簡易檢索 / 詳目顯示

研究生: 魏任宣
Wei, Renn-Shiuan
論文名稱: 癌症轉移相關的NDPK-A藉由eEF1Bα參與在轉譯作用中
Metastasis-associated NDPK-A is involved in translation via eEF1Bα
指導教授: 張玲
Chang, Christina Lin
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 112
中文關鍵詞: 腫瘤轉移NM23-H1NDPK-A核苷二磷酸激酶 AeEF1BαeEF1β轉譯延長
外文關鍵詞: Metastasis, NM23-H1, NDPK-A, Nucleoside diphosphate kinase A, eEF1Bα, eEF1β, Eukaryotic translation elongation factor 1
相關次數: 點閱:147下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腫瘤轉移是導致患者病情惡化並造成死亡的主要因素,但目前對於腫瘤轉移的分子機制尚未完全瞭解。一種核苷二磷酸激酶 A (NDPK-A) 被發現與腫瘤轉移有關,此蛋白質由 NM23-H1基因負責製造。本實驗室專注於與NDPK-A 相互作用的蛋白質,想藉此瞭解 NDPK-A 在腫瘤轉移中所扮演的角色;在前人酵母菌雙雜合系統和免疫沉澱的實驗中,發現一轉譯延長因子 (eEF1Bα) 會與 NDPK-A 交互作用。我運用聚組胺酸沉澱蛋白質的方法,証實了此二種蛋白質的交互作用。另外在冷光酶酵素活性實驗中,我觀察到在神經母細胞瘤中,正常的NDPK-A會提高50%的典型轉譯效能,但失去磷酸轉移酶的活性的突變株則無此現象;更重要的是,一種與轉移相關的突變 NDPK-A 會促使典型的轉譯效能增加兩倍,且內部核醣體進入位的轉譯效能增加一倍半。另外,此種突變的 NDPK-A也會增加蛋白質的新合成,並在缺乏養分的情況下會維持轉譯的功能。總而言之,此種與轉移相關的突變 NDPK-A更能提升轉譯效能,且磷酸轉移酶的活性似乎是 NDPK-A 增加轉譯效能的必要的因素。我的實驗結果提出一種新的概念:顯示出腫瘤轉移與轉譯調控之間的聯繫。

    Metastasis is a major cause of death in cancer patients, however, its molecular mechanism remain largely unclear. The nm23-H1 gene encoding nucleotide diphosphate kinase A (NDPK-A) was first discovered as a metastasis-associated gene. Our lab further identified the S120G mutation in patients with advanced neuroblastoma. To understand the molecular mechanism of NDPK-A in tumor metastasis, we have found that NDPK-A interacted with a translation elongation factor, namely eEF1Bα, by yeast two-hybrid system and immunoprecipitation. In this thesis, a nickel pull-down assay also confirmed such an interaction. In an in-vivo dual-luciferase reporter system, NDPK-A and its S120G mutant (NDPK-AS120G) increased cap-dependent translation by 1.5 and 2 folds respectively. Moreover, NDPK-AS120G but not wild type NDPK-A enhanced IRES-dependent translation by 1.5 folds. However, an enzymatically inactive NDPK-AH118F did not show detectable effect on translation efficiency. NDPK-AS120G also increased new protein synthesis, while retaining translation during early period of serum starvation. Overall, NDPK-AS120G was more effective than its wild type in enhancing translation, and the phosphotransferase activity was required for NDPK-A mediated translation. Our findings suggest a novel link between tumor metastasis and translation control.

    Table of Contents 1. Introduction 1.1. Translation 1 1.2. Translational Elongation Factor and Tumorigenesis 2 1.3. NM23/NDPK 5 1.4. NDPK-A and Metastasis 6 1.5. Hypothesis 9 2. Materials and methods 2.1. Cell line & Cell culture 10 2.2. Transfection 10 2.3. The nickel pull-down assay 12 2.4. Western blot analysis 12 2.5. Dual-luciferase assay 13 2.6. β-Galactosidase (β-GAL) assay 13 2.7. In vivo [35S] labeling for cells 14 2.8. Two-dimensional electrophoresis 14 2.9. Stable clones generation 15 3. Results 3.1. Construction 16 3.1.1 Maps of cloning vector and plasmids expressing NDPK-A, NDPK-AS120G & NDPK-AH118F variants 16 3.1.2 Expression of deletion mutants of eEF1Bα 16 3.2. Interaction of NDPK-A and eEF1Bα in the nickel pull-down assay 17 3.2.1. Interaction of exogenous eEF1Bα and exogenous NDPK-A 17 3.2.2. Interaction of eEF1Bα and NDPK-A variants in the nickel pull-down assay 17 3.2.3. Interaction of wild type NDPK-A and eEF1Bα variants in the nickel pull-down assay 18 3.3. Increase of translation efficiency by metastasis-associated NDPK-A 19 3.3.1 H118 is required for NDPK-A increased translation efficiency in NB69 cells 19 3.3.2 NDPK-AS120G increased both cap-dependent and IRES-dependent translation efficiency in NB69 cells 19 3.3.3 NDPK-AS120G increased protein synthesis in NB69 cells 20 3.3.4 NDPKAS120G retained the translation efficiency during early serum starvation in NB69 cells 20 3.3.5 NDPKAS120G enhanced the increase of cap-depend and IRES- dependent translation by serum induction in NB69 cells 21 3.4. Regulation of translation efficiency by eEF1Bα 21 3.4.1 Overexpression of eEF1Bα decreased translation efficiency in NB69 cells 21 3.4.2 Knock-down of eEF1Bα increased translation efficiency in NB69 cells 22 4. Discussion 5. References 6. Figures Figure 1. Maps of cloning vector and plasmids expressing NDPK-A, NDPK-AS120G & NDPK-AH118F 36 Figure 2. Interaction of eEF1Bα and NDPK-A variants in the nickel pull-down assay 38 Figure 3. Interaction of NDPK-A variants and eEF1Bα in the nickel pull-down assay 40 Figure 4. Interaction of wild type NDPK-A and eEF1Bα variants in the nickel pull-down assay 42 Figure 5. H118 is required for NDPK-A increased translation efficiency in NB69 cells 44 Figure 6. NDPK-AS120G increased protein synthesis in NB69 cells 46 Figure 7. NDPKAS120G retained the translation efficiency during early serum starvation in NB69 cells 48 Figure 8. NDPKAS120G enhanced the increase of cap-depend and IRES-dependent translation by serum induction in NB69 cells 50 Figure 9. Overexpression of eEF1Bα decreased translation efficiency in NB69 cells 52 Figure 10. Knock-down of eEF1Bα increased translation efficiency in NB69 cells 54 Figure 11. Knock-down of eEF1Bα increased translation efficiency in HeLa cells 56 7. Abbreviations 8. Appendix Appendix 1. Multipule functions of EF1A [5] 58 Appendix 2. A new unifying nomenclature of eEF1 [95] 58 Appendix 3. High similarity of the guanine exchange domain between eEF1Bα and eEF1Bδ 59 Appendix 4. “Phosphotransferase activity” and “Translation elongation” 59 Appendix 5. Protein-protein interaction in eEF1 complex [30, 95] 60 Appendix 6. Multipule functions of NM23-H1 [90] 60 Appendix 7. IRESs play critical roles in cells [96] 61 Appendix 8. A sketch of two possible interactions between eEF1Bα and NDPK-A 62 Appendix 9. Information of plasmids 63 9.1. pEF6-V5-His-Topo 63 9.2. pV5H6-NDPKA_WT 66 9.3. pV5H6-NDPKA-S120G 70 9.4. pV5H6-NDPKA-H118F 74 9.5. pV5H6-eEF1Bα-WT 78 9.6. pV5H6-eEF1Bα-N 81 9.7. pV5H6-eEF1Bα-C 84 9.8. pIRES-XbaI Plasmid 87 9.9. pIRES-BFP Plasmid 90 9.10. pIRES-R/GFP_TAA-Hyg 93 9.11. pIRES-R/GFP_TAG-Hyg 97 9.12. pDsRed1-N1-MYC (TAA) 101 9.13. pDsRed1-N1-MYC (TAG) 104 9.14. pDsRed1-N1-MYC (TGA) 107 9.15. pRMF Plasmid 110

    [1] P. Cottrelle, M. Cool, P. Thuriaux, V.L. Price, D. Thiele, J.M. Buhler, P. Fromageot, Either one of the two yeast EF-1 alpha genes is required for cell viability, Curr Genet 9 (1985) 693-697.
    [2] P. Silar, M. Rossignol, V. Haedens, Z. Derhy, A. Mazabraud, Deletion and dosage modulation of the eEF1A gene in Podospora anserina: effect on the life cycle, Biogerontology 1 (2000) 47-54.
    [3] D.M. Chambers, J. Peters, C.M. Abbott, The lethal mutation of the mouse wasted (wst) is a deletion that abolishes expression of a tissue-specific isoform of translation elongation factor 1alpha, encoded by the Eef1a2 gene, Proc Natl Acad Sci U S A 95 (1998) 4463-4468.
    [4] B.S. Negrutskii, A.V. El'skaya, Eukaryotic translation elongation factor 1 alpha: structure, expression, functions, and possible role in aminoacyl-tRNA channeling, Prog Nucleic Acid Res Mol Biol 60 (1998) 47-78.
    [5] M.K. Mateyak, T.G. Kinzy, eEF1A: Thinking Outside the Ribosome, J Biol Chem 285 (2010) 21209-21213.
    [6] G.C. Webster, S.L. Webster, Decline in synthesis of elongation factor one (EF-1) precedes the decreased synthesis of total protein in aging Drosophila melanogaster, Mech Ageing Dev 22 (1983) 121-128.
    [7] S.C. Stearns, M. Kaiser, The effects of enhanced expression of elongation factor EF-1 alpha on lifespan in Drosophila melanogaster. IV. A summary of three experiments, Genetica 91 (1993) 167-182.
    [8] S.C. Stearns, M. Kaiser, E. Hillesheim, Effects on fitness components of enhanced expression of elongation factor EF-1alpha in Drosophila melanogaster. I. The contrasting approaches of molecular and population biologists, Am Nat 142 (1993) 961-993.
    [9] N. Shikama, R. Ackermann, C. Brack, Protein synthesis elongation factor EF-1 alpha expression and longevity in Drosophila melanogaster, Proc Natl Acad Sci U S A 91 (1994) 4199-4203.
    [10] N. Shikama, C. Brack, Changes in the expression of genes involved in protein synthesis during Drosophila aging, Gerontology 42 (1996) 123-136.
    [11] L.B. Ruest, R. Marcotte, E. Wang, Peptide elongation factor eEF1A-2/S1 expression in cultured differentiated myotubes and its protective effect against caspase-3-mediated apoptosis, J Biol Chem 277 (2002) 5418-5425.
    [12] M. Tatsuka, H. Mitsui, M. Wada, A. Nagata, H. Nojima, H. Okayama, Elongation factor-1 alpha gene determines susceptibility to transformation, Nature 359 (1992) 333-336.
    [13] R.V. Gopalkrishnan, Z.Z. Su, N.I. Goldstein, P.B. Fisher, Translational infidelity and human cancer: role of the PTI-1 oncogene, Int J Biochem Cell Biol 31 (1999) 151-162.
    [14] Z. Su, N.I. Goldstein, P.B. Fisher, Antisense inhibition of the PTI-1 oncogene reverses cancer phenotypes, Proc Natl Acad Sci U S A 95 (1998) 1764-1769.
    [15] B.T. Edmonds, J. Wyckoff, Y.G. Yeung, Y. Wang, E.R. Stanley, J. Jones, J. Segall, J. Condeelis, Elongation factor-1 alpha is an overexpressed actin binding protein in metastatic rat mammary adenocarcinoma, J Cell Sci 109 ( Pt 11) (1996) 2705-2714.
    [16] G.M. Janssen, W. Moller, Kinetic studies on the role of elongation factors 1 beta and 1 gamma in protein synthesis, J Biol Chem 263 (1988) 1773-1778.
    [17] O. Minella, O. Mulner-Lorillon, G. Bec, P. Cormier, R. Belle, Multiple phosphorylation sites and quaternary organization of guanine-nucleotide exchange complex of elongation factor-1 (EF-1betagammadelta/ValRS) control the various functions of EF-1alpha, Biosci Rep 18 (1998) 119-127.
    [18] G.M. Janssen, H.T. van Damme, J. Kriek, R. Amons, W. Moller, The subunit structure of elongation factor 1 from Artemia. Why two alpha-chains in this complex?, J Biol Chem 269 (1994) 31410-31417.
    [19] M.D. Carvalho, J.F. Carvalho, W.C. Merrick, Biological characterization of various forms of elongation factor 1 from rabbit reticulocytes, Arch Biochem Biophys 234 (1984) 603-611.
    [20] J.F. Carvalho, M.D. Carvalho, W.C. Merrick, Purification of various forms of elongation factor 1 from rabbit reticulocytes, Arch Biochem Biophys 234 (1984) 591-602.
    [21] L.I. Slobin, W. Moller, Purification and properties of an elongation factor functionally analogous to bacterial elongation factor Ts from embryos of Artemia salina, Eur J Biochem 84 (1978) 69-77.
    [22] K. Murakami, S. Ejiri, T. Katsumata, Elongation factor 1 from the silk gland of silkworm. Effect of EF-1b on EF-1a- and ribosome-dependent GTPase activity, FEBS Lett 92 (1978) 255-257.
    [23] S. Ejiri, N. Ebata, R. Kawamura, T. Katsumata, Occurrence of four subunits in high molecular weight forms of polypeptide chain elongation factor 1 from wheat embryo, J Biochem 94 (1983) 319-322.
    [24] K. Hiraga, K. Suzuki, E. Tsuchiya, T. Miyakawa, Cloning and characterization of the elongation factor EF-1 beta homologue of Saccharomyces cerevisiae. EF-1 beta is essential for growth, FEBS Lett 316 (1993) 165-169.
    [25] A. Carr-Schmid, L. Valente, V.I. Loik, T. Williams, L.M. Starita, T.G. Kinzy, Mutations in elongation factor 1beta, a guanine nucleotide exchange factor, enhance translational fidelity, Mol Cell Biol 19 (1999) 5257-5266.
    [26] H.T. van Damme, R. Amons, R. Karssies, C.J. Timmers, G.M. Janssen, W. Moller, Elongation factor 1 beta of artemia: localization of functional sites and homology to elongation factor 1 delta, Biochim Biophys Acta 1050 (1990) 241-247.
    [27] J.M. Perez, J. Kriek, J. Dijk, G.W. Canters, W. Moller, Expression, purification, and spectroscopic studies of the guanine nucleotide exchange domain of human elongation factor, EF-1beta, Protein Expr Purif 13 (1998) 259-267.
    [28] K. Kamiie, H. Taira, K. Kobayashi, T. Yamashita, S. Kidou, S. Ejiri, Expression of elongation factor 1 beta' in Escherichia coli and its interaction with elongation factor 1 alpha from silk gland, Biosci Biotechnol Biochem 63 (1999) 666-671.
    [29] H. van Damme, R. Amons, G. Janssen, W. Moller, Mapping the functional domains of the eukaryotic elongation factor 1 beta gamma, Eur J Biochem 197 (1991) 505-511.
    [30] F. Mansilla, I. Friis, M. Jadidi, K.M. Nielsen, B.F. Clark, C.R. Knudsen, Mapping the human translation elongation factor eEF1H complex using the yeast two-hybrid system, Biochem J 365 (2002) 669-676.
    [31] K. Kamiie, T. Yamashita, H. Taira, S. Kidou, S. Ejiri, Interaction between elongation factors 1beta and 1gamma from Bombyx mori silk gland, Biosci Biotechnol Biochem 67 (2003) 1522-1529.
    [32] H.A. Krebs, R. Hems, Some reactions of adenosine and inosine phosphates in animal tissues, Biochim Biophys Acta 12 (1953) 172-180.
    [33] P. Berg, W.K. Joklik, Transphosphorylation between nucleoside polyphosphates, Nature 172 (1953) 1008-1009.
    [34] L. Cervoni, I. Lascu, Y. Xu, P. Gonin, M. Morr, M. Merouani, J. Janin, A. Giartosio, Binding of nucleotides to nucleoside diphosphate kinase: a calorimetric study, Biochemistry 40 (2001) 4583-4589.
    [35] M.L. Lacombe, L. Milon, A. Munier, J.G. Mehus, D.O. Lambeth, The human Nm23/nucleoside diphosphate kinases, J Bioenerg Biomembr 32 (2000) 247-258.
