| 研究生: |
蔣順安 Jiang, Shun-An |
|---|---|
| 論文名稱: |
可高度調控液晶手性光學元件之研究與應用 Highly Tunable Liquid Crystal Chiroptical Devices and Their Applications |
| 指導教授: |
李佳榮
Lee, Chia-Rong |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 168 |
| 中文關鍵詞: | 膽固醇液晶 、藍相液晶 、鐵電型液晶 、超分子 、手性偶氮苯 、手性光學 、可調性 、光學渦旋 、軌道角動量 、幾何相位 、光致異構化 、光子晶體 、Helfrich變形 、微/奈米結構 |
| 外文關鍵詞: | cholesteric liquid crystal, blue phase liquid crystal, ferroelectric liquid crystal, supramolecular, chiral azobenzene, chiroptic, tunable, optical vortex, orbital angular momentum, geometric phase, photoisomerization, photonic crystal, Helfrich deformation, micro/nanostructure |
| 相關次數: | 點閱:88 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於現代與未來光學或光電子學愈趨重視元件設備的多功能特性,具有高度可調特性的材料因此扮演著越來越重要的角色。手性向列型液晶具有自組裝的螺旋超分子週期性結構和可透過外部刺激靈活操縱的手性光學特性在近年裡持續地引起相當關注。這些獨特的特性大幅拓寬了其在顯示器、光學/光子元件、雷射與感應器等性能與應用範疇。然而,傳統的正型或負型手性向列液晶元件其電調控性能表現不佳,如波長可調範圍窄而有限、光子能隙容易被破壞及驅動電壓過高等缺點,都促使著科學家從調控方法與材料等方面解決此長久問題。
在本論文中,我們著重在提升膽固醇液晶與藍相液晶兩種最具代表性之手性向列液晶材料的元件應用性能。藉由材料的改善與提出不同的外部刺激方式,大幅提升材料的調控與穩定性能,並且成功展示相關的應用範例。
本論文題目為『可高度調控液晶手性光學元件之研究與應用』。可分為下列四個主題做研究探討:
(一)、 傳統的電致變色器件主要通過電致變色材料的吸收帶來改變電致變色材料的顏色,導致電致變色後此類材料的顏色選擇和顏色性能的可調度性較低。儘管透過干涉增強奈米共振腔可改善此問題,但在單個電致變色器件上實現全色可控仍然是個巨大挑戰。第一部分主題為『基於超分子手性光子材料之邁向全色可調手性電致熱變色元件』。此研究主要探討鐵電型液晶摻雜至膽固醇液晶中對其光學特性的影響以及驗證其應用潛力。實驗結果發現,鐵電型液晶的摻雜能使整體複合材料的層列與膽固醇液晶相相變溫度提升至室溫附近,當環境溫度接近此相變點時螺旋結構會大量解旋使反射波段產生大幅紅移現象且維持完整反射波型與高反射率,藉由透過升降溫的方式使反射波段在可見光中大範圍移動。基於上述複合材料的特性,我們結合銦錫氧化物導電玻璃基板 之高電致發熱效率,開發在室溫下可低直流電壓且反射波段於全白光區下能完整調控之元件。基於上述調控原理,我們亦成功製作與展示可低電壓調控廣頻域輸出波長之雷射和可低電壓全光域變色之微纖維紡織品。
(二)、 能夠動態操縱、修改甚至制定光特性(例如波前)的新型光學或光子器件在現代和未來光學的發展中越來越受到重視。具有螺旋波面的光學渦旋是一種具有固有軌道角動量的特殊光。因此,這種渦流光適用於先進光學的利用,如光鑷、超分辨率顯微鏡、光通信和量子技術。第二部分主題為『圓形對稱手性光學結構之超寬頻可調控布拉格-貝瑞光渦流產生器』。本研究可視為上主題研究之延伸,主要探討將鐵電型液晶摻雜至圓形對稱手性光學結構之膽固醇液晶中對所產生之光渦流波長調控性之影響。實驗結果顯示,透過電致熱方式,使元件產生的渦流光顏色可以藉由外加低電壓方式產廣頻域的顏色變化。實驗中,藉由麥克森干涉儀,可方便檢驗球面波及平面波產生的渦流光特性,包含渦流方向與拓樸荷l值大小。本元件可轉換幾何相位並在室溫下具有超寬帶可操作性和高可操作性,為展示適合未來光學/光子應用的關鍵零組件提供了一個很好的例子。
(三)、 由刺激響應結構變形引起的自組織週期性微/奈米結構經常發生在各向異性自組裝超分子系統(例如液晶系統)中。然而,這些結構的大面積有序性往往不容易控制。第三部份工作主題為『一維干涉場控制大面積有序二維超分子手性微結構』。在此研究中我們首度發現,在雷射光束激發膽固醇液晶與單體混合物樣品的聚合過程,會因照光面先累積聚合網絡結構,導致往尚未聚合處擠壓,造成未聚合之膽固醇液晶與單體混合層厚度變薄。此過程造成螺距變短而產生縱向內應力,進一步與表面配向力與材料回復彈力競爭下引發Helfrich形變而產生無序之二維手性微網格結構。實驗更進一步發現,若改以使用雙光干涉場對樣品進行曝光,則可控制產生的二維手性微結構變得大面積有序排列,此乃因為干涉場於樣品近光邊事先產生一維週期凹凸起伏變化之聚合物陣列,進一步引導因上述原因於稍後產生的二維手性網格微結構變得大面積排列有序。本研究成果進一步增進與改善Helfrich deformation之可應用性,實質地提升其未來於光電領域方面之應用潛力。
(四)、 最後一部分主題為『基於偶氮雙鍵手性材料摻雜藍相液晶之可光調控光子晶體』。在此研究中,我們摻雜不同濃度之偶氮手性材料至藍相液晶中,先探討此材料在基板有無水平配向的條件下所生長之藍相晶格結構的光學性質差異。並透過照光調控的方式,引發偶氮手性材料產生光致異構化反應,可逆地調控藍相與各方同性液相之間的相態變化。實驗結果顯示,高濃度偶氮手性材料摻雜之藍相液晶在水平配向的樣品中,照射常短波長不同光場可使液晶在藍相與各方同性液相之間穩定切換。然而,低濃度偶氮手性材料摻雜之藍相液晶在無配向的樣品中,照光可連續調控藍相晶格反射波段。基於本研究的成果,偶氮雙鍵手性材料摻雜藍相液晶在可調控之光子元件中有高度的潛在應用,例如光開關、光柵、雷射、濾波器與反射鏡等。
While modern and future scientific and technological developments are increasingly paying attention to the multi-functional characteristics of components and equipment, the importance of materials with highly tunable characteristics is increasingly being acknowledged. The characteristics of chiral nematic liquid crystals (NLCs), such as their spiral supramolecular periodic structures via self-assembly and chiroptic properties that can be flexibly manipulated through external stimuli, have continuously attracted considerable attention in recent years. These unique characteristics have greatly broadened the performance and applications of NLCs in displays, optical/photonic components, lasers, and sensors. However, traditional positive or negative chiral NLC elements have poor electrical control performance as reflected in their narrow and limited wavelength tunable range, easy destruction of the photon energy gap, and high driving voltage, thereby urging scientists to devise new tuning methods and/or new materials.
