| 研究生: |
魏任宣 Wei, Renn-Shiuan |
|---|---|
| 論文名稱: |
癌症轉移相關的NDPK-A藉由eEF1Bα參與在轉譯作用中 Metastasis-associated NDPK-A is involved in translation via eEF1Bα |
| 指導教授: |
張玲
Chang, Christina Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 腫瘤轉移 、NM23-H1 、NDPK-A 、核苷二磷酸激酶 A 、eEF1Bα 、eEF1β 、轉譯延長 |
| 外文關鍵詞: | Metastasis, NM23-H1, NDPK-A, Nucleoside diphosphate kinase A, eEF1Bα, eEF1β, Eukaryotic translation elongation factor 1 |
| 相關次數: | 點閱:147 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
腫瘤轉移是導致患者病情惡化並造成死亡的主要因素,但目前對於腫瘤轉移的分子機制尚未完全瞭解。一種核苷二磷酸激酶 A (NDPK-A) 被發現與腫瘤轉移有關,此蛋白質由 NM23-H1基因負責製造。本實驗室專注於與NDPK-A 相互作用的蛋白質,想藉此瞭解 NDPK-A 在腫瘤轉移中所扮演的角色;在前人酵母菌雙雜合系統和免疫沉澱的實驗中,發現一轉譯延長因子 (eEF1Bα) 會與 NDPK-A 交互作用。我運用聚組胺酸沉澱蛋白質的方法,証實了此二種蛋白質的交互作用。另外在冷光酶酵素活性實驗中,我觀察到在神經母細胞瘤中,正常的NDPK-A會提高50%的典型轉譯效能,但失去磷酸轉移酶的活性的突變株則無此現象;更重要的是,一種與轉移相關的突變 NDPK-A 會促使典型的轉譯效能增加兩倍,且內部核醣體進入位的轉譯效能增加一倍半。另外,此種突變的 NDPK-A也會增加蛋白質的新合成,並在缺乏養分的情況下會維持轉譯的功能。總而言之,此種與轉移相關的突變 NDPK-A更能提升轉譯效能,且磷酸轉移酶的活性似乎是 NDPK-A 增加轉譯效能的必要的因素。我的實驗結果提出一種新的概念:顯示出腫瘤轉移與轉譯調控之間的聯繫。
Metastasis is a major cause of death in cancer patients, however, its molecular mechanism remain largely unclear. The nm23-H1 gene encoding nucleotide diphosphate kinase A (NDPK-A) was first discovered as a metastasis-associated gene. Our lab further identified the S120G mutation in patients with advanced neuroblastoma. To understand the molecular mechanism of NDPK-A in tumor metastasis, we have found that NDPK-A interacted with a translation elongation factor, namely eEF1Bα, by yeast two-hybrid system and immunoprecipitation. In this thesis, a nickel pull-down assay also confirmed such an interaction. In an in-vivo dual-luciferase reporter system, NDPK-A and its S120G mutant (NDPK-AS120G) increased cap-dependent translation by 1.5 and 2 folds respectively. Moreover, NDPK-AS120G but not wild type NDPK-A enhanced IRES-dependent translation by 1.5 folds. However, an enzymatically inactive NDPK-AH118F did not show detectable effect on translation efficiency. NDPK-AS120G also increased new protein synthesis, while retaining translation during early period of serum starvation. Overall, NDPK-AS120G was more effective than its wild type in enhancing translation, and the phosphotransferase activity was required for NDPK-A mediated translation. Our findings suggest a novel link between tumor metastasis and translation control.
[1] P. Cottrelle, M. Cool, P. Thuriaux, V.L. Price, D. Thiele, J.M. Buhler, P. Fromageot, Either one of the two yeast EF-1 alpha genes is required for cell viability, Curr Genet 9 (1985) 693-697.
[2] P. Silar, M. Rossignol, V. Haedens, Z. Derhy, A. Mazabraud, Deletion and dosage modulation of the eEF1A gene in Podospora anserina: effect on the life cycle, Biogerontology 1 (2000) 47-54.
[3] D.M. Chambers, J. Peters, C.M. Abbott, The lethal mutation of the mouse wasted (wst) is a deletion that abolishes expression of a tissue-specific isoform of translation elongation factor 1alpha, encoded by the Eef1a2 gene, Proc Natl Acad Sci U S A 95 (1998) 4463-4468.
[4] B.S. Negrutskii, A.V. El'skaya, Eukaryotic translation elongation factor 1 alpha: structure, expression, functions, and possible role in aminoacyl-tRNA channeling, Prog Nucleic Acid Res Mol Biol 60 (1998) 47-78.
[5] M.K. Mateyak, T.G. Kinzy, eEF1A: Thinking Outside the Ribosome, J Biol Chem 285 (2010) 21209-21213.
[6] G.C. Webster, S.L. Webster, Decline in synthesis of elongation factor one (EF-1) precedes the decreased synthesis of total protein in aging Drosophila melanogaster, Mech Ageing Dev 22 (1983) 121-128.
[7] S.C. Stearns, M. Kaiser, The effects of enhanced expression of elongation factor EF-1 alpha on lifespan in Drosophila melanogaster. IV. A summary of three experiments, Genetica 91 (1993) 167-182.
[8] S.C. Stearns, M. Kaiser, E. Hillesheim, Effects on fitness components of enhanced expression of elongation factor EF-1alpha in Drosophila melanogaster. I. The contrasting approaches of molecular and population biologists, Am Nat 142 (1993) 961-993.
[9] N. Shikama, R. Ackermann, C. Brack, Protein synthesis elongation factor EF-1 alpha expression and longevity in Drosophila melanogaster, Proc Natl Acad Sci U S A 91 (1994) 4199-4203.
[10] N. Shikama, C. Brack, Changes in the expression of genes involved in protein synthesis during Drosophila aging, Gerontology 42 (1996) 123-136.
[11] L.B. Ruest, R. Marcotte, E. Wang, Peptide elongation factor eEF1A-2/S1 expression in cultured differentiated myotubes and its protective effect against caspase-3-mediated apoptosis, J Biol Chem 277 (2002) 5418-5425.
[12] M. Tatsuka, H. Mitsui, M. Wada, A. Nagata, H. Nojima, H. Okayama, Elongation factor-1 alpha gene determines susceptibility to transformation, Nature 359 (1992) 333-336.
[13] R.V. Gopalkrishnan, Z.Z. Su, N.I. Goldstein, P.B. Fisher, Translational infidelity and human cancer: role of the PTI-1 oncogene, Int J Biochem Cell Biol 31 (1999) 151-162.
[14] Z. Su, N.I. Goldstein, P.B. Fisher, Antisense inhibition of the PTI-1 oncogene reverses cancer phenotypes, Proc Natl Acad Sci U S A 95 (1998) 1764-1769.
[15] B.T. Edmonds, J. Wyckoff, Y.G. Yeung, Y. Wang, E.R. Stanley, J. Jones, J. Segall, J. Condeelis, Elongation factor-1 alpha is an overexpressed actin binding protein in metastatic rat mammary adenocarcinoma, J Cell Sci 109 ( Pt 11) (1996) 2705-2714.
[16] G.M. Janssen, W. Moller, Kinetic studies on the role of elongation factors 1 beta and 1 gamma in protein synthesis, J Biol Chem 263 (1988) 1773-1778.
[17] O. Minella, O. Mulner-Lorillon, G. Bec, P. Cormier, R. Belle, Multiple phosphorylation sites and quaternary organization of guanine-nucleotide exchange complex of elongation factor-1 (EF-1betagammadelta/ValRS) control the various functions of EF-1alpha, Biosci Rep 18 (1998) 119-127.
[18] G.M. Janssen, H.T. van Damme, J. Kriek, R. Amons, W. Moller, The subunit structure of elongation factor 1 from Artemia. Why two alpha-chains in this complex?, J Biol Chem 269 (1994) 31410-31417.
[19] M.D. Carvalho, J.F. Carvalho, W.C. Merrick, Biological characterization of various forms of elongation factor 1 from rabbit reticulocytes, Arch Biochem Biophys 234 (1984) 603-611.
[20] J.F. Carvalho, M.D. Carvalho, W.C. Merrick, Purification of various forms of elongation factor 1 from rabbit reticulocytes, Arch Biochem Biophys 234 (1984) 591-602.
[21] L.I. Slobin, W. Moller, Purification and properties of an elongation factor functionally analogous to bacterial elongation factor Ts from embryos of Artemia salina, Eur J Biochem 84 (1978) 69-77.
[22] K. Murakami, S. Ejiri, T. Katsumata, Elongation factor 1 from the silk gland of silkworm. Effect of EF-1b on EF-1a- and ribosome-dependent GTPase activity, FEBS Lett 92 (1978) 255-257.
[23] S. Ejiri, N. Ebata, R. Kawamura, T. Katsumata, Occurrence of four subunits in high molecular weight forms of polypeptide chain elongation factor 1 from wheat embryo, J Biochem 94 (1983) 319-322.
[24] K. Hiraga, K. Suzuki, E. Tsuchiya, T. Miyakawa, Cloning and characterization of the elongation factor EF-1 beta homologue of Saccharomyces cerevisiae. EF-1 beta is essential for growth, FEBS Lett 316 (1993) 165-169.
[25] A. Carr-Schmid, L. Valente, V.I. Loik, T. Williams, L.M. Starita, T.G. Kinzy, Mutations in elongation factor 1beta, a guanine nucleotide exchange factor, enhance translational fidelity, Mol Cell Biol 19 (1999) 5257-5266.
[26] H.T. van Damme, R. Amons, R. Karssies, C.J. Timmers, G.M. Janssen, W. Moller, Elongation factor 1 beta of artemia: localization of functional sites and homology to elongation factor 1 delta, Biochim Biophys Acta 1050 (1990) 241-247.
[27] J.M. Perez, J. Kriek, J. Dijk, G.W. Canters, W. Moller, Expression, purification, and spectroscopic studies of the guanine nucleotide exchange domain of human elongation factor, EF-1beta, Protein Expr Purif 13 (1998) 259-267.
[28] K. Kamiie, H. Taira, K. Kobayashi, T. Yamashita, S. Kidou, S. Ejiri, Expression of elongation factor 1 beta' in Escherichia coli and its interaction with elongation factor 1 alpha from silk gland, Biosci Biotechnol Biochem 63 (1999) 666-671.
[29] H. van Damme, R. Amons, G. Janssen, W. Moller, Mapping the functional domains of the eukaryotic elongation factor 1 beta gamma, Eur J Biochem 197 (1991) 505-511.
[30] F. Mansilla, I. Friis, M. Jadidi, K.M. Nielsen, B.F. Clark, C.R. Knudsen, Mapping the human translation elongation factor eEF1H complex using the yeast two-hybrid system, Biochem J 365 (2002) 669-676.
[31] K. Kamiie, T. Yamashita, H. Taira, S. Kidou, S. Ejiri, Interaction between elongation factors 1beta and 1gamma from Bombyx mori silk gland, Biosci Biotechnol Biochem 67 (2003) 1522-1529.
[32] H.A. Krebs, R. Hems, Some reactions of adenosine and inosine phosphates in animal tissues, Biochim Biophys Acta 12 (1953) 172-180.
[33] P. Berg, W.K. Joklik, Transphosphorylation between nucleoside polyphosphates, Nature 172 (1953) 1008-1009.
[34] L. Cervoni, I. Lascu, Y. Xu, P. Gonin, M. Morr, M. Merouani, J. Janin, A. Giartosio, Binding of nucleotides to nucleoside diphosphate kinase: a calorimetric study, Biochemistry 40 (2001) 4583-4589.
[35] M.L. Lacombe, L. Milon, A. Munier, J.G. Mehus, D.O. Lambeth, The human Nm23/nucleoside diphosphate kinases, J Bioenerg Biomembr 32 (2000) 247-258.
[36] E.H. Postel, NM23-NDP kinase, Int J Biochem Cell Biol 30 (1998) 1291-1295.
[37] S. Morera, M. Chiadmi, G. LeBras, I. Lascu, J. Janin, Mechanism of phosphate transfer by nucleoside diphosphate kinase: X-ray structures of the phosphohistidine intermediate of the enzymes from Drosophila and Dictyostelium, Biochemistry 34 (1995) 11062-11070.
[38] H. Heidbuchel, G. Callewaert, J. Vereecke, E. Carmeliet, Membrane-bound nucleoside diphosphate kinase activity in atrial cells of frog, guinea pig, and human, Circ Res 71 (1992) 808-820.
[39] G. Prem veer Reddy, A.B. Pardee, Multienzyme complex for metabolic channeling in mammalian DNA replication, Proc Natl Acad Sci U S A 77 (1980) 3312-3316.
[40] W.E. Jacobus, J.J. Evans, Nucleoside diphosphokinase of rat heart mitochondria. Dual localization in matrix and intermembrane space, J Biol Chem 252 (1977) 4232-4241.
[41] M.H. Bosnar, J. De Gunzburg, R. Bago, L. Brecevic, I. Weber, J. Pavelic, Subcellular localization of A and B Nm23/NDPK subunits, Exp Cell Res 298 (2004) 275-284.
[42] A.M. Rosengard, H.C. Krutzsch, A. Shearn, J.R. Biggs, E. Barker, I.M. Margulies, C.R. King, L.A. Liotta, P.S. Steeg, Reduced Nm23/Awd protein in tumour metastasis and aberrant Drosophila development, Nature 342 (1989) 177-180.
[43] D.O. Lambeth, J.G. Mehus, M.A. Ivey, B.I. Milavetz, Characterization and cloning of a nucleoside-diphosphate kinase targeted to matrix of mitochondria in pigeon, J Biol Chem 272 (1997) 24604-24611.
[44] E.H. Postel, Multiple biochemical activities of NM23/NDP kinase in gene regulation, J Bioenerg Biomembr 35 (2003) 31-40.
[45] T. Kalebic, J.E. Williams, J.E. Talmadge, C.S. Kao-Shan, B. Kravitz, K. Locklear, G.P. Siegal, L.A. Liotta, M.E. Sobel, P.S. Steeg, A novel method for selection of invasive tumor cells: derivation and characterization of highly metastatic K1735 melanoma cell lines based on in vitro and in vivo invasive capacity, Clin Exp Metastasis 6 (1988) 301-318.
[46] P.S. Steeg, G. Bevilacqua, R. Pozzatti, L.A. Liotta, M.E. Sobel, Altered expression of NM23, a gene associated with low tumor metastatic potential, during adenovirus 2 Ela inhibition of experimental metastasis, Cancer Res 48 (1988) 6550-6554.
[47] P.S. Steeg, G. Bevilacqua, L. Kopper, U.P. Thorgeirsson, J.E. Talmadge, L.A. Liotta, M.E. Sobel, Evidence for a novel gene associated with low tumor metastatic potential, J Natl Cancer Inst 80 (1988) 200-204.
[48] M. Salerno, D. Palmieri, A. Bouadis, D. Halverson, P.S. Steeg, Nm23-H1 metastasis suppressor expression level influences the binding properties, stability, and function of the kinase suppressor of Ras1 (KSR1) Erk scaffold in breast carcinoma cells, Mol Cell Biol 25 (2005) 1379-1388.
[49] T. Ouatas, S.E. Clare, M.T. Hartsough, A. De La Rosa, P.S. Steeg, MMTV-associated transcription factor binding sites increase nm23-H1 metastasis suppressor gene expression in human breast carcinoma cell lines, Clin Exp Metastasis 19 (2002) 35-42.
[50] M.T. Hartsough, S.E. Clare, M. Mair, A.G. Elkahloun, D. Sgroi, C.K. Osborne, G. Clark, P.S. Steeg, Elevation of breast carcinoma Nm23-H1 metastasis suppressor gene expression and reduced motility by DNA methylation inhibition, Cancer Res 61 (2001) 2320-2327.
[51] Y. Fujimoto, T. Ohtake, H. Nishimori, K. Ikuta, M. Ohhira, M. Ono, Y. Kohgo, Reduced expression and rare genomic alteration of nm23-H1 in human hepatocellular carcinoma and hepatoma cell lines, J Gastroenterol 33 (1998) 368-375.
[52] X.P. Jiang, Z.Y. Tang, K.D. Liu, X.D. Zhou, Z.Y. Lin, M.Y. Ling, X.F. Wu, mRNA levels of nm23 in murine ascites hepatoma (H22) clones with different lymphatic metastatic potential, J Cancer Res Clin Oncol 122 (1996) 55-58.
[53] B.G. Hwang, I.C. Park, M.J. Park, N.M. Moon, D.W. Choi, W.S. Hong, S.H. Lee, S.I. Hong, Role of the nm23-H1 gene in the metastasis of gastric cancer, J Korean Med Sci 12 (1997) 514-518.
[54] T. Okubo, S. Inokuma, S. Takeda, S. Itoyama, K. Kinoshita, I. Sugawara, Expression of nm23-H1 gene product in thyroid, ovary, and breast cancers, Cell Biophys 26 (1995) 205-213.
[55] M. Mandai, I. Konishi, M. Koshiyama, T. Mori, S. Arao, H. Tashiro, H. Okamura, H. Nomura, H. Hiai, M. Fukumoto, Expression of metastasis-related nm23-H1 and nm23-H2 genes in ovarian carcinomas: correlation with clinicopathology, EGFR, c-erbB-2, and c-erbB-3 genes, and sex steroid receptor expression, Cancer Res 54 (1994) 1825-1830.
[56] H. Brustmann, S. Naude, Expression of nm23 in normal, hyperplastic and neoplastic endometrial tissues, Pathol Res Pract 195 (1999) 829-834.
[57] P. Bertheau, A. De La Rosa, P.S. Steeg, M.J. Merino, NM23 protein in neoplastic and nonneoplastic thyroid tissues, Am J Pathol 145 (1994) 26-32.
[58] H. Baba, T. Urano, K. Okada, K. Furukawa, E. Nakayama, H. Tanaka, K. Iwasaki, H. Shiku, Two isotypes of murine nm23/nucleoside diphosphate kinase, nm23-M1 and nm23-M2, are involved in metastatic suppression of a murine melanoma line, Cancer Res 55 (1995) 1977-1981.
[59] W. Luo, K. Matsuo, Y. Nagayama, T. Urano, K. Furukawa, A. Takeshita, T. Nakayama, N. Yokoyama, S. Yamashita, M. Izumi, et al., Immunohistochemical analysis of expression of nm23-H1/nucleoside diphosphate kinase in human thyroid carcinomas: lack of correlation between its expression and lymph node metastasis, Thyroid 3 (1993) 105-109.
[60] A. Viel, L. Dall'Agnese, V. Canzonieri, F. Sopracordevole, E. Capozzi, A. Carbone, M.C. Visentin, M. Boiocchi, Suppressive role of the metastasis-related nm23-H1 gene in human ovarian carcinomas: association of high messenger RNA expression with lack of lymph node metastasis, Cancer Res 55 (1995) 2645-2650.
[61] J. Okabe-Kado, T. Kasukabe, Y. Honma, R. Hanada, A. Nakagawara, Y. Kaneko, Clinical significance of serum NM23-H1 protein in neuroblastoma, Cancer Sci 96 (2005) 653-660.
[62] M.A. Almgren, K.C. Henriksson, J. Fujimoto, C.L. Chang, Nucleoside diphosphate kinase A/nm23-H1 promotes metastasis of NB69-derived human neuroblastoma, Mol Cancer Res 2 (2004) 387-394.
[63] S. Nakamori, O. Ishikawa, H. Ohigashi, S. Imaoka, Y. Sasaki, M. Kameyama, T. Kabuto, H. Furukawa, T. Iwanakga, N. Kimura, Clinicopathological features and prognostic significance of nucleoside diphosphate kinase/nm23 gene product in human pancreatic exocrine neoplasms, Int J Pancreatol 14 (1993) 125-133.
[64] S. Nakamori, O. Ishikawa, H. Ohhigashi, M. Kameyama, H. Furukawa, Y. Sasaki, H. Inaji, M. Higashiyama, S. Imaoka, T. Iwanaga, et al., Expression of nucleoside diphosphate kinase/nm23 gene product in human pancreatic cancer: an association with lymph node metastasis and tumor invasion, Clin Exp Metastasis 11 (1993) 151-158.