    [36] E.H. Postel, NM23-NDP kinase, Int J Biochem Cell Biol 30 (1998) 1291-1295.
    [37] S. Morera, M. Chiadmi, G. LeBras, I. Lascu, J. Janin, Mechanism of phosphate transfer by nucleoside diphosphate kinase: X-ray structures of the phosphohistidine intermediate of the enzymes from Drosophila and Dictyostelium, Biochemistry 34 (1995) 11062-11070.
    [38] H. Heidbuchel, G. Callewaert, J. Vereecke, E. Carmeliet, Membrane-bound nucleoside diphosphate kinase activity in atrial cells of frog, guinea pig, and human, Circ Res 71 (1992) 808-820.
    [39] G. Prem veer Reddy, A.B. Pardee, Multienzyme complex for metabolic channeling in mammalian DNA replication, Proc Natl Acad Sci U S A 77 (1980) 3312-3316.
    [40] W.E. Jacobus, J.J. Evans, Nucleoside diphosphokinase of rat heart mitochondria. Dual localization in matrix and intermembrane space, J Biol Chem 252 (1977) 4232-4241.
    [41] M.H. Bosnar, J. De Gunzburg, R. Bago, L. Brecevic, I. Weber, J. Pavelic, Subcellular localization of A and B Nm23/NDPK subunits, Exp Cell Res 298 (2004) 275-284.
    [42] A.M. Rosengard, H.C. Krutzsch, A. Shearn, J.R. Biggs, E. Barker, I.M. Margulies, C.R. King, L.A. Liotta, P.S. Steeg, Reduced Nm23/Awd protein in tumour metastasis and aberrant Drosophila development, Nature 342 (1989) 177-180.
    [43] D.O. Lambeth, J.G. Mehus, M.A. Ivey, B.I. Milavetz, Characterization and cloning of a nucleoside-diphosphate kinase targeted to matrix of mitochondria in pigeon, J Biol Chem 272 (1997) 24604-24611.
    [44] E.H. Postel, Multiple biochemical activities of NM23/NDP kinase in gene regulation, J Bioenerg Biomembr 35 (2003) 31-40.
    [45] T. Kalebic, J.E. Williams, J.E. Talmadge, C.S. Kao-Shan, B. Kravitz, K. Locklear, G.P. Siegal, L.A. Liotta, M.E. Sobel, P.S. Steeg, A novel method for selection of invasive tumor cells: derivation and characterization of highly metastatic K1735 melanoma cell lines based on in vitro and in vivo invasive capacity, Clin Exp Metastasis 6 (1988) 301-318.
    [46] P.S. Steeg, G. Bevilacqua, R. Pozzatti, L.A. Liotta, M.E. Sobel, Altered expression of NM23, a gene associated with low tumor metastatic potential, during adenovirus 2 Ela inhibition of experimental metastasis, Cancer Res 48 (1988) 6550-6554.
    [47] P.S. Steeg, G. Bevilacqua, L. Kopper, U.P. Thorgeirsson, J.E. Talmadge, L.A. Liotta, M.E. Sobel, Evidence for a novel gene associated with low tumor metastatic potential, J Natl Cancer Inst 80 (1988) 200-204.
    [48] M. Salerno, D. Palmieri, A. Bouadis, D. Halverson, P.S. Steeg, Nm23-H1 metastasis suppressor expression level influences the binding properties, stability, and function of the kinase suppressor of Ras1 (KSR1) Erk scaffold in breast carcinoma cells, Mol Cell Biol 25 (2005) 1379-1388.
    [49] T. Ouatas, S.E. Clare, M.T. Hartsough, A. De La Rosa, P.S. Steeg, MMTV-associated transcription factor binding sites increase nm23-H1 metastasis suppressor gene expression in human breast carcinoma cell lines, Clin Exp Metastasis 19 (2002) 35-42.
    [50] M.T. Hartsough, S.E. Clare, M. Mair, A.G. Elkahloun, D. Sgroi, C.K. Osborne, G. Clark, P.S. Steeg, Elevation of breast carcinoma Nm23-H1 metastasis suppressor gene expression and reduced motility by DNA methylation inhibition, Cancer Res 61 (2001) 2320-2327.
    [51] Y. Fujimoto, T. Ohtake, H. Nishimori, K. Ikuta, M. Ohhira, M. Ono, Y. Kohgo, Reduced expression and rare genomic alteration of nm23-H1 in human hepatocellular carcinoma and hepatoma cell lines, J Gastroenterol 33 (1998) 368-375.
    [52] X.P. Jiang, Z.Y. Tang, K.D. Liu, X.D. Zhou, Z.Y. Lin, M.Y. Ling, X.F. Wu, mRNA levels of nm23 in murine ascites hepatoma (H22) clones with different lymphatic metastatic potential, J Cancer Res Clin Oncol 122 (1996) 55-58.
    [53] B.G. Hwang, I.C. Park, M.J. Park, N.M. Moon, D.W. Choi, W.S. Hong, S.H. Lee, S.I. Hong, Role of the nm23-H1 gene in the metastasis of gastric cancer, J Korean Med Sci 12 (1997) 514-518.
    [54] T. Okubo, S. Inokuma, S. Takeda, S. Itoyama, K. Kinoshita, I. Sugawara, Expression of nm23-H1 gene product in thyroid, ovary, and breast cancers, Cell Biophys 26 (1995) 205-213.
    [55] M. Mandai, I. Konishi, M. Koshiyama, T. Mori, S. Arao, H. Tashiro, H. Okamura, H. Nomura, H. Hiai, M. Fukumoto, Expression of metastasis-related nm23-H1 and nm23-H2 genes in ovarian carcinomas: correlation with clinicopathology, EGFR, c-erbB-2, and c-erbB-3 genes, and sex steroid receptor expression, Cancer Res 54 (1994) 1825-1830.
    [56] H. Brustmann, S. Naude, Expression of nm23 in normal, hyperplastic and neoplastic endometrial tissues, Pathol Res Pract 195 (1999) 829-834.
    [57] P. Bertheau, A. De La Rosa, P.S. Steeg, M.J. Merino, NM23 protein in neoplastic and nonneoplastic thyroid tissues, Am J Pathol 145 (1994) 26-32.
    [58] H. Baba, T. Urano, K. Okada, K. Furukawa, E. Nakayama, H. Tanaka, K. Iwasaki, H. Shiku, Two isotypes of murine nm23/nucleoside diphosphate kinase, nm23-M1 and nm23-M2, are involved in metastatic suppression of a murine melanoma line, Cancer Res 55 (1995) 1977-1981.
    [59] W. Luo, K. Matsuo, Y. Nagayama, T. Urano, K. Furukawa, A. Takeshita, T. Nakayama, N. Yokoyama, S. Yamashita, M. Izumi, et al., Immunohistochemical analysis of expression of nm23-H1/nucleoside diphosphate kinase in human thyroid carcinomas: lack of correlation between its expression and lymph node metastasis, Thyroid 3 (1993) 105-109.
    [60] A. Viel, L. Dall'Agnese, V. Canzonieri, F. Sopracordevole, E. Capozzi, A. Carbone, M.C. Visentin, M. Boiocchi, Suppressive role of the metastasis-related nm23-H1 gene in human ovarian carcinomas: association of high messenger RNA expression with lack of lymph node metastasis, Cancer Res 55 (1995) 2645-2650.
    [61] J. Okabe-Kado, T. Kasukabe, Y. Honma, R. Hanada, A. Nakagawara, Y. Kaneko, Clinical significance of serum NM23-H1 protein in neuroblastoma, Cancer Sci 96 (2005) 653-660.
    [62] M.A. Almgren, K.C. Henriksson, J. Fujimoto, C.L. Chang, Nucleoside diphosphate kinase A/nm23-H1 promotes metastasis of NB69-derived human neuroblastoma, Mol Cancer Res 2 (2004) 387-394.
    [63] S. Nakamori, O. Ishikawa, H. Ohigashi, S. Imaoka, Y. Sasaki, M. Kameyama, T. Kabuto, H. Furukawa, T. Iwanakga, N. Kimura, Clinicopathological features and prognostic significance of nucleoside diphosphate kinase/nm23 gene product in human pancreatic exocrine neoplasms, Int J Pancreatol 14 (1993) 125-133.
    [64] S. Nakamori, O. Ishikawa, H. Ohhigashi, M. Kameyama, H. Furukawa, Y. Sasaki, H. Inaji, M. Higashiyama, S. Imaoka, T. Iwanaga, et al., Expression of nucleoside diphosphate kinase/nm23 gene product in human pancreatic cancer: an association with lymph node metastasis and tumor invasion, Clin Exp Metastasis 11 (1993) 151-158.
    [65] J. Okabe-Kado, Serum nm23-H1 protein as a prognostic factor in hematological malignancies, Leuk Lymphoma 43 (2002) 859-867.
    [66] S. Gazzeri, E. Brambilla, A. Negoescu, D. Thoraval, M. Veron, D. Moro, C. Brambilla, Overexpression of nucleoside diphosphate/kinase A/nm23-H1 protein in human lung tumors: association with tumor progression in squamous carcinoma, Lab Invest 74 (1996) 158-167.
    [67] N. Niitsu, H. Nakamine, M. Okamoto, J.I. Tamaru, M. Hirano, A clinicopathological study of nm23-H1 expression in classical Hodgkin's lymphoma, Ann Oncol 19 (2008) 1941-1946.
    [68] N. Niitsu, Y. Honma, K. Iijima, T. Takagi, M. Higashihara, U. Sawada, J. Okabe-Kado, Clinical significance of nm23-H1 proteins expressed on cell surface in non-Hodgkin's lymphoma, Leukemia 17 (2003) 196-202.
    [69] N. Niitsu, M. Okamoto, J. Okabe-Kado, T. Takagi, T. Yoshida, S. Aoki, Y. Honma, M. Hirano, Serum nm23-H1 protein as a prognostic factor for indolent non-Hodgkin's lymphoma, Leukemia 15 (2001) 832-839.
    [70] V.S. Unal, A. Ayhan, M.A. Tokgozoglu, Proliferating cell nuclear antigen index and nm23 expression in osteosarcoma in relation to disease- free survival and tumor grade, Saudi Med J 26 (2005) 1475-1477.
    [71] W. Liao, K.Y. Chiu, S. Han, F. Li, J. Qiu, S.P. Chow, Preliminary observation on the correlation between nm23 expression and Ki-67 antigen with early metastasis of human osteosarcoma, Chin Med J (Engl) 111 (1998) 813-817.
    [72] W.M. Liao, K.Y. Chiu, F.B. Li, J.S. Qiu, S.Y. Han, S.P. Chow, Expression of nm23 protein in human osteosarcoma in relationship with early metastasis, Orthopedics 23 (2000) 1175-1178.
    [73] Y. Oda, T. Naka, M. Takeshita, Y. Iwamoto, M. Tsuneyoshi, Comparison of histological changes and changes in nm23 and c-MET expression between primary and metastatic sites in osteosarcoma: a clinicopathologic and immunohistochemical study, Hum Pathol 31 (2000) 709-716.
    [74] M. Salerno, T. Ouatas, D. Palmieri, P.S. Steeg, Inhibition of signal transduction by the nm23 metastasis suppressor: possible mechanisms, Clin Exp Metastasis 20 (2003) 3-10.
    [75] D. Lombardi, A.M. Mileo, Protein interactions provide new insight into Nm23/nucleoside diphosphate kinase functions, J Bioenerg Biomembr 35 (2003) 67-71.
    [76] H.N. Fournier, C. Albiges-Rizo, M.R. Block, New insights into Nm23 control of cell adhesion and migration, J Bioenerg Biomembr 35 (2003) 81-87.
    [77] D. Lombardi, M.L. Lacombe, M.G. Paggi, nm23: unraveling its biological function in cell differentiation, J Cell Physiol 182 (2000) 144-149.
    [78] R.P. Agarwal, B. Robison, R.E. Parks, Jr., Nucleoside diphosphokinase from human erythrocytes, Methods Enzymol 51 (1978) 376-386.
    [79] X. Sastre-Garau, M.L. Lacombe, M. Jouve, M. Veron, H. Magdelenat, Nucleoside diphosphate kinase/NM23 expression in breast cancer: lack of correlation with lymph-node metastasis, Int J Cancer 50 (1992) 533-538.
    [80] A. Leone, U. Flatow, K. VanHoutte, P.S. Steeg, Transfection of human nm23-H1 into the human MDA-MB-435 breast carcinoma cell line: effects on tumor metastatic potential, colonization and enzymatic activity, Oncogene 8 (1993) 2325-2333.
    [81] H.Y. Lee, H. Lee, Inhibitory activity of nm23-H1 on invasion and colonization of human prostate carcinoma cells is not mediated by its NDP kinase activity, Cancer Lett 145 (1999) 93-99.
    [82] P.D. Wagner, N.D. Vu, Phosphorylation of ATP-citrate lyase by nucleoside diphosphate kinase, J Biol Chem 270 (1995) 21758-21764.
    [83] M.T. Hartsough, D.K. Morrison, M. Salerno, D. Palmieri, T. Ouatas, M. Mair, J. Patrick, P.S. Steeg, Nm23-H1 metastasis suppressor phosphorylation of kinase suppressor of Ras via a histidine protein kinase pathway, J Biol Chem 277 (2002) 32389-32399.
    [84] D. Ma, J.R. McCorkle, D.M. Kaetzel, The metastasis suppressor NM23-H1 possesses 3'-5' exonuclease activity, J Biol Chem 279 (2004) 18073-18084.
    [85] I.V. Shevelev, U. Hubscher, The 3' 5' exonucleases, Nat Rev Mol Cell Biol 3 (2002) 364-376.
    [86] C.L. Chang, J.R. Strahler, D.H. Thoraval, M.G. Qian, R. Hinderer, S.M. Hanash, A nucleoside diphosphate kinase A (nm23-H1) serine 120-->glycine substitution in advanced stage neuroblastoma affects enzyme stability and alters protein-protein interaction, Oncogene 12 (1996) 659-667.
    [87] C.L. Chang, X.X. Zhu, D.H. Thoraval, D. Ungar, J. Rawwas, N. Hora, J.R. Strahler, S.M. Hanash, E. Radany, Nm23-H1 mutation in neuroblastoma, Nature 370 (1994) 335-336.
    [88] J.M. Freije, P. Blay, N.J. MacDonald, R.E. Manrow, P.S. Steeg, Site-directed mutation of Nm23-H1. Mutations lacking motility suppressive capacity upon transfection are deficient in histidine-dependent protein phosphotransferase pathways in vitro, J Biol Chem 272 (1997) 5525-5532.
    [89] C.V. Hamby, R. Abbi, N. Prasad, C. Stauffer, J. Thomson, C.E. Mendola, V. Sidorov, J.M. Backer, Expression of a catalytically inactive H118Y mutant of nm23-H2 suppresses the metastatic potential of line IV Cl 1 human melanoma cells, Int J Cancer 88 (2000) 547-553.
    [90] Q. Zhang, J.R. McCorkle, M. Novak, M. Yang, D.M. Kaetzel, Metastasis suppressor function of NM23-H1 requires its 3';-5' exonuclease activity, Int J Cancer (2011).
    [91] T.E. Graber, M. Holcik, Cap-independent regulation of gene expression in apoptosis, Mol Biosyst 3 (2007) 825-834.
    [92] W.V. Gilbert, K. Zhou, T.K. Butler, J.A. Doudna, Cap-independent translation is required for starvation-induced differentiation in yeast, Science 317 (2007) 1224-1227.
    [93] R.M. Young, S.J. Wang, J.D. Gordan, X. Ji, S.A. Liebhaber, M.C. Simon, Hypoxia-mediated selective mRNA translation by an internal ribosome entry site-independent mechanism, J Biol Chem 283 (2008) 16309-16319.
    [94] I.A. Valouev, G.V. Fominov, E.E. Sokolova, V.N. Smirnov, M.D. Ter-Avanesyan, Elongation factor eEF1B modulates functions of the release factors eRF1 and eRF3 and the efficiency of translation termination in yeast, BMC Mol Biol 10 (2009) 60.
    [95] F. Le Sourd, S. Boulben, R. Le Bouffant, P. Cormier, J. Morales, R. Belle, O. Mulner-Lorillon, eEF1B: At the dawn of the 21st century, Biochim Biophys Acta 1759 (2006) 13-31.
    [96] A.A. Komar, M. Hatzoglou, Internal ribosome entry sites in cellular mRNAs: mystery of their existence, J Biol Chem 280 (2005) 23425-23428.

    無法下載圖示 校內:2016-02-08公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE