| 研究生: |
石哲綸 Shih, Che-Lun |
|---|---|
| 論文名稱: |
既有路線提速可行性研究─以南迴臺東線為例 Feasibility Study on Railway Train Speed Increase on Existing Routes–a case study of TRA South Link Line and Taitung Line |
| 指導教授: |
郭振銘
Kuo, Chen-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 列車提速 、舒適度 、軌道車輛安全 、脫軌係數 |
| 外文關鍵詞: | Train Speed Increase, Comfort, Derailment Coefficient, Safety of Rail Vehicles |
| 相關次數: | 點閱:51 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
列車提速牽涉層面甚廣,從基本的列車安全性、乘客舒適度、經濟效益到環境影響,其中大眾交通最注重於列車安全性與乘客舒適度,如何評斷列車安全性主要廣泛使用脫軌係數做為標準,舒適度之評斷主要分為ISO2631-1與UIC 513R兩者廣泛使用,UIC513R相比ISO2631-1較能顯現列車劇烈振動時之舒適度,並排除影響較低之振動影響。
本文主要使用Simpack模擬軟體模擬普悠瑪號列車不同速度行駛於既有路線上,此路線只考慮平面線性與軌道不整,並探討其脫軌係數與舒適度是否符合限制值與規範,模擬列車由於臺鐵短期不會再採購傾斜式列車與未來可能關閉傾斜式列車之傾斜功能,因此本研究模擬之列車並未設定傾斜過彎功能,列車行駛速度從90kph每次間隔10kph增至未來花東提速目標的160kph,藉由各時速所得到之脫軌係數與舒適度來評斷列車通過曲線時之最大速度。
模擬列車之脫軌係數排除列車脫軌狀況外,僅有一處曲線超出限制值0.8,因此要使用模擬的脫軌係數評斷列車之通過速度較為困難,仍須依靠規範來限制列車於曲線上之最高通過容許速度,但模擬之列車脫軌係數超出限制值甚至脫軌時,該曲線就可視為未來提速優先須改善之路段並利用既有公式來探討列車於此曲線上需降速多寡;舒適度在列車160kph行駛下,僅一處路段舒適度指標為不舒適,其他大多數都為普通舒適,綜合以上脫軌係數與舒適度評價,模擬結果超出規範與指標之曲線皆可視為未來提速計畫優先改善之線形不良之路段。
The increase in train speed involves various aspects, ranging from basic train safety, passenger comfort, economic benefits, to environmental impacts. Public transportation places significant emphasis on train safety and passenger comfort. The assessment of train safety is mainly based on the widely used criterion of derailment coefficient, while the evaluation of passenger comfort is often divided between ISO 2631-1 and UIC 513R, with UIC 513R being more effective in reflecting comfort during severe train vibrations and excluding lower-level vibration effects.
In this study, the Simpack simulation software is utilized to simulate different speeds of the Puyuma Express train on an existing track. The track model considers only planar linearity and track irregularities. The study examines whether the derailment coefficient and comfort meet the prescribed limits and standards. Since Taiwan Railways is not expected to purchase tilting trains in the short term and might disable the tilting function of existing trains in the future, the simulated trains in this study do not have tilting capabilities. The train speeds simulated range from 90 kph, increasing in increments of 10 kph up to the future target speed of 160 kph for the Hualien-Taitung line. The maximum speeds for the trains passing through curves are evaluated based on the obtained derailment coefficients and comfort at each speed.
Regarding the simulated derailment coefficients, aside from one curve that exceeds the limit of 0.8, no derailment occurs. Therefore, using the simulated derailment coefficients to determine the train's passing speed through curves is challenging. The maximum permissible speed for trains on curves still needs to be governed by regulations. However, if the simulated train's derailment coefficient exceeds the limit or results in derailment, the curve can be considered a section that needs improvement for future speed enhancement. Existing formulas can be employed to assess the degree of speed reduction required for trains on this curve. In terms of comfort, at a train speed of 160 kph, only one section is rated as uncomfortable, while the majority are rated as normal comfort. Considering both the derailment coefficients and comfort evaluation, curves that exceed standards and benchmarks in the simulation can be regarded as sections where track geometry needs priority improvement for future speed enhancement projects.
[1] Roderick A. Smith, Railway Speed-up:A Review of Its History, Technical Developments and Future Prospects, 2003.
[2] 黃裕舜, "臺鐵電聯車脫軌係數與舒適度之研究", 碩士, 系統工程暨造船學系, 國立臺灣海洋大學, 基隆, 2006.
[3] 王鵬然, 韓峰, "基於SIMPACK和ABAQUS的青藏鐵路既有列車提速動力分析", 科學技術與工程, 2020.
[4] J. Nadal, Theorie de la stabilite des locomotives PART II: MOUV EMENT DELACET. Dunod et Vicq. 1896.
[5] Xingwen Wua, Shuling Liangb, Maoru Chib, An investigation of rocking derailment of railway vehicles under the earthquake excitation, Engineering Failure Analysis, pp. 2 (2020).
[6] T. Matsudaira, Dynamics of high speed rolling stock, Japanese Nat. Railways RTRI Quart. Rep., Special Issue 7 (1) (1966) 45–97.
[7] UIC 518, Testing and Approval of Railway Vehicles from the Point of View of their Dynamic Behaviour-Safety-Track Fatigue-Running Behaviour, 2007.
[8] 鄭朝陽, "軌道脫軌係數及乘車舒適度量測", 三聯科技67期, 2008
[9] 張學銘、謝曉波、楊少彬, "鐵道車輛平穩性指標對比分析", 佳木斯大學學報, 2011.
[10] UIC Code 513R, Guide for evaluating comfort in relation to vibration in railway vehicles, pp.7-15(1994).
[11] 黃民仁、張欽亮, "新世紀鐵路工程學 基礎篇", pp. 4-9 - 4-16, 2018.
[12] 温彩炎, "鐵路軌道設計與養護實務", pp. 116 – 122, 2022.
[13] 翟婉明, "車輛-軌道耦合動力學", 1997.
[14] Daniele Mario Fraschini, Dynamic Modelling of the KTH Roller Rig, Master of Science in Railway Engineering, 2021.
[15] 臺東線-維基百科,自由的百科全書。檢自https://zh.wikipedia.org/zh-tw/%E8%87%BA%E6%9D%B1%E7%B7%9A。
[16] 地圖-臺鐵列車動態|臺鐵列車動態。檢自https://railway.chienwen.net/taiwan/map
[17] SimpackAssistant, G.19.5.3.
[18] Simpack_rail_2017_watermark, pp. L3.6 - L3.7, 2017.