簡易檢索 / 詳目顯示

研究生: 何姿儀
Ho, Tzu-Yi
論文名稱: 指叉型流道內加裝矩形體對高溫型質子交換膜燃料電池性能之增益研究
Study on effect of cuboid rows installed in interdigitated flow channel on performance enhancement of high-temperature PEM fuel cells
指導教授: 吳鴻文
Wu, Horng-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 108
中文關鍵詞: 高溫型質子交換膜燃料電池指叉型流道矩形肋條田口實驗方法變異數分析阻抗分析主成分分析法
外文關鍵詞: HTPEM fuel cells, interdigitated flow channels, cuboid row, Taguchi experimental method, ANOVA, impedance analysis, PCA
相關次數: 點閱:233下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以實驗及類比方式交互探討於指叉型流道中加裝肋條對高溫型質子交換膜燃料電池性能的影響。模擬分析四種設計流道(Case Ⅰ~ Case IV)的結果顯示,將肋條設置於出口流道 (CHout) 能有益於提升燃料電池性能,其中以Case Ⅰ的排列方式得以獲得最佳的淨輸出功率,相較於原始光滑指叉型流道能提升淨功率7.82%。實驗以田口法L27直交表進行實驗規劃,並以電池溫度、陽極相對濕度、陰極相對濕度、氫氣化學計量比、氧氣化學計量比對燃料電池之輸出功率、壓降與淨功率進行探討與分析。最終得知氧氣化學計量比與電池溫度為影響性能的主因,而Case Ⅰ的最佳淨功率參數組合為A3B3C1D1E3。藉由奈氏圖同時探討Case Ⅰ分別以輸出功率、壓降與淨功率為目標以及原始流道以淨功率為最佳目標的內部阻抗。

    This thesis interactively discusses the effect of setting cuboid rows in the interdigitated flow channel on the performance of high temperature proton exchange membrane fuel cells through experiments and simulations. The results of simulating and analyzing the four design flow channels (Case Ⅰ~ Case IV) can show that setting the cuboid rows in the channel of CHout can be beneficial to improve the performance of the fuel cell. The optimum net electric output power can be obtained with the arrangement of Case I, compared to the original smooth interdigitated flow channel. It can increase net power by 7.82%. Experiment is conducted with the Taguchi method L27 orthogonal array of the Taguchi method, and the output electric power, pressure drop, and net electric power of the fuel cell are discussed with the cell temperature, anode relative humidity, cathode relative humidity, hydrogen stoichiometric ratio, and oxygen stoichiometric ratio. Finally, it is known that the oxygen stoichiometry and fuel cell temperature are the main factors affecting performance, and the optimum net electric power parameter combination for Case I is A3B3C1D1E3. The internal impedance comparisons among the optimal parameters combination of Case I with the output power, that of Case I with pressure drop, that of Case I with net power, and that of the original smooth flow channel with net power are made by the Nyquist plots.