[65] J. Okabe-Kado, Serum nm23-H1 protein as a prognostic factor in hematological malignancies, Leuk Lymphoma 43 (2002) 859-867.
[66] S. Gazzeri, E. Brambilla, A. Negoescu, D. Thoraval, M. Veron, D. Moro, C. Brambilla, Overexpression of nucleoside diphosphate/kinase A/nm23-H1 protein in human lung tumors: association with tumor progression in squamous carcinoma, Lab Invest 74 (1996) 158-167.
[67] N. Niitsu, H. Nakamine, M. Okamoto, J.I. Tamaru, M. Hirano, A clinicopathological study of nm23-H1 expression in classical Hodgkin's lymphoma, Ann Oncol 19 (2008) 1941-1946.
[68] N. Niitsu, Y. Honma, K. Iijima, T. Takagi, M. Higashihara, U. Sawada, J. Okabe-Kado, Clinical significance of nm23-H1 proteins expressed on cell surface in non-Hodgkin's lymphoma, Leukemia 17 (2003) 196-202.
[69] N. Niitsu, M. Okamoto, J. Okabe-Kado, T. Takagi, T. Yoshida, S. Aoki, Y. Honma, M. Hirano, Serum nm23-H1 protein as a prognostic factor for indolent non-Hodgkin's lymphoma, Leukemia 15 (2001) 832-839.
[70] V.S. Unal, A. Ayhan, M.A. Tokgozoglu, Proliferating cell nuclear antigen index and nm23 expression in osteosarcoma in relation to disease- free survival and tumor grade, Saudi Med J 26 (2005) 1475-1477.
[71] W. Liao, K.Y. Chiu, S. Han, F. Li, J. Qiu, S.P. Chow, Preliminary observation on the correlation between nm23 expression and Ki-67 antigen with early metastasis of human osteosarcoma, Chin Med J (Engl) 111 (1998) 813-817.
[72] W.M. Liao, K.Y. Chiu, F.B. Li, J.S. Qiu, S.Y. Han, S.P. Chow, Expression of nm23 protein in human osteosarcoma in relationship with early metastasis, Orthopedics 23 (2000) 1175-1178.
[73] Y. Oda, T. Naka, M. Takeshita, Y. Iwamoto, M. Tsuneyoshi, Comparison of histological changes and changes in nm23 and c-MET expression between primary and metastatic sites in osteosarcoma: a clinicopathologic and immunohistochemical study, Hum Pathol 31 (2000) 709-716.
[74] M. Salerno, T. Ouatas, D. Palmieri, P.S. Steeg, Inhibition of signal transduction by the nm23 metastasis suppressor: possible mechanisms, Clin Exp Metastasis 20 (2003) 3-10.
[75] D. Lombardi, A.M. Mileo, Protein interactions provide new insight into Nm23/nucleoside diphosphate kinase functions, J Bioenerg Biomembr 35 (2003) 67-71.
[76] H.N. Fournier, C. Albiges-Rizo, M.R. Block, New insights into Nm23 control of cell adhesion and migration, J Bioenerg Biomembr 35 (2003) 81-87.
[77] D. Lombardi, M.L. Lacombe, M.G. Paggi, nm23: unraveling its biological function in cell differentiation, J Cell Physiol 182 (2000) 144-149.
[78] R.P. Agarwal, B. Robison, R.E. Parks, Jr., Nucleoside diphosphokinase from human erythrocytes, Methods Enzymol 51 (1978) 376-386.
[79] X. Sastre-Garau, M.L. Lacombe, M. Jouve, M. Veron, H. Magdelenat, Nucleoside diphosphate kinase/NM23 expression in breast cancer: lack of correlation with lymph-node metastasis, Int J Cancer 50 (1992) 533-538.
[80] A. Leone, U. Flatow, K. VanHoutte, P.S. Steeg, Transfection of human nm23-H1 into the human MDA-MB-435 breast carcinoma cell line: effects on tumor metastatic potential, colonization and enzymatic activity, Oncogene 8 (1993) 2325-2333.
[81] H.Y. Lee, H. Lee, Inhibitory activity of nm23-H1 on invasion and colonization of human prostate carcinoma cells is not mediated by its NDP kinase activity, Cancer Lett 145 (1999) 93-99.
[82] P.D. Wagner, N.D. Vu, Phosphorylation of ATP-citrate lyase by nucleoside diphosphate kinase, J Biol Chem 270 (1995) 21758-21764.
[83] M.T. Hartsough, D.K. Morrison, M. Salerno, D. Palmieri, T. Ouatas, M. Mair, J. Patrick, P.S. Steeg, Nm23-H1 metastasis suppressor phosphorylation of kinase suppressor of Ras via a histidine protein kinase pathway, J Biol Chem 277 (2002) 32389-32399.
[84] D. Ma, J.R. McCorkle, D.M. Kaetzel, The metastasis suppressor NM23-H1 possesses 3'-5' exonuclease activity, J Biol Chem 279 (2004) 18073-18084.
[85] I.V. Shevelev, U. Hubscher, The 3' 5' exonucleases, Nat Rev Mol Cell Biol 3 (2002) 364-376.
[86] C.L. Chang, J.R. Strahler, D.H. Thoraval, M.G. Qian, R. Hinderer, S.M. Hanash, A nucleoside diphosphate kinase A (nm23-H1) serine 120-->glycine substitution in advanced stage neuroblastoma affects enzyme stability and alters protein-protein interaction, Oncogene 12 (1996) 659-667.
[87] C.L. Chang, X.X. Zhu, D.H. Thoraval, D. Ungar, J. Rawwas, N. Hora, J.R. Strahler, S.M. Hanash, E. Radany, Nm23-H1 mutation in neuroblastoma, Nature 370 (1994) 335-336.
[88] J.M. Freije, P. Blay, N.J. MacDonald, R.E. Manrow, P.S. Steeg, Site-directed mutation of Nm23-H1. Mutations lacking motility suppressive capacity upon transfection are deficient in histidine-dependent protein phosphotransferase pathways in vitro, J Biol Chem 272 (1997) 5525-5532.
[89] C.V. Hamby, R. Abbi, N. Prasad, C. Stauffer, J. Thomson, C.E. Mendola, V. Sidorov, J.M. Backer, Expression of a catalytically inactive H118Y mutant of nm23-H2 suppresses the metastatic potential of line IV Cl 1 human melanoma cells, Int J Cancer 88 (2000) 547-553.
[90] Q. Zhang, J.R. McCorkle, M. Novak, M. Yang, D.M. Kaetzel, Metastasis suppressor function of NM23-H1 requires its 3';-5' exonuclease activity, Int J Cancer (2011).
[91] T.E. Graber, M. Holcik, Cap-independent regulation of gene expression in apoptosis, Mol Biosyst 3 (2007) 825-834.
[92] W.V. Gilbert, K. Zhou, T.K. Butler, J.A. Doudna, Cap-independent translation is required for starvation-induced differentiation in yeast, Science 317 (2007) 1224-1227.
[93] R.M. Young, S.J. Wang, J.D. Gordan, X. Ji, S.A. Liebhaber, M.C. Simon, Hypoxia-mediated selective mRNA translation by an internal ribosome entry site-independent mechanism, J Biol Chem 283 (2008) 16309-16319.
[94] I.A. Valouev, G.V. Fominov, E.E. Sokolova, V.N. Smirnov, M.D. Ter-Avanesyan, Elongation factor eEF1B modulates functions of the release factors eRF1 and eRF3 and the efficiency of translation termination in yeast, BMC Mol Biol 10 (2009) 60.
[95] F. Le Sourd, S. Boulben, R. Le Bouffant, P. Cormier, J. Morales, R. Belle, O. Mulner-Lorillon, eEF1B: At the dawn of the 21st century, Biochim Biophys Acta 1759 (2006) 13-31.
[96] A.A. Komar, M. Hatzoglou, Internal ribosome entry sites in cellular mRNAs: mystery of their existence, J Biol Chem 280 (2005) 23425-23428.
校內:2016-02-08公開