In this thesis, we focus on improving the performance of applications with two most representative chiral NLC materials, cholesteric liquid crystal (CLC) and blue phase liquid crystal (BPLC). Through the improvement of materials and the proposal of different external stimulus methods, the control and stability of the materials have been greatly improved, and related application examples have been successfully demonstrated. The thesis is entitled “Highly Tunable Liquid Crystal Chiroptical Devices and Their Applications”, which can be divided into the following four parts for discussion.
(1) The traditional electrochromic devices mainly change the color of the electrochromic material through the absorption of the electrochromic material, resulting in low color selection and color performance of such materials after electrochromism. Although the addition of interference-enhanced nano-resonators can improve this problem, achieving full-color controllability on a single electrochromic device is still a huge challenge. The first study is entitled “Toward full-color tunable chiroptical electrothermochromic devices based on a supramolecular chiral photonic material.” This study mainly explores the influence of ferroelectric liquid crystal (FLC) doping into CLC (FLC-CLC) on the optical properties of the CLC and verifies its application potential. Experimental results found that the doping of FLC can increase the smectic-CLC phase transition temperature of the material to around room temperature. Since the ambient temperature is close to this phase transition point, the spiral structure of the FLC-CLC can effectively unwind so that the reflected light can significantly red-shift its wavelength and maintains a complete photonic bandgap (PBG) profile and a high reflectivity. The CLC PBG can move in the wide visible region by means of raising and lowering the temperature. Based on the characteristics of the above-mentioned composite materials, we take the advantage of the high electro-heating efficiency of the ITO substrate to develop a component that can be controlled at low DC voltage ranges at room temperature and the PBG can be completely controlled in the full white light region. Based on the above-mentioned regulation principle, we have also successfully produced and demonstrated a low-voltage laser with a low-voltage broadband lasing-output controllability and a micro-fiber textile with a low-voltage full-color tunability.
(2) New optical or photonic devices capable of dynamically manipulating, modifying and even specifying optical characteristics (such as wavefront) have received more and more attention in the development of modern and future optics. The optical vortex (OV) with spiral wave surface is a special light with inherent orbital angular momentum. Therefore, this OV light is suitable for the use of advanced optics, such as optical tweezers, super-resolution microscopes, optical communications and quantum technologies. The second study is entitled “Ultra-broadband tunable Bragg-Berry optical vortex generators (BBOVG) of a circularly-symmetric chiroptic structure.” This research can be regarded as an extension of the previous research topic, mainly discussing the influence of doping FLC into CLC with circular symmetrical chiroptical structure on the wavelength controllability of the generated OV of the BBOVG. Experimental results show that through the highly-efficient electro-heating ability of the ITO substrate of the sample, the color of the OV light generated by the reflection of the BBOVG can be changed in the entire visible region (400-700 nm) by applying a low DC voltage range ( 3V). In the experiment, suing the Michelson interferometer, it is convenient to test the characteristics of the OVs generated by either the spherical wave or the plane wave, including the sign and value of the topological charges l. This element can transform the geometric phase and has ultra-wideband operability at room temperature, providing a good example for demonstrating key components suitable for future optical/photonic applications.
(3) The self-organized periodic micro/nanostructures caused by the deformation of the stimulus response structure often occur in anisotropic self-assembled supramolecular systems (such as liquid crystal systems). However, the large-area order of these structures is often not easy to control. The third study is entitled “Control of large-area orderliness of 2D supramolecular chiroptic microstructure by 1D interference field.” In this study, we discovered for the first time that the polymerization process of the CLC-monomer sample excited by a single UV laser beam will accumulate the polymerization network structure on the illuminated surface of the sample first, and then squeeze the unpolymerized CLC-monomer multi-layer. This process causes the helical pitch to be shortened and produces a longitudinal internal strain. This strain further competes with the surface alignment force and the restored elasticity of the CLC-monomer multi-layer to trigger the occurrence of the Helfrich deformation, leading to the disordered two-dimensional (2D) microgrid chiral structure. More experimental results showed that if the sample is exposed to the double-beam interference field, the 2D chiral microstructures can be controlled to become orderly arranged in a large area. This is because the polymerization of the interference field first generates a one-dimensional (1D) polymer array with a wave-like profile on the illuminated surface of the sample. This polymer array further guides the 2D microgrid generated later due to the above-mentioned reasons to become orderly arranged in a large area. The results of this research further enhance and improve the applicability of Helfrich deformation and substantially enhance its future application potential in the field of optoelectronics.
(4) The last study is entitled “All-optically controllable photonic crystals based on chiral-azobenzene-doped blue phase liquid crystals.” In this study, we doped different concentrations of azo chiral materials into the BPLCs, and first explored the difference in optical properties of the BP lattice structure grown on this material with or without the homogeneous alignment of the substrate. The successive UV and blue light illumination can trigger the trans-cis and cis-trans back photoisomerization of the azo chiral material, and reversibly regulates the phase change between the BP and the isotropic phases. Experimental results show that the BPLC doped with high-concentration azo chiral material in the homogeneously-aligned sample can be irradiated successively by the dual-wavelength lights to make the LCs switch stably between the BP and the isotropic phases. However, the BPLC doped with low-concentration azo chiral materials can continuously adjust the reflection band of the BP crystal lattice in an unaligned sample. Based on the results of this research, BPLC doped with azo chiral materials have high potential applications in tunable photonic devices, such as optical switches, gratings, lasers, filters, and mirrors.
1. K. Libbrecht, and P. Rasmussen, “The snowflake: Winter’s secret beauty,” Am. J. Phys. 72(8), 1134-1135, (2004).
2. M. Giurfa, B. Eichmann, and R. Menzel, “Symmetry perception in an insect,” Nature 382(6590), 458461 (1996).
3. L. C. Hileman, “Trends in flower symmetry evolution revealed through phylogenetic and developmental genetic advances,” Philos. Trans. R. Soc. B 369(1648), 20130348 (2014).
4. Y. Savriama, “A step-by-step guide for geometric morphometrics of floral symmetry,” Front. Plant Sci. 9, 1433 (2018).
5. K.-W. Chung, and H. Chan, “Symmetrical patterns from dynamics,” Computer Graphics Forum 12(1), 33-40 (1993).
6. M. W. Mehaffy, “The impacts of symmetry in architecture and urbanism: Toward a new research agenda,” Buildings 10(12), 249 (2020).
7. R. S. Cahn, C. Ingold, and V. Prelog, “Specification of molecular chirality,” Angew. Chem. Int. Ed. 5(4), 385-415 (1966).
8. J. R. Brandt, F. Salerno, and M. J. Fuchter, “The added value of small-molecule chirality in technological applications,” Nat. Rev. Chem. 1(6), 0045 (2017).
9. D. Bradshaw, J. B. Claridge, E. J. Cussen, T. J. Prior, and M. J. Rosseinsky, “Design, chirality, and flexibility in nanoporous molecule-based materials,” Acc. Chem. Res. 38(4), 273-282 (2005).
10. J. W. Goodby, “Chirality in liquid crystals,” J. Mater. Chem. 1(3), 307-318 (1991).
11. C. Bahr, and H.-S. Kitzerow, Chirality in liquid crystals (Springer-Verlag, New York, 2001).
12. S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
13. G. Roelfes, and B. L. Feringa, “DNA-based asymmetric catalysis,” Angew. Chem. Int. Ed. 44(21), 3230-3232 (2005).
14. X. Wang, H. Gan, and T. Sun, “Chiral design for polymeric biointerface: The influence of surface chirality on protein adsorption,” Adv. Funct. Mater. 21(17), 3276-3281 (2011).
15. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
16. Y.-Y. Lee, R.-M. Kim, S.-W. Im, M. Balamurugan, and K.-T. Nam, “Plasmonic metamaterials for chiral sensing applications,” Nanoscale 12(1), 58-66 (2020).
17. O. Kotova, S. Blasco, B. Twamley, J. O'Brien, R. D. Peacock, J. A. Kitchen, M. Martínez-Calvo, and T. Gunnlaugsson, “The application of chiroptical spectroscopy (circular dichroism) in quantifying binding events in lanthanide directed synthesis of chiral luminescent self-assembly structures,” Chem. Sci. 6(1), 457-471 (2015).
18. T. J. Scheffer, and J. Nehring, “A new, highly multiplexable liquid crystal display,” Appl. Phys. Lett. 45(10), 1021-1023 (1984).
19. H.-W. Chen, J.-H. Lee, B.-Y. Lin, S. Chen, and S.-T. Wu, “Liquid crystal display and organic light-emitting diode display: Present status and future perspectives,” Light Sci. Appl. 7(3), 17168-17168 (2018).
20. U. Manna, Y. M. Zayas-Gonzalez, R. J. Carlton, F. Caruso, N. L. Abbott, and D. M. Lynn, “Liquid crystal chemical sensors that cells can wear,” Angew. Chem. Int. Ed. 52(52), 14011-14015 (2013).
21. Y. V. Bocharov, I. N. Gurova, O. A. Kapustina, E. I. Remizova, and V. N. Reshetov, “Nematic liquid crystal sensors,” Mol. Cryst. Liq. Cryst. 209(1), 1930 (1991).
22. J.-D. Lin, M.-H. Wu, S.-A. Jiang, Y.-S. Zhang, H.-L. Chen, T.-S. Mo, and C.-R. Lee, “Enantiomorphic double-polymerized chiral polymer composite template for highly efficient energy-saving green window,” Polymer 200, 122586 (2020).
23. S.-K. Wu, T.-S. Mo, J.-D. Lin, S.-Y. Huang, C.-Y. Huang, H.-C. Yeh, L.-J. Chen, and C.-R. Lee, “Electrohydrodynamics-induced abnormal electro-optic characteristics in a polymer-dispersed liquid crystal film,” Crystals 7(1), 7 (2017).
24. S.-Y. Lu, and L.-C. Chien, “Electrically switched color with polymer-stabilized blue-phase liquid crystals,” Opt. Lett. 35(4), 562-564 (2010).
25. P.-G. De Gennes and J. Prost, The physics of liquid crystals (Oxford university press, New York, 1993).
26. Y. Huang, M. Jin, and S. Zhang, “Polarization-independent bandwidth-variable tunable optical filter based on cholesteric liquid crystals,” Jpn. J. Appl. Phys. 53(7), 072601 (2014).
27. V. I. Kopp, Z.-Q. Zhang, and A. Z. Genack, “Lasing in chiral photonic structures,” Prog. Quantum Electron. 27(6), 369416 (2003).
28. K.-H. Kim, D. H. Song, Z.-G. Shen, B. W. Park, K.-H. Park, J.-H. Lee, and T.-H. Yoon, “Fast switching of long-pitch cholesteric liquid crystal device,” Opt. Express 19(11), 10174-10179 (2011).
29. J. Kobashi, H. Yoshida, and M. Ozaki, “Planar optics with patterned chiral liquid crystals,” Nat. Photonics 10(6), 389392 (2016).
30. W. Helfrich, “Defromation of cholesteric liquid crystals with low threshold voltage,” Appl. Phys. Lett. 17(12), 531-532 (1970).
31. H.-C. Yeh, G.-H. Chen, C.-R. Lee, and T.-S. Mo, “Photoinduced two-dimensional gratings based on dye-doped cholesteric liquid crystal films,” J. Chem. Phys. 127(14), 141105 (2007).
32. P. Etchegoin, “Blue phases of cholesteric liquid crystals as thermotropic photonic crystals,” Phys. Rev. E 62(1), 1435 (2000).
33. T.-H. Lin, Y. Li, C.-T. Wang, H.-C. Jau, C.-W. Chen, C.-C. Li, H. K. Bisoyi, T. J. Bunning, and Q. Li, “Red, green and blue reflections enabled in an optically tunable self‐organized 3D cubic nanostructured thin film,” Adv. Mater. 25(36), 5050-5054 (2013).
34. F. Reinitzer, “Beiträge zur kenntniss des cholesterins,” Monatsh. Chem. 9(1), 421-441 (1888).
35. O. Lehmann, “Über fliessende krystalle,” Z. Phys. Chem. 4(1), 462-472 (1889).
36. I.-C. Khoo, Liquid crystals (John Wiley & Sons, New York, 2007).
37. F. M. Leslie, “Continuum theory for nematic liquid crystals,” Continuum Mech. Thermodyn. 4(3), 167-175 (1992).
38. J. P. Lagerwall, C. Schütz, M. Salajkova, J. Noh, J. H. Park, G. Scalia, and L. Bergström, “Cellulose nanocrystal-based materials: From liquid crystal self-assembly and glass formation to multifunctional thin films,” NPG Asia Mater. 6(1), e80 (2014).
39. X. Mu, and D. G. Gray, “Formation of chiral nematic films from cellulose nanocrystal suspensions is a two-stage process,” Langmuir 30(31), 9256-9260 (2014).
40. G. Vertogen, and W. H. De Jeu, Thermotropic liquid crystals, fundamentals (Springer Science & Business Media, New York, 2012).
41. S. Chandrasekhar, Structural classification of thermotropic liquid crystals (Springer, Boston, MA, 1984).
42. R. E. Stoiber, and S. A. Morse, Crystal identification with the polarizing microscope (Springer Science & Business Media, New York, 2012).
43. B. E. Saleh, and M. C. Teich, Fundamentals of photonics (john Wiley & Sons, New York, 2019).
44. A. Yariv, Optical electronics in modern communications (Oxford University Press, New York, 1997).
45. J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Disp. Technol. 1(1), 51 (2005).
46. H. Zocher, “The effect of a magnetic field on the nematic state,” Trans. Faraday Society 29(140), 945-957 (1933).
47. E. Hecht, Optics 4th (Addison-Wesley, San Francisco, U.S.A 2002).
48. D.-K. Yang, and S.-T. Wu, Fundamentals of liquid crystal devices (John Wiley & Sons, New York, 2014).
49. P. Yeh, and C. Gu, Optics of liquid crystal displays (John Wiley & Sons, New York, 2009).
50. P. De Gennes, “Calcul de la distorsion d'une structure cholesterique par un champ magnetique,” Solid State Commun. 6(3), 163-165 (1968).
51. W.-R. Chen, and J.-C. Hwang, “The phase behaviour and optical properties of a nematic/chiral dopant liquid crystalline mixture system,” Liq. Cryst. 31(11), 1539-1546 (2004).
52. R. B. Meyer, “Effects of electric and magnetic fields on the structure of cholesteric liquid crystals,” Appl. Phys. Lett. 12(9), 281-282 (1968).
53. H. Kelker, “History of liquid crystals,” Mol. Cryst. Liq. Cryst. 21(12), 1-48 (1973).
54. F. Castles, S. Green, D. Gardiner, S. Morris, and H. Coles, “Flexoelectric coefficient measurements in the nematic liquid crystal phase of 5CB,” AIP Adv. 2(2), 022137 (2012).
55. H. Kikuchi, “Liquid crystalline blue phases,” Struct. Bond. 128, 99-117 (2008).
56. H. J. Coles, and M. N. Pivnenko, “Liquid crystal ‘blue phases’ with a wide temperature range,” Nature 436(7053), 997-1000 (2005).
57. A. Chanishvili, G. Chilaya, G. Petriashvili, and P. J. Collings, “Trans-cis isomerization and the blue phases,” Phys. Rev. E. 71(5), 051705 (2005).
58. H.-Y. Liu, C.-T. Wang, C.-Y. Hsu, T.-H. Lin, and J.-H. Liu, “Optically tuneable blue phase photonic band gaps,” Appl. Phys. Lett. 96(12), 121103 (2010).
59. T. Isomura, H. Yoshida, A. Fujii, and M. Ozaki, “Laser emission from a photopolymerized cholesteric blue phase II,” Mol. Cryst. Liq. Cryst. 516(1), 197-201 (2010).
60. S. Meiboom, J. P. Sethna, P. Anderson, and W. Brinkman, “Theory of the blue phase of cholesteric liquid crystals,” Phys. Rev. Lett. 46(18), 1216 (1981).
61. A. D. Rey, “Liquid crystal models of biological materials and processes,” Soft Matter 6(15), 3402-3429 (2010).
62. A. Yoshizawa, “Liquid crystal oligomers exhibiting a blue phase,” Mol. Cryst. Liq. Cryst. 516(1), 99-106 (2010).
63. I. C. Khoo, C.-W. Chen, and T.-J. Ho, “Observation of photorefractive effects in blue-phase liquid crystal containing fullerene-C60,” Opt. Lett. 41(1), 123-126 (2016).
64. O. Henrich, K. Stratford, M. E. Cates, and D. Marenduzzo, “Structure of blue phase III of cholesteric liquid crystals,” Phys. Rev. Lett. 106(10), 107801 (2011).
65. H.-S. Kitzerow, “Blue phases come of age: a review,” Proc. SPIE 7232, 723205 (2009).
66. C. Kittel, Introduction to solid state physics (John Wiley & Sons, New York, 1976).
67. J.-D. Lin, T.-Y. Wang, T.-S. Mo, S.-Y. Huang, and C.-R. Lee, “Wide-band spatially tunable photonic bandgap in visible spectral range and laser based on a polymer stabilized blue phase,” Sci. Rep. 6, 30407 (2016).
68. X. Li, J. A. Martínez-González, J. P. Hernández-Ortiz, A. Ramírez-Hernández, Y. Zhou, M. Sadati, R. Zhang, P. F. Nealey, and J. J. de Pablo, “Mesoscale martensitic transformation in single crystals of topological defects,” Proc. Natl. Acad. Sci. U.S.A. 114(38), 10011 (2017).
69. R. Miller, “Rhapsody in blue,” Liq. Cryst. Today 9(34), 713 (1999).
70. A. Yariv, and P. Yeh, Photonics: optical electronics in modern communications (Oxford University Press, New York, 2007).
71. D. C. O’shea, W. R. Callen, W. T. Rhodes, and B. J. Thompson, An introduction to lasers and their applications (Addison-Wesley, New York, 1978).
72. J. T. Verdeyen, Laser electronics 3rd (Prentice Hall, Upper Saddle River, NJ, 2000).
73. M. H. Mittleman, Introduction to the theory of laser-atom interactions (Springer Science & Business Media, New York, 2013).
74. H. Kogelnik, and C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18(4), 152-154 (1971).
75. M. Baroncini, G. Ragazzon, S. Silvi, M. Venturi, and A. Credi, “Azobenzene photoisomerization: An old reaction for activating new molecular devices and materials, ” Photochemistry 44, 296-323 (2016).
76. T.-T. Tang, H.-Y. Wu, C.-J. Lin, and R.-P. Pan, “A simple method of determining the pitch of a chiral nematic liquid crystal,” Mol. Cryst. Liq. Cryst. 478(1), 143-150 (2007).
77. R. Barboza, U. Bortolozzo, M. G. Clerc, and S. Residori, “Berry phase of light under Bragg reflection by chiral liquid-crystal media,” Phys. Rev. Lett. 117(5), 053903 (2016).
78. M. Rafayelyan, and E. Brasselet, “Bragg-Berry mirrors: Reflective broadband q-plates,” Opt. Lett. 41(17), 3972-3975 (2016).
79. M. Rafayelyan, G. Tkachenko, and E. Brasselet, “Reflective spin-orbit geometric phase from chiral anisotropic optical media,” Phys. Rev. Lett. 116(25), 253902 (2016).
80. M. Rafayelyan, and E. Brasselet, “Spin-to-orbital angular momentum mapping of polychromatic light,” Phys. Rev. Lett. 120(21), 213903 (2018).
81. M. Rafayelyan, G. Agez, and E. Brasselet, “Ultrabroadband gradient-pitch Bragg-Berry mirrors,” Phys. Rev. A 96(4), 043862 (2017).
82. M. Harris, C. Hill, P. Tapster, and J. Vaughan, “Laser modes with helical wave fronts,” Phys. Rev. A 49(4), 3119 (1994).
83. S. Zheng, and J. Wang, “Measuring orbital angular momentum (OAM) states of vortex beams with annular gratings,” Sci. Rep. 7(1), 1-9 (2017).
84. J. Hickmann, E. Fonseca, W. Soares, and S. Chávez-Cerda, “Unveiling a truncated optical lattice associated with a triangular aperture using light’s orbital angular momentum,” Phys. Rev. Lett. 105(5), 053904 (2010).
85. L. E. de Araujo, and M. E. Anderson, “Measuring vortex charge with a triangular aperture,” Opt. Lett. 36(6), 787-789 (2011).
86. I. Basistiy, M. Soskin, and M. Vasnetsov, “Optical wavefront dislocations and their properties,” Opt. Commun. 119(5-6), 604-612 (1995).
87. M. Soskin, V. Gorshkov, M. Vasnetsov, J. Malos, and N. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56(5), 4064 (1997).
88. P. M. S. Monk, R. J. Mortimer, and D. R. Rosseinsky, Electrochromism and electrochromic devices (Cambridge university press, New York, 2007).
89. D. R. Rosseinsky, and R. J. Mortimer, “Electrochromic systems and the prospects for devices,” Adv. Mater. 13(11), 783-793 (2001).
90. P. R. Somani, and S. Radhakrishnan, “Electrochromic materials and devices: Present and future,” Mater. Chem. Phys. 77(1), 117-133 (2003).
91. M. Green, “The promise of electrochromic systems,” Chem. Ind. 17, 641-644 (1996).
92. C.-G. Granqvist, “Out of a niche,” Nat. Mater. 5(2), 89-90 (2006).
93. R. Batchelor, M. Burdis, and J. Siddle, “Electrochromism in sputtered WO3 thin films,” J. Electrochem. Soc. 143(3), 1050 (1996).
94. A. Llordés, G. Garcia, J. Gazquez, and D. J. Milliron, “Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites,” Nature 500(7462), 323-326 (2013).
95. M. Grätzel, “Ultrafast colour displays,” Nature 409(6820), 575-576 (2001).
96. S. Soylemez, H. Z. Kaya, Y. A. Udum, and L. Toppare, “A multipurpose conjugated polymer: electrochromic device and biosensor construction for glucose detection,” Org. Electron. 65, 327-333 (2019).
97. H.-H. Chou, A. Nguyen, A. Chortos, J. W. To, C. Lu, J. Mei, T. Kurosawa, W.-G. Bae, J. B.-H. Tok, and Z. Bao, “A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing,” Nat. Commun. 6(1), 1-10 (2015).
98. S. K. Deb, “Opportunities and challenges in science and technology of WO3 for electrochromic and related applications,” Sol. Energy Mater. Sol. Cells 92(2), 245-258 (2008).
99. W. T. Neo, Q. Ye, S.-J. Chua, and J. Xu, “Conjugated polymer-based electrochromics: Materials, device fabrication and application prospects,” J. Mater. Chem. C 4(31), 7364-7376 (2016).
100. S. Yazaki, M. Funahashi, J. Kagimoto, H. Ohno, and T. Kato, “Nanostructured liquid crystals combining ionic and electronic functions,” J. Am. Chem. Soc. 132(22), 7702-7708 (2010).
101. S. Yazaki, M. Funahashi, and T. Kato, “An electrochromic nanostructured liquid crystal consisting of π-conjugated and ionic moieties,” J. Am. Chem. Soc. 130(40), 13206-13207 (2008).
102. A. Beneduci, S. Cospito, D. Imbardelli, B. C. De Simone, and G. Chidichimo, “n-Type columnar liquid crystal combining ionic and electronic functions,” Mol. Cryst. Liq. Cryst. 610(1), 108-115 (2015).
103. A. Beneduci, S. Cospito, M. La Deda, L. Veltri, and G. Chidichimo, “Electrofluorochromism in π-conjugated ionic liquid crystals,” Nat. Commun. 5(1), 1-8 (2014).
104. A. Beneduci, G. A. Corrente, and G. Chidichimo, Electrochromic smart materials: fabrication and applications (The Royal Society of Chemistry, London, UK, 2019).
105. G. A. Niklasson, and C. G. Granqvist, “Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these,” J. Mater. Chem. 17(2), 127-156 (2007).
106. Z. Wang, X. Wang, S. Cong, J. Chen, H. Sun, Z. Chen, G. Song, F. Geng, Q. Chen, and Z. Zhao, “Towards full-colour tunability of inorganic electrochromic devices using ultracompact fabry-perot nanocavities,” Nat. Commun. 11(1), 1-9 (2020).
107. G. Chilaya, Chirality in liquid crystals (Springer, New York, 2001.)
108. Y. Huang, Y. Zhou, C. Doyle, and S.-T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express 14(3), 12361242 (2006).
109. J. Xiang, A. Varanytsia, F. Minkowski, D. A. Paterson, J. M. Storey, C. T. Imrie, O. D. Lavrentovich, and P. Palffy-Muhoray, “Electrically tunable laser based on oblique heliconical cholesteric liquid crystal,” Proc. Natl. Acad. Sci. U.S.A. 113(46), 12925-12928 (2016).
110. I. Gvozdovskyy, O. Yaroshchuk, M. Serbina, and R. Yamaguchi, “Photoinduced helical inversion in cholesteric liquid crystal cells with homeotropic anchoring,” Opt. Express 20(4), 3499-3508 (2012).
111. T. J. White, M. E. McConney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem. 20(44), 9832-9847 (2010).
112. A. Ryabchun, and A. Bobrovsky, “Cholesteric liquid crystal materials for tunable diffractive optics,” Adv. Opt. Mater. 6(15), 1800335 (2018).
113. Q. Li, Liquid crystals beyond displays (John Wiley & Sons, New Jersey, 2012).
114. L. De Sio, G. Palermo, V. Caligiuri, A. E. Vasdekis, A. Pane, J.-W. Choi, L. Maffli, M. Niklaus, H. R. Shea, and C. Umeton, “Electro and pressure tunable cholesteric liquid crystal devices based on ion-implanted flexible substrates,” J. Mater. Chem. C 1(47), 7798-7802 (2013).
115. T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).
116. S. S. Choi, S. M. Morris, W. T. Huck, and H. J. Coles, “Liquid crystals: electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. 21(38-39), 3915-3918 (2009).
117. J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. Storey, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27(19), 3014-3018 (2015).
118. Y. C. Hsiao, Z. H. Yang, D. Shen, and W. Lee, “Red, green, and blue reflections enabled in an electrically tunable helical superstructure,” Adv. Opt. Mater. 6(5), 1701128 (2018).
119. Y. S. Zhang, C. Y. Liu, A. V. Emelyanenko, and J. H. Liu, “Synthesis of predesigned ferroelectric liquid crystals and their applications in field‐sequential color displays,” Adv. Funct. Mater. 28(14), 1706994 (2018).
120. J.-D. Lin, C.-P. Chen, L.-J. Chen, Y.-C. Chuang, S.-Y. Huang, and C.-R. Lee, “Morphological appearances and photo-controllable coloration of dye-doped cholesteric liquid crystal/polymer coaxial microfibers fabricated by coaxial electrospinning technique,” Opt. Express 24(3), 3112-3126 (2016).
121. L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103(9), 093107 (2008).
122. J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97(7), 073501 (2005).
123. E. Enz, and J. Lagerwall, “Electrospun microfibres with temperature sensitive iridescence from encapsulated cholesteric liquid crystal,” J. Mater. Chem. 20(33), 6866-6872 (2010).
124. P. Coullet, L. Gil, and F. Rocca, “Optical vortices,” Opt. Commun. 73(5), 403-408 (1989).
125. C.-L. Yuan, W. Huang, Z.-G. Zheng, B. Liu, H. K. Bisoyi, Y. Li, D. Shen, Y. Lu, and Q. Li, “Stimulated transformation of soft helix among helicoidal, heliconical, and their inverse helices,” Sci. Adv. 5(10), eaax9501 (2019).
126. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185-8189 (1992).
127. M. R. Dennis, K. O'Holleran, and M. J. Padgett, “Singular optics: Optical vortices and polarization singularities,” Prog. Opt. 53, 293-363 (2009).
128. M. Soskin, S. V. Boriskina, Y. Chong, M. R. Dennis, and A. Desyatnikov, “Singular optics and topological photonics,” J. Opt. 19(1), 010401 (2016).
129. X. Wang, Z. Nie, Y. Liang, J. Wang, T. Li, and B. Jia, “Recent advances on optical vortex generation,” Nanophotonics 7(9), 1533-1556 (2018).
130. M. Gecevičius, R. Drevinskas, M. Beresna, and P. G. Kazansky, “Single beam optical vortex tweezers with tunable orbital angular momentum,” Appl. Phys. Lett. 104(23), 231110 (2014).
131. M. Padgett, and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343-348 (2011).
132. J. E. Curtis, and D. G. Grier, “Modulated optical vortices,” Opt. Lett. 28(11), 872-874 (2003).
133. K. Ladavac, and D. G. Grier, “Microoptomechanical pumps assembled and driven by holographic optical vortex arrays,” Opt. Express 12(6), 1144-1149 (2004).
134. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545-1548 (2013).
135. R. Fickler, G. Campbell, B. Buchler, P. K. Lam, and A. Zeilinger, “Quantum entanglement of angular momentum states with quantum numbers up to 10,010,” Proc. Natl. Acad. Sci. U.S.A. 113(48), 13642-13647 (2016).
136. Z. Wang, N. Zhang, and X.-C. Yuan, “High-volume optical vortex multiplexing and de-multiplexing for free-space optical communication,” Opt. Express 19(2), 482-492 (2011).
137. W. Shao, S. Huang, X. Liu, and M. Chen, “Free-space optical communication with perfect optical vortex beams multiplexing,” Opt. Commun. 429(7), 545-550 (2018).
138. M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. Math. Phys. Eng. Sci. 392(1802), 45-57 (1984).
139. M. J. Costello, S. Meiboom, and M. Sammon, “Electron microscopy of a cholesteric liquid crystal and its blue phase,” Phys. Rev. A 29(5), 2957-2959 (1984).
140. W. D. St. John, W. J. Fritz, Z. J. Lu, and D.-K. Yang, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E 51(2), 1191-1198 (1995).
141. P. Chen, B.-Y. Wei, W. Hu, and Y.-Q. Lu, “Liquid-crystal-mediated geometric phase: From transmissive to broadband reflective planar optics,” Adv. Mater. 32(27), 1903665 (2020).
142. J. Kobashi, H. Yoshida, and M. Ozaki, “Polychromatic optical vortex generation from patterned cholesteric liquid crystals,” Phys. Rev. Lett. 116(25), 253903 (2016).
143. P. Chen, L.-L. Ma, W. Hu, Z.-X. Shen, H. K. Bisoyi, S.-B. Wu, S.-J. Ge, Q. Li, and Y.-Q. Lu, “Chirality invertible superstructure mediated active planar optics,” Nat. Commun. 10(1), 2518 (2019).
144. L. K. Gangwar, A. Bawa, A. Choudhary, S. P. Singh, Rajesh, and A. M. Biradar, “Collective dielectric processes at the transition temperature of the Sm-C* and Sm-A* phase in a ferroelectric liquid crystal,” Phys. Rev. E 97(6), 062707 (2018).
145. S. Doke, P. Ganguly, and S. Mahamuni, “Improvement in molecular alignment of ferroelectric liquid crystal by Co-ZnO/ZnO core/shell quantum dots,” Liq. Cryst. 47(3), 309-316 (2020).
146. D. M. Walba, E. Körblova, R. Shao, J. E. Maclennan, D. R. Link, M. A. Glaser, and N. A. Clark, “A ferroelectric liquid crystal conglomerate composed of racemic molecules,” Science 288(5474), 2181 (2000).
147. B.-Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J.-G. Wang, V. Chigrinov, and Y.-Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26(10), 1590-1595 (2014).
148. S.-A. Jiang, J.-L. Chang, J.-W. Lin, Y.-S. Zhang, T.-S. Mo, J.-D. Lin, and C.-R. Lee, “Toward full‐color tunable chiroptical electrothermochromic devices based on a supramolecular chiral photonic material,” Adv. Opt. Mat. 9(7), 2001796 (2021).
149. S.-Y. Lu, and L.-C. Chien, “A polymer-stabilized single-layer color cholesteric liquid crystal display with anisotropic reflection,” Appl. Phys. Lett. 91(13), 131119 (2007).
150. R. B. Meyer, “Distortion of a cholesteric structure by a magnetic field,” Appl. Phys. Lett. 14(7), 208-209 (1969).
151. Y. Fang, G. Sun, Y. Bi, and H. Zhi, “Multiple-dimensional micro/nano structural models for hydrophobicity of butterfly wing surfaces and coupling mechanism,” Sci. Bull. 60(2), 256-263 (2015).
152. J. Lv, Z. Liu, J. Zhang, J. Huo, and Y. Yu, “Bio-based episulfide composed of cardanol/cardol for anti-corrosion coating applications,” Polymer 121, 286-296 (2017).
153. C. Neinhuis, and W. Barthlott, “Characterization and distribution of water-repellent, self-cleaning plant surfaces,” Ann. Bot. 79(6), 667-677 (1997).
154. D. X. Oh, Y. J. Cha, H.-L. Nguyen, H. H. Je, Y. S. Jho, D. S. Hwang, and D. K. Yoon, “Chiral nematic self-assembly of minimally surface damaged chitin nanofibrils and its load bearing functions,” Sci. Rep. 6(1), 23245 (2016).
155. S. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, and U. Steiner, “Pointillist structural color in Pollia fruit,” Proc. Natl. Acad. Sci. U.S.A. 109(39), 15712 (2012).
156. Y. Fu, C. A. Tippets, E. U. Donev, and R. Lopez, “Structural colors: From natural to artificial systems,” Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 8(5), 758-775 (2016).
157. L. Chen, M. Lopez-Garcia, M. P. C. Taverne, X. Zheng, Y.-L. D. Ho, and J. Rarity, “Direct wide-angle measurement of a photonic band structure in a three-dimensional photonic crystal using infrared Fourier imaging spectroscopy,” Opt. Lett. 42(8), 1584-1587 (2017).
158. Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Appl. Phys. Lett. 77(7), 927-929 (2000).
159. K. Bertoldi, V. Vitelli, J. Christensen, and M. van Hecke, “Flexible mechanical metamaterials,” Nat. Rev. Mater. 2(11), 17066 (2017).
160. M. Ebrahimpouri, O. Quevedo-Teruel, and E. Rajo-Iglesias, “Design guidelines for gap waveguide technology based on glide-symmetric holey structures,” IEEE Microw. Wirel. Compon. Lett. 27(6), 542-544 (2017).
161. B. Maune, M. Lončar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360-362 (2004).
162. H.-C. Jau, Y. Li, C.-C. Li, C.-W. Chen, C.-T. Wang, H. K. Bisoyi, T.-H. Lin, T. J. Bunning, and Q. Li, “Light-driven wide-range nonmechanical beam steering and spectrum scanning based on a self-organized liquid crystal grating enabled by a chiral molecular switch,” Adv. Opt. Mater. 3(2), 166170 (2015).
163. H.-C. Jau, T.-H. Lin, R.-X. Fung, S.-Y. Huang, J. H. Liu, and A. Y.-G. Fuh, “Optically-tunable beam steering grating based on azobenzene doped cholesteric liquid crystal,” Opt. Express 18(16), 17498-17503 (2010).
164. R. S. Zola, H. K. Bisoyi, H. Wang, A. M. Urbas, T. J. Bunning, and Q. Li, “Dynamic control of light direction enabled by stimuli-responsive liquid crystal gratings,” Adv. Mater. 31(7), 1806172 (2019).
165. S. S. Lee, J. B. Kim, Y. H. Kim, and S.-H. Kim, “Wavelength-tunable and shape-reconfigurable photonic capsule resonators containing cholesteric liquid crystals,” Sci. Adv. 4(6), eaat8276 (2018).
166. R. Kizhakidathazhath, Y. Geng, V. S. R. Jampani, C. Charni, A. Sharma, and J. P. F. Lagerwall, “Facile anisotropic deswelling method for realizing large-area cholesteric liquid crystal elastomers with uniform structural color and broad-range mechanochromic response,” Adv. Funct. Mater. 30(7), 1909537 (2020).
167. Y. Iwai, Y. Uchida, and N. Nishiyama, “Self-assembled magnetic control lever embedded in photonic liquid crystalline microcapsule,” Adv. Opt. Mater. 4(12), 1961-1964 (2016).
168. C.-C. Li, H.-Y. Tseng, H.-C. Liao, H.-M. Chen, T. Hsieh, S.-A. Lin, H.-C. Jau, Y.-C. Wu, Y.-L. Hsu, W.-H. Hsu, and T.-H. Lin, “Enhanced image quality of OLED transparent display by cholesteric liquid crystal back-panel,” Opt. Express 25(23), 2919929206 (2017).
169. J.-H. Jang, and S.-Y. Park, “pH-responsive cholesteric liquid crystal double emulsion droplets prepared by microfluidics,” Sens. Actuators B Chem. 241, 636-643 (2017).
170. K.-G. Noh, and S.-Y. Park, “Biosensor array of interpenetrating polymer network with photonic film templated from reactive cholesteric liquid crystal and enzyme-Immobilized hydrogel polymer,” Adv. Funct. Mater. 28(22), 1707562 (2018).
171. J.-D. Lin, M.-H. Hsieh, G.-J. Wei, T.-S. Mo, S.-Y. Huang, and C.-R. Lee, “Optically tunable/switchable omnidirectionally spherical microlaser based on a dye-doped cholesteric liquid crystal microdroplet with an azo-chiral dopant,” Opt. Express 21(13), 15765-15776 (2013).
172. H. Choi, J. Kim, S. Nishimura, T. Toyooka, F. Araoka, K. Ishikawa, J. W. Wu, and H. Takezoe, “Broadband cavity-mode lasing from dye-doped nematic liquid crystals sandwiched by broadband cholesteric liquid crystal bragg reflectors,” Adv. Mater. 22(24), 2680-2684 (2010).
173. L.-J. Chen, J.-D. Lin, S.-Y. Huang, T.-S. Mo, and C.-R. Lee, “Thermally and electrically tunable lasing emission and amplified Spontaneous emission in a composite of inorganic quantum dot nanocrystals and organic cholesteric liquid crystals,” Adv. Opt. Mater. 1(9), 637-643 (2013).
174. N. A. Clark, and R. B. Meyer, “Strain‐induced instability of monodomain smectic A and cholesteric liquid crystals,” Appl. Phys. Lett. 22(10), 493-494 (1973).
175. M. Delaye, R. Ribotta, and G. Durand, “Buckling instability of the layers in a smectic-A liquid crystal,” Phys. Lett. A 44(2), 139-140 (1973).
176. T. Ishikawa, and O. D. Lavrentovich, “Undulations in a confined lamellar system with surface anchoring,” Phys. Rev. E 63(3), 030501 (2001).
177. B. I. Senyuk, I. I. Smalyukh, and O. D. Lavrentovich, “Switchable two-dimensional gratings based on field-induced layer undulations in cholesteric liquid crystals,” Opt. Lett. 30(4), 349-351 (2005).
178. U. Hrozhyk, S. Serak, N. Tabiryan, and T. Bunning, “Periodic structures generated by light in chiral liquid crystals,” Opt. Express 15(15), 9273-9280 (2007).
179. M. C. M. Varney, Q. Zhang, B. Senyuk, and I. I. Smalyukh, “Self-assembly of colloidal particles in deformation landscapes of electrically driven layer undulations in cholesteric liquid crystals,” Phys. Rev. E 94(4), 042709 (2016).
180. Y. Inoue, and H. Moritake, “Dynamic control of colorful reflection toward practical cholesteric liquid crystal displays,” Opt. Express 24(20), 23027-23036 (2016).
181. A. Ryabchun, D. Yakovlev, A. Bobrovsky, and N. Katsonis, “Dynamic diffractive patterns in helix-inverting cholesteric liquid crystals,” ACS Appl. Mater. Interfaces 11(11), 10895-10904 (2019).
182. A. Ryabchun, F. Lancia, and N. Katsonis, “Light-fueled nanoscale surface waving in chiral liquid crystal networks,” ACS Appl. Mater. Interfaces 13(3), 4777-4784 (2021).
183. Y.-C. Hsiao, and W. Lee, “Polymer stabilization of electrohydrodynamic instability in non-iridescent cholesteric thin films,” Opt. Express 23(17), 22636-22642 (2015).
184. M. Yu, H. Yang, and D.-K. Yang, “Stabilized electrically induced Helfrich deformation and enhanced color tuning in cholesteric liquid crystals,” Soft Matter 13(46), 8728-8735 (2017).
185. N. Scaramuzza, R. Barberi, F. Simoni, F. Xu, G. Barbero, and R. Bartolino, “Buckling of a sheared cholesteric liquid crystal,” Phys. Rev. A 32(2), 1134-1143 (1985).
186. I. Nys, V. Nersesyan, J. Beeckman, and K. Neyts, “Complex liquid crystal superstructures induced by periodic photo-alignment at top and bottom substrates,” Soft Matter 14(33), 6892-6902 (2018).
187. Y. Huang, E.-L. Hsiang, M.-Y. Deng, and S.-T. Wu, “Mini-LED, Micro-LED and OLED displays: Present status and future perspectives,” Light Sci. Appl. 9, 105 (2020).
188. J.-D. Lin, T.-Y. Wang, T.-S. Mo, S.-Y. Huang, and C.-R. Lee, “Wide-band spatially tunable photonic bandgap in visible spectral range and laser based on a polymer stabilized blue phase,” Sci. Rep. 6(1), 30407 (2016).
189. J.-D. Lin, S.-Y. Huang, H.-S. Wang, S.-H. Lin, T.-S. Mo, C.-T. Horng, H.-C. Yeh, L.-J. Chen, H.-L. Lin, and C.-R. Lee, “Spatially tunable photonic bandgap of wide spectral range and lasing emission based on a blue phase wedge cell,” Opt. Express 22(24), 29479-29492 (2014).
190. C.-R. Lee, S.-H. Lin, J.-W. Guo, J.-D. Lin, H.-L. Lin, Y.-C. Zheng, C.-L. Ma, C.-T. Horng, H.-Y. Sun, and S.-Y. Huang, “Electrically and thermally controllable nanoparticle random laser in a well-aligned dye-doped liquid crystal cell,” Opt. Mater. Express 5(6), 1469-1481 (2015).
191. J. Beeckman, K. Neyts, and P. J. M. Vanbrabant, “Liquid-crystal photonic applications,” Opt. Eng. 50(8), 17 (2011).
192. C.-H. Chuang, Y.-C. Lin, W.-L. Chen, Y.-H. Chen, Y.-X. Chen, C.-M. Chen, H.-W. Shiu, L.-Y. Chang, C.-H. Chen, and C.-H. Chen, “Detecting trypsin at liquid crystal/aqueous interface by using surface-immobilized bovine serum albumin,” Biosens. Bioelectron. 78, 213-220 (2016).
193. C.-H. Chen, Y.-C. Lin, H.-H. Chang, and A. S.-Y. Lee, “Ligand-doped liquid crystal sensor system for detecting mercuric ion in aqueous solutions,” Anal. Chem. 87(8), 4546-4551 (2015).
194. T.-Y. Ho, Y.-H. Lan, J.-W. Huang, J.-J. Chang, and C.-H. Chen, “Using diazotization reaction to develop portable liquid-crystal-based sensors for nitrite detection,” ACS Omega 5(20), 11809-11816 (2020).
195. M. Kim, and F. Serra, “Topological defect arrays in nematic liquid crystals assisted by polymeric pillar arrays: Effect of the geometry of pillars,” Crystals 10(4), 314 (2020).
196. O. D. Lavrentovich, “Topological defects in dispersed words and worlds around liquid crystals, or liquid crystal drops,” Liq. Cryst. 24(1), 117126 (1998).
197. J. A. Martínez-González, Y. Zhou, M. Rahimi, E. Bukusoglu, N. L. Abbott, and J. J. de Pablo, “Blue-phase liquid crystal droplets,” Proc. Natl. Acad. Sci. U.S.A. 112(43), 13195-13200 (2015).
198. S. M. Shamid, D. W. Allender, and J. V. Selinger, “Predicting a polar analog of chiral blue phases in liquid crystals,” Phys. Rev. Lett. 113(23), 237801 (2014).
199. Y. Huang, H. Chen, G. Tan, H. Tobata, S.-I. Yamamoto, E. Okabe, Y.-F. Lan, C.-Y. Tsai, and S.-T. Wu, “Optimized blue-phase liquid crystal for field-sequential-color displays,” Opt. Mater. Express 7(2), 641650 (2017).
200. T.-H. Lin, C.-W. Chen, Q. Li, in Anisotropic Nanomaterials: Preparation, Properties, Applications (Ed: Q. Li, Springer, Heidelberg, 2015).
201. P. P. Crooker, “Plenary lecture. The blue phases. A review of experiments,” Liq. Cryst. 5(3), 751-775 (1989).
202. D.-Y. Guo, C.-W. Chen, C.-C. Li, H.-C. Jau, K.-H. Lin, T.-M. Feng, C.-T. Wang, T. J. Bunning, I. C. Khoo, and T.-H. Lin, “Reconfiguration of three-dimensional liquid-crystalline photonic crystals by electrostriction,” Nat. Mater. 19(1), 94-101 (2020).
203. Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic kerr effect in polymer-stabilized liquid-crystalline blue phases,” Adv. Mater. 17(1), 9698 (2005).
204. L. Rao, Z. Ge, S.-T. Wu, and S.-H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95(23), 231101 (2009).
205. C.-K. Liu, W.-L. Huang, A. Ying-Guey Fuh, and K.-T. Cheng, “Binary cholesteric/blue-phase liquid crystal textures fabricated using phototunable chirality in azo chiral-doped cholesteric liquid crystals,” J. Appl. Phys. 111(10), 103114 (2012).
206. J.-D. Lin, Y.-M. Lin, T.-S. Mo, and C.-R. Lee, “Photosensitive and all-optically fast-controllable photonic bandgap device and laser in a dye-doped blue phase with a low-concentration azobenzene liquid crystal,” Opt. Express 22(8), 9171-9181 (2014).
207. L.-J. Chen, J.-D. Lin, and C.-R. Lee, “An optically stable and tunable quantum dot nanocrystal-embedded cholesteric liquid crystal composite laser,” J. Mater. Chem. C 2(22), 4388-4394 (2014).
208. S.-A. Jiang, W.-J. Sun, S.-H. Lin, J.-D. Lin, and C.-Y. Huang, “Optical and electro-optic properties of polymer-stabilized blue phase liquid crystal cells with photoalignment layers,” Opt. Express 25(23), 28179-28191 (2017).
209. P.-J. Chen, M. Chen, S.-Y. Ni, H.-S. Chen, and Y.-H. Lin, “Influence of alignment layers on crystal growth of polymer-stabilized blue phase liquid crystals,”Opt. Mater. Express 6(4), 10031010 (2016).
210. P. Joshi, X. Shang, J. De Smet, E. Islamai, D. Cuypers, G. Van Steenberge, S. Van Vlierberghe, P. Dubruel, and H. De Smet, “On the effect of alignment layers on blue phase liquid crystals,” Appl. Phys. Lett. 106(10), 101105 (2015).
211. E. Oton, E. Netter, T. Nakano, D. K. Y, and F. Inoue, “Monodomain blue phase liquid crystal layers for phase modulation,” Sci. Rep. 7, 44575 (2017).
212. J. A. Martinez-Gonzalez, X. Li, M. Sadati, Y. Zhou, R. Zhang, P. F. Nealey, and J. J. dePablo, “Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals,” Nat. Commun. 8, 15854 (2017).
213. R. Manda, S. Pagidi, Y. Heo, Y. J. Lim, M. Kim, and S. H. Lee, “Electrically tunable photonic band gap structure in monodomain blue-phase liquid crystals,” NPG Asia Mater. 12(1), 42 (2020).
214. J. Yan, S.-T. Wu, K.-L. Cheng, and J.-W. Shiu, “A full-color reflective display using polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 102(8), 081102 (2013).
215. Y. Chen, and S.-T. Wu, “Electric field-induced monodomain blue phase liquid crystals,” Appl. Phys. Lett. 102(17), 171110 (2013).
216. E. Bukusoglu, J. A. Martinez-Gonzalez, X. Wang, Y. Zhou, J. J. dePablo, and N. L. Abbott, “Strain-induced alignment and phase behavior of blue phase liquid crystals confined to thin films,” Soft Matter 13(47), 8999-9006 (2017).
217. J. M. Richard, and F. G. Helen, “Lattice parameter measurements from the kossel diagrams of the cubic liquid crystal blue Phases,” J. Phys. II France 6(6), 909922 (1996).
218. A. Natansohn, and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102(11), 4139-4176 (2002).
219. H. Ringsdorf, and H.-W. Schmidt, “Electro-optical effects of azo dye containing liquid crystalline copolymers,” Makromol. Chem. 185(7), 1327-1334 (1984).
220. J.-R. Wang, C.-R. Lee, M.-R. Lee, and A. Y. G. Fuh, “Photorefractive effect induced by polarization gratings in dye-doped liquid crystals,” Opt. Lett. 29(1), 110-112 (2004).
221. Y.-C. Hsiao, K.-C. Huang, and W. Lee, “Photo-switchable chiral liquid crystal with optical tristability enabled by a photoresponsive azo-chiral dopant,” Opt. Express 25(3), 2687-2693 (2017).