    摘要………………………………………………………… I Abstract……………….. II Acknowledgements III Table of Content IV List of Figure VIII Nomenclature 1 Chapter 1 Introduction 3 1.1 Overview 3 1.2 HTPEM Fuel Cells 4 1.3 Literature review 5 1.4 Research purpose and background 9 Chapter 2 Numerical methods of HTPEMFC 11 2.1 Geometric model 11 2.2 Basic assumptions 12 2.3 Governing equations 12 2.3.1 Continuity equation 12 2.3.2 Momentum equation 13 2.3.3 Energy equation 13 2.3.4 Species transport equation 14 2.3.5 Charge equation 15 2.4 Boundary conditions 16 2.5 Numerical method 17 Chapter 3 Experimental equipment and system components of HTPEM fuel cell 19 3.1 HTPEM Fuel cell test platform 19 3.2 Electronic load 19 3.3 External heating system 20 3.4 High pressure gas vessels and pipeline 20 3.5 Single HTPEM fuel cell 20 3.6 The EIS measurement system 21 Chapter 4 Experimental methods of HTPEMFC 23 4.1 Experiment procedure 23 4.1.1 Analysis information 23 4.1.2 Confirmatory test 25 4.1.3 PEMFC component assembly 26 4.2 Polarization curve 27 4.2.1 Activation loss 27 4.2.2 Ohmic loss 28 4.2.3 Mass transfer loss 29 4.3 Taguchi method 30 4.3.1 Taguchi orthogonal array 31 4.3.2 SN ratio and quality characteristics 32 4.4 Electrochemical impedance spectroscopy(EIS) 34 4.4.1 EIS Analysis of HTPEMFC 35 4.5 Principle components analysis (PCA) 36 4.6 Percentage reduction of quality loss (PRQL) 38 4.7 The effect of different temperatures on inlet relative humidity 40 Chapter 5 Results and discussion 42 5.1 Model validation for original interdigitated flow channel 42 5.2 Chosen the optimum channel by numerical simulation 42 5.2.1 Effects of arrangement for cuboid rows on PEMFC by polarization curve 43 5.2.2 Effects of arrangement for cuboid rows on PEMFC by local current density curve 44 5.2.3 Comparison of electrical power, pressure drop and net power between different channel 45 5.2.4 Distribution of reactant gases and temperature inside the flow field 47 5.3 Experimental and analysis of Taguchi method for the model of CaseⅠ 48 5.3.1 An analysis of variance (ANOVA) analysis for the optimization parameter combination of the SN ratio 49 5.3.2 The Predicted value of optimal parameter for SN ratio under confidence interval 51 5.3.3 Comparison of confirmation experimental and forecast results 51 5.3.4 The optimal factor combinations of multi-objectives 52 5.4 The optimal parameter conditions obtained with different objectives by experiment 52 5.5 Impendence analysis of HTPEMFC 53 5.6 The PCA(optimal condition obtained with principal component analysis) method 55 5.7 Comparison of the optimum results between single and multiple objective for design model of CaseⅠby PRQL 57 Chapter 6 Conclusions and future work 59 References......... 62

    [1] L.J. Fang, The book of 2010 energy technique industry, Bureau of economic, 2010.
    [2] F.C. Lee, New energy, Hsin Wen Ging published corporation, Taipei 2009.
    [3] J. Larminie, A. Dicks, Fuel cell systems explained, John Wiley Inc, New York, pp.1-418, 2000.
    [4] J.J. Huang, Fuel cell, Chun Hua books, Taipei, 2007.
    [5] Y.L. Ma, J. S. Wainright, M. H. Litt, R. F. Savinell, Conductivity of PBI membranes for high-temperature, Journal of Electrochemical Society, vol. 151, iss. 1, pp.A8-A16, 2004.
    [6] A.Z. Weber, J. Newman, Coupled thermal and water management in polymer electrolyte fuel cells, Journal of the Electrochemical Society, vol. 153, pp.2205-2214, 2006.
    [7] B. Frano, PEM fuel cells theory and practice. 2nd ed. Waltham, MA; London: Elsevier/Academic Press; 2013.
    [8] A.R.Maher, A.B. Sadiq, PEM fuel cells: fundamentals, modeling, and applications, Washington: CreateSpace Independent Publishing Platform, 2013.
    [9] Y. Wang, K.S. Chen, J. Mishler, S.C. Cho, X.C.Adroher, A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research, Apply Energy, vol. 88, pp. 981-1007, 2011.
    [10] Y. Wang, K.S. Chen, S.C. Cho, PEM fuel cells: thermal and water management fundamentals, New York: Momentum Press, 2013.
    [11] J.G. Zhang, T. Thampan, R. Datta, Influence of anode flow rate and cathode oxygen pressure on CO poisoning of proton exchange membrane fuel cells, Journal of The Electrochemical Society, vol. 149, iss. 6, pp. A756-A772, 2002.
