簡易檢索 / 詳目顯示

研究生: 陳昱任
Chen, Yu-Jen
論文名稱: 鈀/氮化鎵蕭特基二極體氫氣感測器之製備及其感測特性之研究
Fabrication and Sensing Characteristics of Pd/GaN Schottky Diode Hydrogen Sensors
指導教授: 陳慧英
Chen, Huey-Ing
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 123
中文關鍵詞: 多孔型氮化鎵緻密型蕭特基二極體氫氣感測器
外文關鍵詞: porous, dense, hydrogen sensor, Schottky diode, GaN
相關次數: 點閱:78下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中,吾人利用熱蒸鍍技術來製備四種新穎之蕭特基二極體,即多孔式鈀/氮化鎵(porous Pd/GaN diode, 簡稱Porous-MS元件)、緻密型鈀/氮化鎵(dense Pd/GaN diode, 簡稱Dense-MS元件)、多孔式鈀/氧化矽/氮化鎵(porous Pd/SiO2/GaN diode, 簡稱Porous-MOS元件)及緻密型鈀/氧化矽/氮化鎵(dense Pd/SiO2/GaN diode, 簡稱Dense-MOS元件)以作為氫氣感測器。文中針對此四種元件之鈀膜表面型態及電流-電壓特性來加以探討。另外,在氫氣濃度為15 – 9970ppm及溫度303 - 515K下進行元件氫氣感測性能之分析與比較。文中假設氫氣之偵檢可由氫氣吸附模式來加以描述,經由理論模式與實驗分析結果可計算氫氣在此二極體上之吸附熱力學及動力學參數。
    比較Porous-MS與Dense-MS元件之氫氣感測性能發現,多孔性元件較緻密型元件擁有較佳之氫氣靈敏度及較低之偵檢極限(可量測於小於50ppm)。Porous-MOS與Dense-MOS元件之比較亦有相同結果。另外,探討SiO2氧化層之影響發現,Porous-MOS較Porous-MS元件擁有更高之感測靈敏度(可高達104)、更低之偵檢極限(可量測至ppb等級)及更快之響應(在2秒內)。推測MOS結構元件可以有效防止費米能階釘住效應,且抑制鈀與氮化鎵間形成化合物,因此其感測靈敏度較MS結構元件為佳;另外,推測由於在多孔性元件上氫氣溢出(spillover)現象更為明顯,故多孔性元件之感測靈敏度較緻密型元件為佳。
    在氫氣吸附分析方面,吾人以Langmuir模式來描述氫氣之平衡吸附,並以一階之動力模式來描述初始之暫態吸附。由分析結果顯示,Porous-MS、Dense-MS、Porous-MOS與Dense-MOS四種元件對氫氣之吸附熱分別為-45.0 (393-453K)、-77.0 (393-453K)、-49.8 (423-515K)、-100.6 (393-515K) kJ mole-1;而其活化能則分別約為13.2、14.4、34.3、21.2 kJ mole-1。
    綜合以上結果可知,多孔性MS Pd/GaN蕭特基二極體適合於低氫氣濃度之檢測,而其MOS結構元件則因氧化層之存在,氫氣感測性能更為提升。因此對於低濃度及寬溫度範圍之氫氣偵檢,本研究中開發之多孔性MOS Pd/GaN元件展現未來最大之發展優勢。

    In this study, four kinds Schottky diodes, porous Pd/GaN diode (Porous-MS), dense Pd/GaN diode (Dense-MS), porous Pd/SiO2/GaN diode (Porous-MOS), and dense Pd/SiO2/GaN diode (Dense-MOS) were fabricated by thermal evaporation technique for hydrogen sensing. The Pd surface morphology and current-voltage (I-V) rectifying properties of four devices were investigated. Moreover, the hydrogen sensing performances of these devices were studied under hydrogen concentrations of 15-9970ppm H2/air and temperatures of 303-515K. Assuming that the hydrogen sensing behavior could be described by the adsorption model of hydrogen, the thermodynamic and kinetic parameters were then estimated from the experimental results.
    As comparing the sensing performances of Porous-MS with Dense-MS devices, it was found that the Porous-MS device demonstrated more excellent hydrogen sensing performances with higher sensitivity and lower detection limit (e.g., less than 50 ppm). Similar result was found in the comparison of Porous-MOS and Dense-MOS devices. To further investigate the influence of SiO2 layer, the results showed that the Porous-MOS exhibited higher sensing sensitivity (up to 104), lower detection limit (reaching to ppb level) and faster response (within 2 seconds) than the Porous-MS device. This was suggested that the oxide interlayer could avoid the Fermi-level pinning effect accompanying with the suppression of forming Pd-GaN compounds. Besides, the sensitivity of porous device was higher than that of the dense one, which might be due to the significance of hydrogen spill-over effect on the porous device.
    For the hydrogen adsorption analysis, the Langmuir model was used for describing the adsorption equilibrium, and the initial rate of transient detection was expressed by using a first-order kinetic model. From the adsorption analysis, the adsorption heats for Porous-MS、Dense-MS、Porous-MOS and Dense-MOS were -45.0 (393-453K), -77.0 (393-453K), -49.8 (423-515K), and -100.6 (393-515K) kJ mole-1, respectively, and the corresponding activation energies for the four devices were estimated as 13.2, 14.4, 34.3, and 21.2 kJ mole-1, respectively.
    In conclusion, the porous MS Pd/GaN was suitable for hydrogen sensing at extremely low hydrogen concentration and wide operating temperature region. With the presence of oxide interlayer, the sensing performances of the MOS device were further promoted. Therefore, to meet crucial operating requirements, the porous Pd/GaN device prepared in this work showed the most predominance in future developments.

    LIST OF CONTENTS Page 摘要 ABSTRACT ACKNOWLEDGEMENT LIST OF CONTENTS………………………………………………………….….. I LIST OF TABLES…………………………………………………………………. IV LIST OF FIGURES……………………………………….……………………….. V LIST OF SYMBOLS………………………………………………………………. X Chapter 1 Introduction………..…………………………………………… 1 1.1 Chemical gas sensors……………………………………………..….. 1 1.2 Types of gas sensors.............................................................................. 2 1.2.1 Thermal conductivity sensor………………………..…….… 2 1.2.2 Catalytic bead sensor……………………………………..… 3 1.2.3 Electrochemical sensor……………………………..………. 3 1.2.4 Infrared sensor……………………………………..……….. 4 1.2.5 Solid state sensor…................................................................. 4 1.2.6 Field effect transistor…………………………..…………… 4 1.3 Trends for chemical sensing technology………………...…………… 5 1.4 Sensors for high temperature use…………………………………….. 5 1.5 Motivation and objectives…………………………...……………….. 6 Chapter 2 Theoretical………………………………………..……………... 10 2.1 Electron transportation at Schottky interface……………..………….. 10 2.1.1 Schottky junction and Schottky barrier……………………... 10 2.1.2 Thermionic emission model……………………………...…. 12 2.2 Pd/semiconductor Schottky diode hydrogen sensor……..................... 14 2.3 Pd/oxide/semiconductor Schottky diode hydrogen sensor……….. 15 2.4 Hydrogen detection analysis…...…………………...………………... 16 2.4.1 Steady-detection analysis…….………………...…………… 16 2.4.2 Transient detection analysis…….…………………………... 19 2.5 Estimation of activation energy………………...……………………. 20 Chapter 3 Experimental details…………………………………………. 26 3.1 Chemicals and materials………………………………………...…… 26 3.2 Apparatus and measurements………………………………………... 27 3.3 Design and fabrication of Schottky diode device……………………. 29 3.3.1 Device structure………………………….…………………. 29 3.3.2 Device fabrication……………………………..……………. 29 3.4 Hydrogen sensing measurements…………………………………….. 32 3.4.1 System set up…………………………………….…………. 32 3.4.2 Hydrogen sensing experiments………………………...…… 32 3.4.2.1 Steady-state detection measurements……………… 32 3.4.2.2 Transient-state detection measurements…………... 33 Chapter 4 Characterization and Sensing Performances of Pd/GaN Schottky Diodes…………………....……………… 38 4.1 Pd film and Pd-GaN interface characterizations………………..……. 38 4.1.1 SEM Analysis…………………………………………….…. 38 4.1.2 AES Analysis……………………………………………….. 38 4.2 Steady-detection performances……………………………………..... 39 4.2.1 I-V modulations………………………………………….…. 39 4.2.2 Schottky barrier height lowering………………………...…. 40 4.2.3 Relative sensitivity………………………………………..… 40 4.2.4 Hydrogen adsorption analysis………………………………. 41 4.2.5 Estimation of reaction heat………………………………..... 42 4.3 Transient-detection performances……………………………………. 43 4.3.1 I-t responses…………………………………………….…... 43 4.3.2 Response and recovery time……………………………..…. 43 4.3.3 Kinetic adsorption analysis………………………………..... 44 4.3.4 Estimation of activation energy…………………………….. 45 4.4 Comparison of hydrogen sensing performances between dense and porous structured Pd/GaN devices…………………………………… 45 Chapter 5 Characterization and Sensing Performances of Pd/SiO2/GaN Schottky Diodes……………………………. 71 5.1 Pd film and Pd-GaN interface characterizations……………..………. 71 5.1.1 SEM Analysis………………………………….……………. 71 5.1.2 AES Analysis……………………………………………….. 71 5.2 Steady-detection performances……………………...……………….. 71 5.2.1 I-V modulations…………………………………….………. 71 5.2.2 Schottky barrier height lowering…………………………… 72 5.2.3 Relative sensitivity…………………………………..……… 73 5.2.4 Hydrogen adsorption analysis…………………………...….. 74 5.2.5 Estimation of reaction heat……………………………...….. 74 5.3 Transient-detection performances……………………………………. 75 5.3.1 I-t responses……………………………………….………... 75 5.3.2 Response and recovery time……………………………..…. 76 5.3.3 Kinetic adsorption analysis…………………………...…….. 77 5.3.4 Estimation of activation energy…………………………...... 77 5.4 Comparison of hydrogen sensing performances between porous and dense structured Pd/SiO2/GaN devices………………………………. 78 Chapter 6 Comparison of Sensing Performances between Pd/GaN and Pd/SiO2/GaN Schottky Diodes…………. 101 6.1 Steady-detection performances……………...……………………….. 101 6.1.1 I-V modulations and Sensing range………………………… 101 6.1.2 Schottky barrier height and Schottky barrier height lowering…………………………………………………….. 102 6.1.3 Relative sensitivity…………………………..……………… 102 6.1.4 Equilibrium constants……………………………...……….. 103 6.2 Transient-detection performances……………………………………. 103 6.2.1 I-t responses…………………………………………….…... 103 6.2.2 Rate constants and Activation energy………………………. 104 Chapter 7 Conclusions and Suggestions……………………………... 114 7.1 Conclusions………….……………………………………………….. 114 7.2 Suggestions…………………………………………………………... 115 References…………………………………….……………………………… 116 LIST OF TABLES Page Table 1.1 Advantages and disadvantages of six types of gas sensor………... 8 Table 1.2 Some energy gaps of semiconductor materials ( includes Si, GaAs, InP and GaN )…………………………………………..…. 9 Table 2.1 Work functions of some important metals………………………... 21 Table 2.2 Some electronic properties of Ge, Si, GaAs and GaN……………. 21 Table 4.1 Response time and recovery time of Pd/GaN hydrogen sensor at different hydrogen concentrations and the detection temperatures (a)dense, and (b)porous…………………………………………… 47 48 Table 4.2 Comparison of the sensing performances between dense and porous MS devices……………………………………………..…. 49 Table 5.1 Response time and recovery time of Pd/SiO2/GaN hydrogen sensor at different hydrogen concentrations and the detection temperatures (a)dense, and (b)porous………………………….…. 79 80 Table 5.2 Comparison of the sensing performances between dense and porous MOS devices………………………………………….…... 81 Table 6.1 The summaries of the ΦBn and ΔHo values for different substrates………………………………………………………..… 105 Table 6.2 Values of the ΔHo, ΔSo, and Ea for various Pd/GaN Schottky diode sensors……………………………………………………... 106 LIST OF FIGURES Page Figure 2.1 The energy-band diagrams of a metal and n-type semiconductor at thermal equilibrium. (a) before contact, (b) after contact. (in case of )………………………………………………. 22 Figure 2.2 Energy band diagram of a metal-semiconductor junction under (a) forward and (b) reverse bias…………………………………. 23 Figure 2.3 Experimental dependences of values on metal work functions for various semiconductors…………………………… 23 Figure 2.4 Energy band diagram of a forward biased Schottky barrier junction on n-type semiconductor showing different transport mechanisms……………………………………………………… 24 Figure 2.5 The band diagrams and charge distributions of Pd/GaN Schottky diode with and without hydrogen adsorption……......................... 25 Figure 2.6 Conventional MOS Schottky diode in air at thermal equilibrium (b) MOS Schottky diode in a hydrogen contained ambient……... 25 Figure 3.1 Apparatus for thermal evaporation system…………………........ 34 Figure 3.2 Device structure of studied Pd/GaN Schottky hydrogen sensor diode……………………………………………………………... 34 Figure 3.3 (a) Schematic block diagram and (b) device structure for fabrication of studied Pd/GaN Schottky diode hydrogen sensor... 35 Figure 3.4 The device of MS and MOS structures observed by optical microscope, (a) dense, (b) porous……………………………….. 36 Figure 3.5 System setup for hydrogen detection experiment……………….. 37 Figure 4.1 The SEM images of (a) side view, and (b) surface morphology of the porous device……………………………………………... 50 Figure 4.2 The EDX patterns of (a) the Pd surface, and (b) pore inside......... 51 Figure 4.3 Depth profile of AES analysis for the MS device……………….. 52 Figure 4.4 The I-V modulations of the dense MS device exposed to different hydrogen concentrations. Detection temperature = (a)303K, (b)333K, (c)363K, (d)393K, (e)423K, (f)453K……..… 53 54 Figure 4.5 The I-V modulations of the porous MS device exposed to different hydrogen concentrations. Detection temperature = (a)303K, (b)333K, (c)363K, (d)393K, (e)423K, (f)453K……….. 55 56 Figure 4.6 Effects of hydrogen concentration on Schottky barrier and Schottky barrier height lowering of the dense and porous MS devices. Detection temperature = (a) 303K, (b) 333K, (c) 363K, (d) 393K, (e) 423K, (f) 453K……………………………………. 57 Figure 4.7 Effects of hydrogen concentration on sensitivity of dense and porous MS devices. Detection temperature = (a) 303K, (b) 333K, (c) 363K, (d) 393K, (e) 423K, (f) 453K………………..… 58 Figure 4.8 Dependence of the sensitivity on temperature for 9970ppm H2/air………………………………………………………….…. 59 Figure 4.9 Plots of versus for MS devices at different operating temperatures, (a) dense, (b) porous……......... 60 Figure 4.10 The relationship between equilibrium constant and the reciprocal of temperature……………………………………...… 61 Figure 4.11 Schematic diagram of energy state for hydrogen adsorbate at dense and porous Pd-GaN Schottky interfaces………………….. 62 Figure 4.12 Transient response curves of the dense MS device at different temperatures……………………………………………………... 63 Figure 4.13 Transient response curves of the porous MS device at different temperatures……………………………………………………... 64 Figure 4.14 Response times for dense and porous MS devices at various detection temperatures. Hydrogen concentration in air = (a) 537ppm, (b) 1010ppm, (c) 9970ppm……………………………. 65 Figure 4.15 Recovery times for dense and porous MS devices at various detection temperatures. Hydrogen concentration in air = (a) 537ppm, (b) 1010ppm, (c) 9970ppm…………………………..... 66 Figure 4.16 The relationships between and time of dense MS device at different hydrogen concentrations. Detection temperature = (a) 303K, (b) 333K, (c) 363K, (d) 393K, (e) 423K, (f) 453K……………………….......... 67 Figure 4.17 The relationships between and time of porous MS device at different hydrogen concentrations. Detection temperature = (a) 303K, (b) 333K, (c) 363K, (d) 393K, (e) 423K, (f) 453K……………………….......... 68 Figure 4.18 The relationships between rate constant kr and operating temperature of the MS devices at different hydrogen concentrations, (a) dense, (b) porous……………………………. 69 Figure 4.19 The dependences of pressure-independent rate constant on the reciprocal of temperature of the dense and porous MS devices…………………………………………………………... 70 Figure 5.1 The SEM images of (a) side view, and (b) surface morphology of the porous device……………………………………………... 82 Figure 5.2 The EDX patterns of (a) Pd surface, and (b) pore inside………... 83 Figure 5.3 Depth profiles of AES analysis for the MOS device…………..... 84 Figure 5.4 The I-V modulations of the dense MOS device exposed to different hydrogen concentrations. Detection temperature = (a)303K, (b)333K, (c)364K, (d)393K, (e)423K, (f)453K, (g)513K………………………………………………………….. 85 86 Figure 5.5 The I-V modulations of the porous MOS device exposed to different hydrogen concentrations. Detection temperature = (a)303K, (b)333K, (c)364K, (d)393K, (e)423K, (f)453K, (g)515K………………………………………………………….. 87 88 Figure 5.6 Effects of hydrogen concentration on Schottky barrier and Schottky barrier height lowering of the dense and porous MOS devices.Detection temperature = (a) 303K, (b) 333K, (c) 363K, (d) 393K, (e) 423K, (f) 453K………………………..................... 89 Figure 5.7 Effects of hydrogen concentration on sensitivity of dense and porous MOS devices. Detection temperature = (a) 303K, (b) 333K, (c) 364K, (d) 393K, (e) 423K, (f) 453K………………..… 90 Figure 5.8 Dependence of the sensitivity on temperature for 990ppm H2/air…………………………………………………………….. 91 Figure 5.9 Plots of versus for MOS devices at different operating temperatures, (a) dense, (b) porous…………. 92 Figure 5.10 The relationship between equilibrium constant and the reciprocal of temperature………………………………………... 93 Figure 5.11 Comparison of transient currents between dense and porous MOS devices at 303K. Hydrogen concentrations = (a) 15, (b) 48, (c) 97, (d) 537, (e) 990, (f) 9970ppm…………………….….. 94 Figure 5.12 Response times for dense and porous MOS devices at various detection temperatures. Hydrogen concentration in air = (a) 537ppm, (b) 990ppm, (c) 9970ppm……………………………... 95 Figure 5.13 Recovery times for dense and porous MOS devices at various detection temperatures.Hydrogen concentration in air = (a) 537ppm, (b) 990ppm, (c) 9970ppm……………………………... 96 Figure 5.14 The relationships between and time of dense MOS device at different hydrogen concentrations. Detection temperature = (a) 303K, (b) 333K, (c) 364K, (d) 393K, (e) 423K, (f) 453K……………………….......... 97 Figure 5.15 The relationships between and time of porous MOS device at different hydrogen concentrations. Detection temperature = (a) 303K, (b) 333K, (c) 364K, (d) 393K, (e) 423K, (f) 453K……………………….......... 98 Figure 5.16 The relationships between rate constant kr and operating temperature of the MOS devices at different hydrogen concentrations, (a) dense, (b) porous……………………………. 99 Figure 5.17 The dependences of pressure-independent rate constant on the reciprocal of temperature of the dense and porous MOS devices…………………………………………………………... 100 Figure 6.1 Comparison of I-V modulations between porous MS and MOS devices exposed to different hydrogen concentrations at 303K……………………………………………………………... 107 Figure 6.2 Comparison of I-V modulations between porous MS and MOS devices exposed to different hydrogen concentrations at 423K……………………………………………………………... 108 Figure 6.3 Effect of hydrogen concentration on Schottky barrier height of porous MS and MOS devices at 303K…………………………... 109 Figure 6.4 Effect of hydrogen concentration on Schottky barrier height lowering of porous MS and MOS devices at 303K…………....... 109 Figure 6.5 Hydrogen concentration on relative sensitivity for porous MS and MOS devices at 303K………………………………………. 110 Figure 6.6 The relationships between equilibrium constant and the Reciprocal of temperature for the porous MS and MOS devices…………………………………………………………... 111 Figure 6.7 Transient response curves upon in the introduction and removal hydrogen gases of the porous MS device at 303K………………. 112 Figure 6.8 Transient response curves upon in the introduction and removal hydrogen gases of the porous MOS device at 303K...................... 112 Figure 6.9 The dependence of pressure-independent rate constant on the inverse of temperature of the porous Pd/GaN MS and MOS devices…………………………………………………………… 113 LIST OF SYMBOLS Effective Richardson constant (A K-2cm-2) Mean free path of hydrogen reacting with oxygenated species (Å) Activation energy (kJ mole-1) Bandgap of semiconductor (V) Standard Gibbs energy change for hydrogen molecule adsorbing at Pd-GaN interface (kJ mole-1) Standard adsorption heat for hydrogen molecule adsorbing at Pd-GaN interface (kJ mole-1) I Current density (A cm-2) Reverse saturation current density (A cm-2) Reverse saturation current density in atmosphere (A cm-2) Reverse saturation current density with hydrogen adsorption (A cm-2) Maximum reverse saturation current density with hydrogen adsorption (A cm-2) Change of current density (A cm-2) k Boltzmann’s constant (J K-1) k0 Pre-exponential factor (sec-1) k' Rate constant for hydrogen adsorbing on Pd surface (sec-1) kr Rate constant (torr-1 sec-1) kd Rate constant for hydrogen desorption from Pd (sec-1) K Equilibrium constant (torr-1) n Ideality factor NA Avogadro’s number Available hydrogen adsorption sites on Pd surface (m-2) Available hydrogen adsorption sites on interface (m-2) Hydrogen partial pressure (Pa) q Charge (C) R Ideal gas constant (J mol-1K-1) s Sticking coefficient Ss Hydrogen adsorption site at Pd surface Si Hydrogen adsorption site at Pd-InP interface S Relative sensitivity Standard entropy change for hydrogen molecule adsorbing at Pd-GaN interface (J mole-1K-1) Temperature (K) Applied voltage (V) Built-in voltage (V) Schottky barrier height (V) Metal work function (V) Semiconductor work function (V) Schottky barrier lowering potential (V) Maximum Schottky barrier lowering potential (V) Surface hydrogen coverage Interfacial hydrogen coverage Electron affinity of semiconductor (V) Effective dipole moment Response time (sec) Recovery time (sec)

    References
    [1] H. Sundgren, I. Lundström, F. Winquist, I. Lukkari, R. Carlesson, and S. Wold, “Evaluation of a Multiple Gas-Mixture with a Simple MOSFET Gas Sensor Array and Pattern-Recognition”, Sens. Actuators B, 2, pp.115-123, 1990.
    [2] N. Yamazoe and N. Miura, “Development of gas sensors for environmental protection”, IEEE Trans. Components, Packing and Manufacturing Technology A, 18, pp.252-256, 1995.
    [3] C. C. Chang, and Y. E. Chen, “Fabrication of high sensitivity ZnO thin film ultrasonic devices by electrochemical etch techniques”, IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control, 44, pp. 624-628, 1997.
    [4] M. Ali, V. Cimalla, V. Lebedev, H. Romanus, V. Tilak, D. Merfeld, P. Sandvik, and O. Ambacher, “Pt/GaN Schottky diodes for hydrogen gas sensors”, Sens. Actuators B, 113, pp. 797-804, 2006.
    [5] C. Christofides, and A. Mandelis, “Solid-state sensors for trace hydrogen gas detection”, J. Appl. Phys., 68(6) R1-R30, 1990.
    [6] I. Lundstrom, M. Armgarth, L. Petersson, “Physics of catalytic metal gate chemical sensors”, CRC Crit. Rev. Solid State Mater. Sci. 15(3), pp. 201-278, 1989.
    [7] T. M. Canh, “Biosensors”, ch 1, London: Champman & Hall,1993.
    [8] L. Ristic, “Sensor technology and devices”, ch1, Boston: Artech House, 1994.
    [9] A. Mandelis and C. Christofides, “Physics, chemistry and technology of solid state gas sensor devices”, ch 3, New York: John Wily & Sons, 1993.
    [10] H. A. Daynes, “Gas Analysis by Measurement of Thermal Conductivity”, Cambridge University Press, London, pp. 1-10, 1933.
    [11] M. Devoret, N.S. Sullivan, D. Esteve and P. Deschamps, “Simple thermal conductivity cell using a miniature thin film printed circuit for analysis of binary gas mixtures”, Rev. Sci. Instrum. 51 (9), pp. 1220–1224, 1980.
    [12] I. Simon, and M. Arndt, “Thermal and gas-sensing properties of a micromachined thermal conductivity sensor for the detection of hydrogen in automotive applications”, Sens. Actuators B, 97-98, pp. 104-108, 2002.
    [13] I. A. Ges, and B. A. Budkevich, “Piezoelectric hydrogen sensor on the base of WO3-Pd films”, Proceedings of the 1999 Joint Meeting of the European Frequency and Time Forum and the IEEE International Frequency Control Symposium”, pp. 1070– 1073, 1999.
    [14] C.V. Gopal Reddy, and S. V. Manorama, “Room temperature hydrogen sensor based on SnO2:La2O3”, Journal of the Electrochemical Society 147, pp. 390-393, 2000.
    [15] S. Sekimoto, H. Nakagawa, S. Okazaki, K. Fukuda, S. Asakura, T. Shigemori, and S. Takahashi, “Fiber-optic evanescent-wave hydrogen gas sensor using palladium-supported tungsten oxide”, Sens. Actuators B, 66, pp.142–145, 2000.
    [16] G. Lu, N. Miura, and N. Yamazoe, Sens. Actuators B, 35, pp.130– 135, 1996.
    [17] M. Shi, and F. C. Anson, “Effects of hydration on the resistances and electrochemical responses of Nafion® coatings on electrodes”, J. Electroanal. Chem. 415, pp. 41–47, 1996.
    [18] B. Limoges, C. Degrand, P. Brossier, “Redox cationic or procationic labeled drugs detected at a perfluorosulfonated ionomer film-coated electrode”, J. Electroanal. Chem. 402, pp. 175–181, 1996.
    [19] Y. L. Lai, E. Y. Chang, C. Y. Chang, T. K. Chen, T. H. Liu, S. P. Wang, T. H. Chen, and C. T. Lee, “5 mm high-power-density dual-delta-doped power HEMTS for 3 V L-band applications”, IEEE Electron Device Lett., 17(5), pp. 229-231, 1996.
    [20] Y. W. Chen, W. C. Hsu, H. M. Shieh, Y. J. Chen, Y. S. Lin, Y. J. Li, and T. B. Wang, “High breakdown characteristic δ-doped InGaP/InGaAs/AlGaAs tunneling real space transfer HEMT”, IEEE Trans. Electron Devices, 49(2), pp. 221-225, 2002.
    [21] S. W. Tan, M. K. Hsu, A. H. Lin, M. Y. Chu, W. T. Chen, and W. S. Lour, “Sub-0.25 micro gate like heterojunction doped-channel FETs with a controllable notch-angle V-gate”, Semicond. Sci. Technol., 19(3), pp. 384-388, 2004.
    [22] S. E. Gunnarsson, C. Kärnfelt, H. Zirath, R. Kozhuharov, D. Kuylenstierna, A. Alping, and C. Fager, “Highly integrated 60 GHz transmitter and receiver MMICs in a GaAs pHEMT technology”, IEEE J. Solid-State Circuits, 40(11), pp. 2174-2186, 2005.
    [23] C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, W. H. Hsu, C. W. Hong, and W. C. Liu, “Temperature-dependent hydrogen sensing characteristics of a Pd/oxide/Al0.24Ga0.76As high electron mobility transistor (HEMT) ”, Electron. Lett., 40(25), pp. 1608-1609, 2004.
    [24] O. S. Wolfbeis, “Chemical sensors - survey and trends”, Fresenius J Anal Chem 337, pp. 522-527, 1990.
    [25] B. L. Sharma, “Metal-semiconductor Schottky barrier junctions and their applications”, ch 2, New York: Plenum Press, 1984.
    [26] 陳嘉銘,”以電泳法製備鈀/磷化銦蕭特基二極體氫氣感測器之研究“,國立成功大學化學工程學系碩士論文, 2005.
    [27] H. Morkoc, S. Strites, G. B. Gao, M. E. Lin, B. Sverdlov and M. Burns, “Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies”, J. Appl. Phys., 76, pp.1363, 1994.
    [28] A. Arbab, A. Spetz and I. Lunström, “Gas sensors for high temperature operation based on metal oxide silicon carbide (MOSiC) devices”, Sens. Actuators B, 15-16, pp.19-23, 1993.
    [29] Y. Gurbuz, W. P. Kang, J. L. Davison and D. V. Kerns, “Analyzing the mechanism of hydrogen adsorption effects on diamond based MIS hydrogen sensor”, Sens. Actuators B, 35-36, pp. 68-72, 1996.
    [30] G. W. Hunter, P. G. Neudeck, L. Y. Chen, D. Knight, C. C. Liu, and Q. H. Wu, “Microfabricated chemical sensors for safety and emission control applications”, Digital Avionics Systems Conference, 1998. Proceedings, 17th DASC. The AIAA/IEEE/SAE, 1, pp. D11/1-D11/8, 1998.
    [31] C. K. Kim, J. H. Lee, Y. H. Lee, N. I. Cho, D. J. Kim, and W. P. Kang, “Hydrogen sensing characteristics of Pd-SiC Schottky diode operating at high temperature”, J. Electron. Mat., 28, pp. 202-205, 1999.
    [32] B. P. Luther, S. D. Wolter, and S. E. Mohney., “High temperature Pt Schottky diode gas sensors on n-type GaN”, Sens. Actuators B, 56, pp.164-168, 1999.
    [33] J. Schalwig, G. Müller, U. karrer, M. Eickhoff, O. Ambacher, and M. Stutzmann, L. Görgens, and G. Dollinger, “Hydrogen response mechanism of Pt-GaN Schottky diodes”, Appl. Phys. Lett., 80, pp. 1222-1224, 2002.
    [34] B. P. Luther, S.D. Wolter, and S.E. Mohney,“High temperature Pt Schottky diode gas sensors on n-type GaN”, Sens. Actuators B, 56, pp. 164-168, 1999.
    [35] M. S. Shivaraman, I. Lundstrom, C. Svensson, and H. Hammarsten, ”Hydrogen sensitivity of palladium-thin-oxide-silicon Schottky barriers”, Electron. Lett. 12 , pp. 484-485, 1976.
    [36] P. F. Ruths, S. Ashok, S.J. Fonash, and J.M. Ruths, “A study of MlS Schotkky-barrier diode detector”, IEEE Trans. Electron Devices ED 28, pp.1003-1009, 1981.
    [37] I. Lundstrom, “Hydrogen sensitive MOS structure: Part 1. Principles and applications”, Sens. Actuators B, pp. 403-426, 1981.
    [38] D. Dwivedi, R. Dwivedi, and S. K. Srivastava, “Sensing properties of palladium-gate MOS (Pd-MOS) hydrogen sensor-based on plasma grown silicon dioxide”, Sens. Actuators B, 71, pp.161-168, 2000.
    [39] S. K. Hazra, and S. Basu, “High sensitivity and fast response hydrogen sensors based on electrochemically etched porous titania thin films”, Sens. Actuators B, 115, pp.403-411, 2006.
    [40] M. C. Steele, and B. A. Maclver, “Palladiumrcadmium sulfide Schottky diodes for hydrogen detection”, Appl, Phys. Lett., 28, pp. 687–688, 1976.
    [41] K. Ito, “Hydrogen-sensitive Schottky barrier diodes”, Surface Sci. 86, pp. 345–352, 1979.
    [42] P. F. Ruths, S. Ashok, S. J. Fonash, and J. M. Ruths, “A study of PdrSi MIS Schottky barrier diode hydrogen detector”, IEEE Trans. Electron Devices 28, pp. 1003–1009, 1981.
    [43] M. Yousuf, B. Kuliyev, B. Lalevic, and T. L. Poteat, “Pd-InP Schottky diode hydrogen sensors”, Solid-State Electron. 25, pp. 753–758, 1982.
    [44] I. Lundstrom, M. Armgarth, A. Spetz, and F. Winquist, “Gas sensors based on catalytic metal gate field-effect devices”, Sens. Actuators B, 10, pp. 399–421, 1986.
    [45] R. R. Rye, and A. J. Ricco, “Ultrahigh vacuum studies of Pd metal/insula- tor/semiconductor diode H2 sensors”, J. Appl. Phys. 52, pp. 1084–1092, 1987.
    [46] H. K. Henisch, “Rectifying semiconductor contact”, ch 4, Oxford: Clarendon Press, 1957.
    [47] A. G. Milnes and D. L. Feucht, “Heterojuctions and metal-semiconductor junctions”, ch 7, New York: Academic Press, 1972.
    [48] E. H. Rhoderick, “Metal-semiconductor contacts”, ch1 , Oxford: Clarendon Press, 1978.
    [49] D. A. Neamen, “Semiconductor physics and devices-basic principles”, ch 8, 2nd edn., Boston: McGraw Hill, 2003.
    [50] S. M. Sze, “Semiconductor devices-physics and technology”, ch 5, 2nd edn., New York: John Wily &Sons, 2002.
    [51] B. L. Sharma, “Metal-semiconductor Schottky barrier junctions and their applications”, ch 2, New York: Plenum Press, 1984.
    [52] W. Schottky, R. Stromer, and F. Waibel, Hochfrequenztechnik, 37, pp. 162-165 ,1931.
    [53] W. Schottky, Naturwissenschaften, 26, pp. 843, 1938.
    [54] W. Monch, “Metal-semiconductor contacts: electronic properties”, Surf. Sci., 299-300, pp. 928-944, 1994.
    [55] Y. Gurbuz, W. Kang, J. L. Davidson, and D. V. Kerns, “Analyzing the mechanism of hydrogen adsorption effects on diamond based MIS hydrogen sensors”, Sens. Actuators B, 35(1-3), pp. 68-72, 1996.
    [56] G. Eftekhari, “Variation in the effective Richardson constant of metal/GaAs and metal/InP contacts due to the effect of processing parameters”, Phys. Status Solidi, 140, pp. 194-198, 1993.
    [57] G. Alefeld and J. Volkl, “Hydrogen in metals I-basic properties”, ch 12, Berlin; Springer-Verlag, 1978.
    [58] G. Alefeld and J. Volkl, “Hydrogen in metals II-Application-oriented properties”, ch 3, Berlin: Springer-Verlag, 1978.
    [59] F. A. Lewis, “The palladium-hydrogen system”, New York: Academic Press ,1967.
    [60] R. R. Rye and A. J. Ricco, “Ultrahigh vacuum studies of Pd metal/insula- tor/semiconductor diode H2 sensors”, J. Appl. Phys., 62, pp. 1084–1092, 1987.
    [61] T. L. Poteat, B. Lalevic, B. Kuliyev, M. Yousuf, and M. Chen, “MOS and Schottky diode gas sensors using transition metal electrodes”, J. Electron. Mater., 12(1), pp. 181-214, 1983.
    [62] P. F. Ruths, S. Ashok, S. J. Fonash, and J. M. Ruths, “A study of Pd/Si MIS Schottky barrier diode hydrogen detector”, IEEE Trans. Electron Devices, 28(9), pp. 1003-1009, 1981.
    [63] M. Jaegle and K. Steiner, “Gas-sensitvie GaAs-MSEFETs”, Sens. Actuators B, 34(1-3), pp.543-547, 1996.
    [64] K. A. Bertness, T. Kendelewicz, R. S. List, M. D. Williams, I. Lindau, and W. E. Spicer, “Fermi level pinning during oxidation of atomically clean n-InP (110) ”, J. Vac. Sci. Technol. A, 4, pp.1424-1426, 1986.
    [65] N. Newman, W. E. Spicer, T. Kendelewicz, and I. Lindua, “On the Fermi level pinning behavior of metal/III-V semiconductor interfaces”, J. Vac. Sci. Technol. B, 4, pp. 931-938, 1986.
    [66] R. L. V. Meirhaeghe, W. H. Laflere, and F. Cardon, “Influence of defect passivation by hydrogen on the Schottky barrier height of GaAs and InP contacts”, J. Appl. Phys., 76, pp. 403-406, 1994.
    [67] Y. K. Fang, S. B. Hwang, C. Y. Lin and C. C. Lee, “Trench Pd/Si metal-oxide-semiconductor Schottky barrier diode for a high sensitivity hydrogen gas sensor”, Appl, Phys. Lett., 57, pp. 2686-2688, 1990.
    [68] W. P. Kang and Y. Gürbüz, “Comparison and analysis of Pd- and Pt-GaAs Schottky diodes for hydrogen detection”, J. Appl. Phys., 75, pp. 8175-8181, 1994.
    [69] R. C. Hughes, W. K. Schubert, T. E. Zipperian, J. L. Rodriguez, and T. A. Plut, “Thin film palladium and silver alloys and layers for metal-insulator-semicinductor sensors”, J. Appl. Phys., 62, pp. 1074-1082, 1987.
    [70] Y. Morita, K. I. Nakamura, and C. Kim, “Langmuir analysis on hydrogen gas response of palladium-gate FET”, Sens. Actuators B, 33, pp. 96-99, 1996
    [71] I. Lundström, “Hydrogen sensitive MOS-structures part1: principles and applications”, Sens. Actuators B, 1, pp. 403-426, 1981.
    [72] L. G. Petersson, H. Dannetun, J. Fogelberg, and I. Lundström, “Oxygen as promoter or poison in the catalytic dissociation of H2, C2H4, C2H2, and NH3 on palladium”, Appl. Surface Science, 27, pp. 275-284, 1986.
    [73] B. Hellsing, B. Kasemo, and V. P. Zhdanov, “Kinetic of the hydrogen-oxygen reaction on platinum”, J. Catalysis, 132, pp. 210-228, 1991.
    [74] M. Johansson, I. Lundström, and L. G. Ekedahl, “Bridging the pressure gap for palladium metal-insulator-semiconductor hydrogen sensors in oxygen containing enviroments”, J. Appl. Phys., 84, pp. 44-51, 1998.
    [75] W. C. Liu, H. J. Pan, H. I. Chen, K. W. Lin, S. Y. Cheng, and K. H. Yu, “Hydrogen-sensitive characteristics of a novel Pd/InP Metal-Oxide-Semiconductor (MOS) Schottky diode hydrogen sensor,” IEEE Trans. Electron Devices, 48, pp. 1938-1944, 2001.
    [76] C. Tsamis, L. Tsoura, A. G. Nassiopoilou, A. Travlos, C. E. Salmas, K. S. Hatzilyberis, and G. P. Androutsopoulos, “Hydrogen catalytic oxidation reaction on Pd-doped porous silicon”, IEEE Sensors, 2(2), pp. 89-95, 2002.
    [77] M. Löfdahl, M. Eriksson, M. Johansson, and I. Lundström, “Difference in hydrogen sensitivity between Pt and Pd field-effect devices”, J. Appl. Phys., 91, pp. 4275-4280, 2002.
    [78] R. J. Silbey and R. A. Alberty, Physical chemistry – 3rd ed., John Willey & Sons, Inc., New York, 2001.
    [79] L. G.. Petersson, H. M. Dannetum, J. Fogelberg, and I. Lundstrom, “ Hydorgen adsorption states ate the external and internal palladium surfaces of a palladium-silicon dioxide-silicon structure”, J. Appl. Phys., 58(1), pp. 404-413, 1985.
    [80] D. N. Jewett and A. C. Makrides, “Diffusion of hydrogen through palladium and palladium-silver alloy”, J. Chem. Soc. Faraday Trans., 61, pp. 932-939, 1965.
    [81] H. I. Chen, Y. I. Chou, and C. K. Hsiung, “Comprehensive study of adsorption kinetics for hydrogen sensing with an electroless-plated Pd/InP Schottky diode”, Sens. Actuators B, 92, pp. 6-16, 2003.
    [82] R. A. Alberty and R. J. Silbey, “Physical Chemistry,” p.640, New York: John Wiley & Sons, 1992.
    [83] K. J. Laidler and J. H. Meiser, “Physical Chemistry,” p.385, Boston: Houghton Mifflin, 1995.
    [84] M. Johansson, I. Lundstrom and L. G. Ekedahl, ”Bridging the pressure gap for palladium metal-insulator-semiconductor hydrogen sensor in oxygen containing environments”, J. Appl. Phys., 84(1), pp. 44-51, 1998.
    [85] J. Fogelberg and L. G. Petersson, “Kinetic modeling of the H2-O2 reaction on Pd and of its influence on the hydrogen response of a hydrogen sensitive Pd metal-oxide semiconductor device”, Surf. Sci. 350, pp. 91-102, 1996.
    [86] V. Polishchuk, E. Souteyrand, J. R. Martin, V. I. Strikha and V. A. Skryshevsky, “Study of hydrogen detection with palladium modified porous silicon”, Anal. Chem. Acta, 375, pp. 205-210, 1998.
    [87] D. Briand, H. Wingbrant, H. Sundgren, B. van der Schoot, L.-G. Ekedahl, I. Lundstrom, and N.F. de Rooij, “Modulated operating temperature for MOSFET gas sensors: hydrogen recovery time reduction and gas discrimination”, Sens. Actuators B, 93, pp. 276, 2003.
    [88] M. Armgarth, C. Nylander, C. Svensson, and I. Lundstrom, ”Hydrogen-induced oxide surface charging in palladium-gate metal-oxide-semiconductor devices”, J. Appl. Phys., 56 (10), pp.2956-2963 ,1984.
    [89] J. Fogelberg and L. G. Petersson, “Kinetic modeling of the H2-O2 reaction on Pd and of its influence on the hydrogen response of a hydrogen sensitive Pd metal-oxide semiconductor device”. Surf. Sci. 350, pp. 91-102, 1996.
    [90] H. I. Chen, Y. I. Chou, C. M. Chen, and W. C. Liu, “A new Pd-InP Schottky hydrogen sensor fabricated by electrophoretic deposition with Pd nanoparticles”, IEEE Electron Device Letters, 26(2), pp. 62-65 , 2005.
    [91] H. I. Chen, and Y. I. Chou, “Evaluation of the perfection of the Pd-InP Schottky interface from the energy viewpoint of hydrogen adsorbates”, Semicond. Sci. Technol. 19, pp. 39, 2004.
    [92] L. W. Chau, P. H. Jen, C. H. Ing, L. K. Wei, C. S. Ying, and Y. K. Hui, “Hydrogen-sensitive characteristics of a novel Pd/InP MOS Schottky diode hydrogen sensor,” IEEE Trans. Electron Devices, 48(9), pp. 1938, 2001.
    [93] R. J. Silbey and R. A. Alberty, Physical chemistry, Wiley, New York, 2001.
    [94] H. Hasegawa and H. Ohno, “Unified disorder induced gap state model for insulator-semiconductor and metal-semiconductor interfaces”, J. Vac. Sci. Technol. B, 4 (4), pp. 1130, 1986.
    [95] 潘信文,“以無電鍍法製備鈀/砷化鋁鎵與鈀/氮化鎵蕭特基二極體及其氫氣感測之研究”,國立成功大學化學工程學系碩士論文, 2005.

    下載圖示 校內:2008-07-27公開
    校外:2008-07-27公開
    QR CODE