資訊網(2022)
26. 經濟部能源局(2021),111年度再生能源電能躉購費率審定會會議記錄。
27. 經濟部(2017),能源轉型白皮書網站
28. 楊逸亞 (2020),因應台灣能源轉型之儲能系統建置評估,國立成功大學碩 士論文,台南。
29. 劉哲良、王鈺惠、陳家榮(2015),電廠碳排放標準對我國電力業之成本與碳 排放衝擊評析,綠色經濟電子期刊,1,A1-A16。
30. 賴正文(1997),區域性負載預測及電力供給規劃模型建立之研究,國立成功大學資源工程研究所博士論文。
31. 蕭雯倩 (2010),台灣發電部門 CO2排放減量成本分析之研究,國立成功大學碩士論文。
32. 謝錦隆、薛康琳、鍾岳霖及戴志揚(2016),臺灣風力發電與液流電池系統儲電情境模擬,臺灣能源期刊,3(1),55-78。
33. 鍾雨璇(2014),台灣發電業最適電力配比之研究,國立成功大學資源工程研究所碩士論文。
34. 魏宜峰(2017),台灣電業自由化對供給面的影響分析,國立成功大學資源工程研究所碩士論文。
英文文獻
1. BP( 2021).Statistical Review of World Energy
2. Baldinelli, A., Barelli, L., Bidini, G., & Discepoli, G. (2020). Economics of innovative high capacity-to-power energy storage technologies pointing at 100% renewable micro-grids. Journal of Energy Storage, 28, 101198.
3. CNESA (2020). Energy Storage Industrial Research.
4. Delgado, F., Ortiz, A., Renedo, C. J., Pérez, S., Mañana, M., & Zobaa, A. F. (2011). The influence of nuclear generation on CO2 emissions and on the cost of the Spanish system in long-term generation planning. International Journal of Electrical Power & Energy Systems, 33(3), 673-683.
5. Denholm, P., O’Connell, M., Brinkman, G., & Jorgenson, J. (2015). Overgeneration from Solar Energy in California: A Field Guide to the Duck Chart.
6. EDGAR.(2020).Emissions Database for Global Atmospheric Research
7. EIA ( 2021).Annual Energy Outlook 2021。
8. EIA ( 2021).World Energy Projection System。
9. Ghorbani, N., Aghahosseini, A., & Breyer, C. (2020). Assessment of a costoptimal power system fully based on renewable energy for Iran by 2050– Achieving zero greenhouse gas emissions and overcoming the water crisis. Renewable Energy, 146, 125-148.
10. González-Garrido, A., Saez-de-Ibarra, A., Gaztanaga, H., Milo, A., Eguia, P. (2019) Annual optimized bidding and operation strategy in energy and secondary reserve markets for solar plants with storage systems. IEEE Transactions on Power Systems, 34(6), 5115-5124
11. Hemmati R., Saboori H. & Jirdehi M.A. (2017). Stochastic planning and scheduling of energy storage systems for congestion management in electric power systems including renewable energy resources, Energy, 133, 380-387.
12. IEA(2022).Global Energy Review 2021
13. IRENA (2017), Electricity storage renewables: costs and markets to 2030.
14. IRENA. (2018). Power system flexibility for the energy transition.
15. Joint Research Centre. (2018). Cost development of low carbon energy technologies.
16. Lazard (2018), Lazard's levelized cost of storage analysis-version 4.0.
17. Leou, R. C. (2012). An economic analysis model for the energy storage system applied to a distribution substation. International Journal of Electrical Power & Energy Systems, 34(1), 132-137.
18. Liu, J., & Zhong, C. F. (2019). An economic evaluation of the coordination between electric vehicle storage and distributed renewable energy. Energy, 186.
19. Loukatou, A., Johnson, P., Howell, S., Duck, P. (2021). Optimal valuation of wind energy projects co-located with battery storage. Applied Energy, 283, 116-247
20. Min D., Ryu J.H. & Choi D.G. (2018). A long-term capacity expansion planning model for an electric power system integrating large-size renewable energy technologies, Computers & Operations Research, 96, 244-255.
21. Moreno R., Moreira R. & Strbac G. (2015). A MILP model for optimising multi-service portfolios of distributed energy storage, Applied Energy, 137, 554-566.
22. National Renewable Energy Laboratory. (2021). 2020 Cost of Wind Energy Review。
23. Pereira S., Ferreira P. & Vaz A.I.F. (2016). Optimization modeling to support renewables integration in power systems, Renewable and Sustainable Energy Reviews, 55, 316-325.
24. Plessmann, G. and Blechinger, P. (2017). How to meet EU GHG emission reduction targets? A model based decarbonization pathway for Europe's electricity supply system until 2050. Energy Strategy Reviews, 15, 19-32.
25. Rodrigues E.M.G., Godina R., Santos S.F., Bizuayehu A.W., Contreras J. & Catalão J.P.S. (2014). Energy storage systems supporting increased penetration of renewables in islanded systems, Energy, 75, 265-280.
26. Rodrigues T., Ramírez P.J. & Strbac G. (2016). The value of storage for a wind farm offering energy and spinning reserve, 5th IET International Conference on Renewable Power Generation (RPG 2016).
27. Schill, W. P., & Zerrahn, A. (2018). Long-run power storage requirements for high shares of renewables: Results and sensitivities. Renewable and Sustainable Energy Reviews, 83, 156-171.
28. Sigrist L., Lobato E. & Rouco L. (2013). Energy storage systems providing primary reserve and peak shaving in small isolated power systems: An economic assessment, International Journal of Electrical Power & Energy Systems, 53, 675-683.
29. Solomon, A. A., Bogdanov, D., and Breyer, C. (2018). Solar driven net zero emission electricity supply with negligible carbon cost: Israel as a case study for Sun Belt countries. Energy, 155, 87-104.
30. Tekiner, H., Coit, D. W., & Felder, F. A. (2010). Multi-period multi-objective electricity generation expansion planning problem with Monte-Carlo simulation. Electric Power Systems Research, 80(12), 1394-1405.
31. Ueckerdt, F., Pietzcker, R., Scholz, Y., Stetter, D., Giannousakis, A., & Luderer, G.(2017). Decarbonizing global power supply under region-specific consideration of challenges and options of integrating variable renewables in the REMIND model. Energy Economics, 64, 665-684.
32. Wierzbowski M., Lyzwa W. & Musial I. (2016). MILP model for long-term energy mix planning with consideration of power system reserves, Applied Energy, 169, 93-111.
33. Zerrahn, A., Schill, W.P., & Kemfert, C. (2018). On the economics of electrical storage for variable renewable energy sources. European Economic Review, 108, 259-279.
校內:2028-10-11公開