    [12] Q.F. Lia, Jens O. Jensena, R.F. Savinellb, N.J. Bjerruma, High temperature proton exchange membranes based on polybenzimidazoles for fuel cells, vol. 34, no. 5, pp. 449-477 , 2009.
    [13] J.S. Wainright, J.T. Wang, D.W. Eng, R.F. Savinell, M. Litt, Acid‐doped polybenzimidazoles: A new polymer electrolyte, Journal of Electrochemical Society, vol. 142, iss. 7, pp. L121-L123, 1995.
    [14] J. Lebaek, S.T. Ali, P. Moller, C. Mathiasen, L.P. Nielsen, S.K. Kaer, Quantification of In situ temperature measurements on a PBI-based high temperature PEMFC unit cell, International Journal of Hydrogen Energy, vol. 35, pp.9943-9953, 2010.
    [15] Q.F. Li, J.O. Jensen, R.F. Savinell, N.J. Bjerrum, High temperature proton exchange membranes based on polybenzimidazoles for fuel cells, Progress in Polymer Science, vol. 34, pp.449-477, 2009.
    [16] X. Chao, J. Zou, Z. Sun, F. Wang, Z. Hong, Graphite oxide/functionalized graphene oxide and polybenzimidazole composite membranes for high temperature proton exchange membrane fuel cells, International Journal of Hydrogen Energy, vol. 39, iss. 15, pp. 7931-7939, 2014.
    [17] P. Sun, Z.F. Li, S.W. Wang, X.Y. Yin, Performance enhancement of polybenzimidazole based high temperature proton exchange membranes with multifunctional crosslinker and highly sulfonated polyaniline, Journal of Membrane Science, vol. 549, pp. 660-669, 2018.
    [18] Y.G. Yoon, W.Y. Le, G.G. Park, T.H. Yang, C.S. Kim, Effects of channel and rib widths of flow field plates on the performance of a PEMFC, International Journal of Hydrogen Energy, vol. 30, pp.1363-1366, 2005.
    [19] Q.F. Li, R.H. He, J.O. Jensen, N.J. Bjerrum, Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100oC, Chemistry of Materials, vol. 15, pp.4896-4915,2003.
    [20] Q.F. Li, R.H. He, J.A. Gao, J.O. Jensen, N.J. Bjerrum, The CO poisoning effect in PEMFCs operational at temperatures up to 200 degrees C, Journal of the Electrochemical Society, vol.12, pp.1599-1605, 2003.
    [21] M. Amirinejad, S. Rowshanzamir, M. H. Eikani, Effects of operating parameters on performance of a proton exchange membrane fuel cell, Journal of Power Sources, vol.161, pp.872-875, 2006.
    [22] A. Hermann, T. Chaudhuri, P.Spagnol, Bipolar plates for PEM fuel cells: A review, International Journal of Hydrogen Energy, vol.30, pp.1297-1302, 2005.
    [23] K. Tüber, A. Oedegaard, M. Hermann, C. Hebling, Investigation of fractal flow-fields in portable proton exchange membrane and direct methanol fuel cells, Journal of Power Sources, vol. 131, pp. 175-181, 2004.
    [24] T. V. Nguyen, T.V., A gas distributor design for proton – exchange-membrane fuel cells, Journal of the Electrochemical Society, vol. l43, no. 5, pp. 103-105, 1996.
    [25] J.S. Yi, T.V. Nguyen, Multicomponent transport in porous electrodes of proton exchange membrane fuel cells using the interdigitated gas distributors, Journal of The Electrochemical Society, vol. 146, iss. 1, pp. 38-45, 1999.
    [26] D. L. Wood III, J.S. Yi, T.V Nguyen, Effect of direct liquid water injection and interdigitated flow field on the performance of proton exchange membrane fuel cells, vol. 43, iss. 24, pp. 3795-3809, 1998.
    [27] V. Thitakamol, A. Therdthianwong, S. Therdthianwong, Mid-baffle interdigitated flow fields for proton exchange membrane fuel cells, International Journal of Hydrogen Energy, vol. 36, iss. 5, pp. 3614-3622, 2011.
    [28] H.W. Ku, H.W. Wu, Influences of operational factors on proton exchange membrane fuel cell performance with modified interdigitated flow field design, Journal of Power Sources, vol. 232, pp. 199-208, 2013.
    [29] Q.F. Jian, G.Q. Ma, X.L. Qiu, Influences of gas relative humidity on the temperature of membrane in PEMFC with interdigitated flow field, Renewable Energy, vol 62, pp. 129-136, 2014.
    [30] M. Bilgili, M. Bosomoiu, G.Tsotridis, Gas flow field with obstacles for PEM fuel cells at different operating conditions. Int. J. Hydrogen Energy, vol. 23, pp. 2303-2311, 2015.
    [31] E. Afshari, M. M. Dehkordi, H. Rajabian, An investigation of the PEM fuel cells performance with partially restricted cathode flow channels and metal foam as a flow distributor, Energy, vol.118, pp.705-715, 2017.
    [32] H. Heidary, M.J. Kermani, A.K. Prasad, S.G. Adani, B. Dabir, Numerical modelling of in-line and staggered blockages in parallel flow field channels of PEM fuel cells, International of Hydrogen Energy, Vol. 42, pp.2265-2277, 2017.
    [33] J. Bear, J.M. Buchlin, Modeling and application of transport phenomena in porous media, Kluwer Academic Publishers, Boston, MA, 1991.
    [34] E.U. Ubong, Z. Shi, X. Wang, Three-dimensional modeling and experimental study of a high temperature PBI-based PEM fuel cell, J. Electrochem, vol. 56, pp. 1276-1282, 2009.
    [35] M. Bilgili, M. Bosomoiu, G. Tsotridis, Gas flow field with obstacles for PEM fuel cells at different operating conditions, Int. J. Hydrogen Energy, vol. 40, pp. 2303-2011, 2015.
    [36] F.J. Wang, Computational fluid dynamics analysis, Tsinghua University Press, Beijing, 2004.
    [37] R.K. Roy, A primer on the Taguchi method, Society of Manufacturing Engineers, Taipei, 1990.
    [38] C.Y. Chen, Effect of temperature and humidity on characteristics of phosphoric acid doped polybenzimidazole fuel cells, National Cheng Kung University, 2010.
    [39] C.T. Su, Quality and engineering, Chinese society for quality, Taipei, 2002.
    [40] G. J. Park, Analytic methods for design practice, Springer Science & Business Media, Berlin, 2007.
    [41] C.Y. Chen, Effects of temperature and humidity on characteristics of phosphoric acid doped polybenzimidazole fuel cells, National Cheng Kung University, 2010.
    [42] Y.W. Su, Performance test and electrochemical impedance spectroscopy/cyclic voltammetry for a μPEM fuel cell, Master thesis, National Sun Yat-sen University, 2012
    [43] K. Pearson, On lines and planes of closest fit to systems of points in spaces, Philos. Mag, ser. 62, pp.559–572, 1901.
    [44] H. Hotelling, Analysis of a complex of statistical variables into principal components, Journal of Educational Psychology, vol. 24, no.6, pp.417–441, 1933.
    [45] M. S. Phadke, Quality engineering using robust design, Prentice-Hall, Englewood Cliffs, NJ, 1995.
    [46] G. Taguchi, Y. Yokoyama, Y. Wu, Taguchi methods: Design of experiments, ASI Press, Chicago, 1993.
    [47] P. J. Ross, Taguchi techniques for quality engineering, McGraw-Hill, New York, 1988.
    [48] G. Taguchi, Quality engineering in production systems, McGraw-Hill, New York, 1989.
    [49] M. Venkatraman, S. Shimpalee, J.W.V. Zee, I.M. Sung, C.W. Extrand, Estimates of pressure gradients in PEMFC gas channels due to blockage by static liquid drops, Int. J. Hydrogen Energy vol.34, pp.5522–5528, 2009.

    無法下載圖示 校內:2023-09-03公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE