| 研究生: |
黃俐穎 Huang, Li-Ying |
|---|---|
| 論文名稱: |
細胞於混合式雙電性自組裝單分子層表面之研究 The study of cell behavior on the mixed zwitterionic self-assembled monolayer |
| 指導教授: |
林睿哲
Lin, Jui-Che |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 自組裝單分子層 、雙電性 、生物相容性 、表面特性 、類骨細胞 |
| 外文關鍵詞: | self-assembled monolayer, zwitterionic, biocompatibility, surface properties, osteoblast-like cell |
| 相關次數: | 點閱:87 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來許多學者投入研發生醫材料想關研究,希望能夠造福更多病患,由於材料置入於生物體時,其表面會和體內細胞環境互相接觸,因此表面性質扮演著重要的角色,而表面和細胞間的作用力相當重要,如臨床上用於骨科生醫材料上,希望材料能有很好的骨整合能力,因此細胞貼附於表面的能力相當重要,細胞要能夠貼附於表面才能夠發揮其功能。因此我們希望以長碳鏈硫醇在金表面形成自組裝單分子層(self-assembled monolayers, SAMs)做為平台來研究類骨細胞於表面生長情形。
為了增加材料的生物相容性,我們藉由仿生的概念仿照細胞膜含有雙電性分子,希望製備出含有雙電性的表面,此外我們引入兩個不同解離強度的官能基亞磷酸根phosphate group(-PO3H2)、磺酸根sulfate group(-SO3H)官能基來製備表面,為了達到具有雙電性的表面,我們引入文獻中鮮少人使用的強迫帶正電親水性的-N+(CH3)3烷基硫醇和-SO3H、-PO3H2烷基硫醇形成混合雙電性自組裝單分子層-N+(CH3)3 & -SO3H mixed SAM、-N+(CH3)3 & -PO3H2 mixed SAM,希望能夠了解雙電性分子和細胞間的交互作用以及不同解離強度的帶負電官能基和帶正電官能基所製備出的表面對細胞貼附增生的影響。
結果顯示混合雙電性-N+(CH3)3& -SO3H mixed SAM ,其XN(CH3)3,soln= 0.3、0.5、0.7都不利於細胞增生,但細胞於-N+(CH3)3-SAM、-SO3H-SAM表面培養七天後卻都有良好的細胞貼附現象並且有多量的細胞增生的現象,雖然有些試片有利於細胞增生的現象但卻沒有促進細胞分化的現象;混合雙電性-N+(CH3)3 & -PO3H2 mixed SAM,不論XN(CH3)3,soln=0、 0.3、0.5、0.7、1,都能有良好的細胞增生表現,但也都沒有促進細胞分化的現象,不過本研究還發現了一個有趣的現象,文獻上鮮少用來形成自組裝單分子層的-N+(CH3)3-SAM於短時間不利於細胞貼附,但經過長時間的培養卻能有良好的細胞增生貼附現象產生。
The interactions between the surface of artificial biomaterial and biological environment are considered to be the important factors that affect its biocompatibility and clinical effectiveness. For example, the osteointegration is an important step for the success of a hip arthoplasty. Thus, adhesion of cells to biomaterials surface followed by proliferation and differentiation is a prerequisite for a success biomaterial. In this investigation, we have utilized self-assembled monolayer technique for the preparation of a model surface with an aim to study the interactions between the material and physiological environment, especially the cells, easily.
Since the cell membrane contains the zwitterionic structure, a biomimic zwitterionic surface prepared by mixed cationic and anionic terminated alkanethiols was utilized in order to improve the surface biocompatibility. Previous studies have shown that the phosphate(-PO3H2)、sulfonic acid (-SO3H) functionality would affect the proliferation of osteoblast-like cell. Henceforth, these two alkanethiols having terminal ends with different acidic dissociation constant were utilized for preparing zwitterionic SAMs by mixing with cationic trimethyl amine terminated alkanethiol. The cell contacting characteristics on these two series of mixed zwitterionic SAMs were explored in this investigation.
The results showed that the zwitterionic-N+(CH3)3 & -SO3H mixed SAM (XN(CH3)3,soln= 0.3、0.5、0.7) are poor surface for cell proliferation while the pure -N+(CH3)3 and -SO3H terminated SAM showed great cell proliferation after seven days culture. In contrast, for the zwitterionic-N+(CH3)3 & -PO3H2 mixed SAM, the cell proliferated well on all surfaces (XN(CH3)3,soln=0、 0.3、0.5、0.7、1) after a long time culture. ALP assays indicated that neither of these two series of mixed zwitterionic SAMs improved the cell differentiation. Moreover, the cell live/dead assay has indicated that the pure -N+(CH3)3 terminated SAM surface could lead to cell death after contacting with cells for a short period. However, after a long term contacting, the cells adhered become proliferated well.
1. Gemeinhart, R.A., et al., Osteoblast like cell attachment to and calcification of novel phosphonate containing polymeric substrates. Journal of Biomedical Materials Research Part A, 2006. 78(3): p. 433-440.
2. Thian, E., et al., The response of osteoblasts to nanocrystalline silicon-substituted hydroxyapatite thin films. Biomaterials, 2006. 27(13): p. 2692-2698.
3. Rea, S. and W. Bonfield, Biocomposites for medical applications. Journal of the Australasian Ceramic Society, 2004. 40(1): p. 43-57.
4. Kim, M.-J., et al., Microrough titanium surface affects biologic response in MG63 osteoblast-like cells. Journal of Biomedical Materials Research Part A, 2006. 79A(4): p. 1023-1032.
5. Rauschfan, X., et al., Differentiation and cytokine synthesis of human alveolar osteoblasts compared to osteoblast-like cells (MG63) in response to titanium surfaces. Dental Materials, 2008. 24(1): p. 102-110.
6. Mendonca, G., et al., Advancing dental implant surface technology - From micron- to nanotopography. Biomaterials, 2008. 29(28): p. 3822-3835.
7. Ulman, A., Formation and structure of self-assembled monolayers. Chemical reviews, 1996. 96(4): p. 1533-1554.
8. Holmlin, R.E., et al., Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir, 2001. 17(9): p. 2841-2850.
9. Srinivasan, U., et al., Alkyltrichlorosilane-based self-assembled monolayer films for stiction reduction in silicon micromachines. Microelectromechanical Systems, Journal of, 1998. 7(2): p. 252-260.
10. Singh, P., et al., Dendrimer modified biochip for detection of 2, 4, 6 trinitrotoluene on SPR immunosensor: Fabrication and advantages. Sensors and Actuators B: Chemical, 2009. 137(2): p. 403-409.
11. Mrksich, M., et al., Controlling cell attachment on contoured surfaces with self-assembled monolayers of alkanethiolates on gold. Proceedings of the National Academy of Sciences, 1996. 93(20): p. 10775.
12. http://www.google.com.tw/imgres?imgurl=http://dysa.northwestern.edu/Publications/TOC/2004_Witt_CurrOrgChem.jpg&imgrefurl=http://dysa.northwestern.edu/Publications/Publications.dwt&usg=__7Diyph2ysq0SNuk77y221-aVZEs=&h=170&w=297&sz=36&hl=zh-TW&start=29&sig2=fSSe_ItHU87y21XCdAW99g&zoom=1&tbnid=zPEFg8N__Ab3CM:&tbnh=77&tbnw=135&ei=HXwiTqfdArCemQWm2_CuAw&prev=/search%3Fq%3Dself%2Bassembled%2Bmonolayers%26hl%3Dzh-TW%26newwindow%3D1%26sa%3DX%26rlz%3D1T4GPCK_zh-TWTW359TW359%26biw%3D979%26bih%3D396%26tbm%3Disch&itbs=1&iact=rc&page=4&ndsp=10&ved=1t:429,r:7,s:29&tx=80&ty=20&biw=979&bih=396.
13. Arima, Y. and H. Iwata, Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials, 2007. 28(20): p. 3074-3082.
14. Barrias, C.C., et al., The correlation between the adsorption of adhesive proteins and cell behaviour on hydroxyl-methyl mixed self-assembled monolayers. Biomaterials, 2009. 30(3): p. 307-316.
15. Allara, D.L., Critical issues in applications of self-assembled monolayers. Biosensors and Bioelectronics, 1995. 10(9-10): p. 771-783.
16. Malmsten, M., Protein adsorption at phospholipid surfaces. Journal of Colloid and Interface Science, 1995. 172(1): p. 106-115.
17. Kane, R.S., P. Deschatelets, and G.M. Whitesides, Kosmotropes form the basis of protein-resistant surfaces. Langmuir, 2003. 19(6): p. 2388-2391.
18. Mrksich, M. and G.M. Whitesides, Using self-assembled monolayers to understand the interactions of man-made surfaces with proteins and cells. Annual Review of Biophysics and Biomolecular Structure, 1996. 25(1): p. 55-78.
19. Scotchford, C.A., et al., Growth of human osteoblast like cells on alkanethiol on gold self assembled monolayers: The effect of surface chemistry. Journal of Biomedical Materials Research, 1998. 41(3): p. 431-442.
20. Phillips, J.E., et al., Human mesenchymal stem cell differentiation on self-assembled monolayers presenting different surface chemistries. Acta Biomaterialia, 2010. 6(1): p. 12-20.
21. Arima, Y. and H. Iwata, Effects of surface functional groups on protein adsorption and subsequent cell adhesion using self-assembled monolayers. Journal of Materials Chemistry, 2007. 17(38): p. 4079.
22. Frame, M.C., et al., V-Src's Hold over Actin and Cell Adhesions. Nature Reviews Molecular Cell Biology, 2002. 3(4): p. 233-245.
23. http://www.health-choices-for-life.com/human_cell.html.
24. http://manual.blueprint.org/Home/actin-based-extensions-and-motility.
25. Chesmel, K.D., et al., Cellular-Responses to Chemical and Morphologic Aspects of Biomaterial Surfaces .2. The Biosynthetic and Migratory Response of Bone Cell-Populations. Journal of Biomedical Materials Research, 1995. 25(9): p. 1101-1110.
26. Healy, K.E., et al., Kinetics of bone cell organization and mineralization on materials with patterned surface chemistry. 17, 1996: p. 195-208.
27. Toworfe, G.K., et al., Effect of functional end groups of silane self-assembled monolayer surfaces on apatite formation, fibronectin adsorption and osteoblast cell function. Journal of Tissue Engineering and Regenerative Medicine, 2009. 3(1): p. 26-36.
28. Nakaoka, R., et al., Effects of surface chemistry prepared by self assembled monolayers on osteoblast behavior. Journal of Biomedical Materials Research Part A, 2010. 94(2): p. 524-532.
29. Keselowsky, B.G., D.M. Collard, and A.J. Garcia, Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion. Journal of Biomedical Materials Research Part A, 2003. 66(2): p. 247-259.
30. Agata, H., et al., Effective Bone Engineering with Periosteum-derived Cells. Journal of Dental Research, 2007. 86(1): p. 79-83.
31. Urist, M.R., H. Iwata, and B.S. Strates, Bone morphogenetic protein and proteinase in the guinea pig. Clinical Orthopaedics and Related Research, 1972. 85: p. 275.
32. Szulc, P., et al., Biochemical markers of bone formation reflect endosteal bone loss in elderly men--MINOS study. bone, 2005. 36(1): p. 13-21.
33. Hench, L.L., Third-Generation Biomedical Materials. Science, 2002. 295(5557): p. 1014-1017.
34. Anselme, K., et al., Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses. Journal of Biomedical Materials Research, 2000. 49(2): p. 155-166.
35. Kieswetter, K., et al., Surface roughness modulates the local production of growth factors and cytokines by osteoblast-like MG-63 cells. Journal of Biomedical Materials Research, 1996. 32(1): p. 55-63.
36. Naji, A. and M.F. Harmand, Study of the Effect of the Surface-State on the Cytocompatibility of a Co-Cr Alloy Using Human Osteoblasts and Fibroblasts. Journal of Biomedical Materials Research, 1990. 24(7): p. 861-871.
37. Schwartz, Z., et al., Underlying mechanisms at the bone surface interface during regeneration. Journal of periodontal research, 1997. 32(1): p. 166-171.
38. Wennerberg, A., et al., A 1-year follow-up of implants of differing surface roughness placed in rabbit bone. International Journal of Oral & Maxillofacial Implants, 1997. 12(4): p. 486-494.
39. Ruardy TG, S.J., Van der Mei HC, Busscher HJ., Adhesion and spreading of human skin fibroblasts on physicochemically characterized gradient surfaces. Journal of Biomedical Materials Research, 1995. 29(11): p. 1415-1423.
40. Altankov, G. and T. Groth, Reorganization of substratum-bound fibronectin on hydrophilic and hydrophobic materials is related to biocompatibility. Journal of Materials Science: Materials in Medicine, 1994. 5(9): p. 732-737.
41. Healy, K.E., et al., Kinetics of bone cell organization and mineralization on materials with patterned surface chemistry. Biomaterials, 1996. 17(2): p. 195-208.
42. Martin JY, S.Z., Hummert TW, et al. , Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63). Journal of Biomedical Materials Research, 1995. 29(3): p. 389-401.
43. Kapur, R. and A.S. Rudolph, Cellular and cytoskeleton morphology and strength of adhesion of cells on self-assembled monolayers of organosilanes. Experimental cell research, 1998. 244(1): p. 275-285.
44. Mrksich, M. and G.M. Whitesides, Using self-assembled monolayers to understand the interactions of man-made surfaces with proteins and cells. Annual Review of Biophysics and Biomolecular Structure, 1996. 25: p. 55-78.
45. Zhang, Z., et al., Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir, 2006. 22(24): p. 10072-10077.
46. Wilson, C.J., et al., Mediation of biomaterial-cell interactions by adsorbed proteins: a review. Tissue Engineering, 2005. 11(1-2): p. 1-18.
47. Shelton, R.M., A.C. Rasmussen, and J.E. Davies, Protein Adsorption at the Interface between Charged Polymer Substrata and Migrating Osteoblasts. Biomaterials, 1988. 9(1): p. 24-29.
48. Bush, K., et al., Designing tailored biomaterial surfaces to direct keratinocyte morphology, attachment, and differentiation. Journal of Biomedical Materials Research Part A, 2009. 90(4): p. 999-1009.
校內:2016-08-24公開