簡易檢索 / 詳目顯示

研究生: 包秉潔
Pao, Ping-Chieh
論文名稱: 探討新穎腦指蛋白(Brain Finger Protein), ZNF179, 參與神經元分化之作用
Investigation of the functional role of a novel brain finger protein, Znf179, in neuronal differentiation
指導教授: 張文昌
Chang, Wen-Chang
共同指導教授: 林鼎晏
Lin, Ding-Yen
學位類別: 博士
Doctor
系所名稱: 生物科學與科技學院 - 生物資訊與訊息傳遞研究所
Insitute of Bioinformatics and Biosignal Transduction
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 81
中文關鍵詞: Znf179神經分化p27p35
外文關鍵詞: Znf179, neuronal differentiation, p27, p35
相關次數: 點閱:130下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 於神經分化的過程中,分化中的細胞必須做出是要離開細胞週期抑或面對死亡的決定。神經分化刺激細胞產生許多改變,如分化相關基因的表達、細胞骨架的重組,以及細胞週期的停滯。細胞週期若是在分化中細胞持續運轉,會啟動與細胞週期相關的細胞死亡,將未離開細胞週期的細胞,或稱之為未準備好分化的細胞移除。研究指出,腦指蛋白Znf179主要表達在腦部,並且其表達量於胚胎發育之過程中逐漸上升,顯示Znf179對於神經系統發育的重要性。本研究中,我們發現Znf179的表現量隨著P19細胞神經分化的過程而上升。利用干擾性核醣核酸抑制Znf179的表達,明顯阻礙P19細胞以及初代培養小腦顆粒細胞之神經分化。藉由微陣列以及基因功能的分析,我們發現會隨Znf179表現抑制而改變其表達量的基因群,其功能主要與發育、細胞增生以及細胞週期調控相關。因此我們使用流式細胞儀觀察Znf179對於細胞週期的影響。首先,Znf179表達抑制會造成細胞週期無法停滯,而不利於神經分化,相同的現象也於溴化去氧尿苷標定實驗中所見。此外,兩個與細胞週期調控相關的分子於Znf179表達抑制時產生明顯改變。抑制Znf179表達會造成CDK5的活化蛋白p35表現量下降與細胞週期抑制蛋白p27蛋白量減少。顯示在神經分化過程中,Znf179表達上升藉著透過影響p35基因表現與p27蛋白質堆積,造成細胞週期停滯以利推動神經分化。

    Leave or die, is a serious task for differentiating cells. During neuronal differentiation, cells need to be well-equipped for differentiation process. Gene expressions and cytoskeleton reorganizations are necessary for neuronal differentiation, but most important thing is to depart form cell cycle at the right time. Fail to exit cell cycle in time fires cell cycle-related neuronal death, eliminating cells which are not ready for neuronal differentiation. Brain finger protein, Znf179 was known to express predominantly in brain, and the expression significantly increased during embryogenesis, suggesting the potential role of Znf179 in neuronal development. In this study, we demonstrated that Znf179 expression increased gradually during P19 cells neuronal differentiation. Inhibition of Znf179 expression by RNA interference dramatically suppressed the neuronal differentiation of both P19 and primary cerebellar granular cells. By using microarray technique and functional annotation analysis, we identified the differentially expressed genes in Znf179-knockdown cells, and found that those genes were mostly involved in development, cell proliferation and cell cycle regulation. In our results, cell cycle arrest for neuronal differentiation was abolished in Znf179-knockdown cells. First, flow cytometry indicated the reduced population of G0/G1 phase in Znf179-knockdown cells. Second, BrdU-incorporated cells were also increased upon Znf179 knockdown. Moreover, in Znf179-knockdown cells, p35, which was known to activate CDK5 and may alter the cell cycle, and p27, a cell cycle inhibitor, were also decreased. Taken together, these lines of evidence showed that the induction of Znf179 may be related to p35 expression and p27 protein accumulation, which allowed cell cycle arrest in the G0/G1 phase, and was critical for neuronal differentiation of P19 cells.

    中文摘要 I Abstract Ⅱ Acknowledgment Ⅲ Contents Ⅳ Figure index Ⅸ Table index ⅹⅰ Appendix index ⅹⅱ Abbreviations ⅹⅲ I.Introduction 1 1.1 Cell cycle and cell cycle regulators 1 1.1.1. Cell cycle 1 1.1.2. Cyclin-dependent kinases 1 1.1.3. Retinoblastoma/E2F pathway 2 1.2. Cell cycle regulation and neuronal differentiation 3 1.2.1. Neuronal development 3 1.2.2. Cell cycle exit and neuronal differentiation 3 1.2.3. Cell cycle-related neuronal death 4 1.3. CDK5/p35 complex 5 1.4. Znf179 6 1.5. P19 embryonal carcinoma cells 7 1.6. Hypothesis 7 1.7. Specific aims 7 II. Materials and methods 9 2.1. Materials 9 2.2. Methods13 2.2.1. Animals 13 2.2.2. P19 cell neuronal differentiation 13 2.2.3. Primary cultures of mouse cerebellar granular cells 14 2.2.4. Western blot analysis 14 2.2.5. Immunofluorescence 14 2.2.6. Antibody 15 2.2.7. Fractionation of cytosolic and nuclear proteins 15 2.2.8. Flow cytometric analysis of cell cycle distribution 16 2.2.9. BrdU incorporation assay 16 2.2.10. Cell viability assay16 2.2.11. DNA microarray and Ingenuity pathway analysis 17 2.2.12. Reverse transcription (RT) and quantitative (q) real-time PCR assays 17 2.2.13. In situ hybridization 17 2.2.14. Lentivirus production and transduction 18 III. Results 20 3.1. Expression and distribution patterns of Znf179 in mouse brain 20 3.1.1 Generation of Znf179 antibody 20 3.1.2. Notable expression of Znf179 in adult mouse brain 20 3.1.3. Localization of Znf179 transcripts in developing mouse brain 20 3.2. Znf179 is increased during RA-induced P19 cells neuronal differentiation 21 3.2.1. Establishment of neuronal differentiation cell model by using P19 cells 21 3.2.2. Znf179 is elevated during RA-induced P19 cells neuronal differentiation 21 3.3. Znf179 protein localizes in cytosolic and nuclear compartments of neuornally differentiated P19 cells 21 3.4. Inhibition of Znf179 induction significantly suppresses neuronal differentiation of P19 cells 22 3.4.1. Attenuation of Znf179 expression in P19 cells by lentivirus-mediated RNA interference 22 3.4.2. Inhibition of Znf179 expression attenuates neuronal differentiation of P19 cells 22 3.4.3. Knockdown Znf179 also affects cell viability of P19 cells after plating 23 3.5. Znf179 is required for neuronal differentiation and glial differentiation of primary granular cells 23 3.5.1. Znf179 is expressed predominantly in MAP2-positive cells 23 3.5.2. Inhibition of Znf179 expression attenuates neuronal differentiation of primary granular precursors 23 3.5.3. Suppression of Znf179 expression also affects glial differentiation primary granular precursors 24 3.6. Identification and functional annotation of differentially expressed genes in P19 cells upon Znf179 knockdown 24 3.6.1. Gene expression profiling in Znf179-knockdown cells 24 3.6.2. Functional annotation of differentially expressed genes 25 3.7. Cell cycle exit during P19 cells neuronal differentiation……………… 25 3.8. Knockdown of Znf179 alters cell cycle profiles and the expression of cell cycle regulators during P19 cells neuronal differentiation 25 3.8.1. RA-induced P19 cells cell-cycle arrest is obstructed upon Znf179 knockdown 25 3.8.2. Temporal expression pattern of cell cycle modulators in neuronal differentiation 26 3.8.3. Knockdown Znf179 alters the expression of p35 and p27 protein level 26 3.9. Identification of p35 as one of the downstream mediators of Znf179 involves in P19 cells neuronal differentiation 27 3.9.1. Similar phenotypes are identified in p35 and Znf179-knockdown cells 27 3.9.2. Re-expression of p35 partially rescues the defects in neuronal differentiation by Znf179-knockdown 27 IV. Discussion 28 4.1. Functions of Znf179 in neuronal differentiation 28 4.2. Mechanisms of Znf179 leading to cell cycle exit 28 4.2.1. p27 pathway 28 4.2.2. p35 pathway 29 4.2.3. E2F is a potential downstream effector of Znf179 involving in cell cycle exit 29 4.3. Mechanism of Znf179 regulating p27 protein accumulation 29 4.3.1. CDK5/p35 complex is not responsible for p27 protein level in Znf179-knockdown cells. 29 4.3.2. Other possible mechanisms modulating p27 protein level in Znf179-knockdown cells 30 4.4. Mechanisms of Znf179 modulating p35 expression 30 4.5. Other differentially expressed genes in Znf179-knockdown cells 31 4.5.1. Znf179 may involve in neurite outgrowth 31 4.5.2. Znf179 may involve in synaptic function 32 4.6. Cell identity of Znf179-expressing cells 32 4.7. Functions of Znf179 in neurodegenerative diseases 33 4.7.1. The role of Znf179 in Smith-Magenis syndrome 33 4.7.2. The role of Znf179 in cell cycle reentry in neurodegenerative diseases 33 4.7.3. Investigation of the functions of Znf179 in vivo 33 4.8. Concluding remarks 33 V.References 35 VI.Figures 44 VII.Tables 68 VIII.Appendixes 75 IX.Publications 78 X. Curriculum vitae 79

    Reference

    1 Budirahardja, Y. & Gonczy, P. Coupling the cell cycle to development. Development 136, 2861-2872, (2009).
    2 Vermeulen, K., Van Bockstaele, D. R. & Berneman, Z. N. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell proliferation 36, 131-149 (2003).
    3 Johnson, D. G. & Walker, C. L. Cyclins and cell cycle checkpoints. Annual review of pharmacology and toxicology 39, 295-312, (1999).
    4 Kastan, M. B. & Bartek, J. Cell-cycle checkpoints and cancer. Nature 432, 316-323, (2004).
    5 Maeda, Y. Cell-cycle checkpoint for transition from cell division to differentiation. Development, growth & differentiation 53, 463-481, (2011).
    6 Malumbres, M. & Barbacid, M. Cell cycle, CDKs and cancer: a changing paradigm. Nature reviews. Cancer 9, (2009).
    7 Sclafani, R. A. & Holzen, T. M. Cell cycle regulation of DNA replication. Annual review of genetics 41, 237-280, (2007).
    8 Malumbres, M. et al. Cyclin-dependent kinases: a family portrait. Nature cell biology 11, 1275-1276, (2009).
    9 Morgan, D. O. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annual review of cell and developmental biology 13, 261-291, (1997).
    10 Pines, J. Cyclins and cyclin-dependent kinases: a biochemical view. The Biochemical journal 308 ( Pt 3), 697-711 (1995).
    11 Boutros, R., Lobjois, V. & Ducommun, B. CDC25 phosphatases in cancer cells: key players? Good targets? Nature reviews. Cancer 7, 495-507, (2007).
    12 Nabel, E. G. CDKs and CKIs: molecular targets for tissue remodelling. Nature reviews. Drug discovery 1, 587-598, (2002).
    13 Reed, S. I. Ratchets and clocks: the cell cycle, ubiquitylation and protein turnover. Nature reviews. Molecular cell biology 4, 855-864, (2003).
    14 Sherr, C. J. & Roberts, J. M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes & development 13, 1501-1512 (1999).
    15 Denicourt, C. & Dowdy, S. F. Cip/Kip proteins: more than just CDKs inhibitors. Genes & development 18, 851-855, (2004).
    16 Dimova, D. K. & Dyson, N. J. The E2F transcriptional network: old acquaintances with new faces. Oncogene 24, 2810-2826, (2005).
    17 Bracken, A. P., Ciro, M., Cocito, A. & Helin, K. E2F target genes: unraveling the biology. Trends in biochemical sciences 29, 409-417, (2004).
    18 Ren, B. et al. E2F integrates cell cycle progression with DNA repair, replication, and G(2)/M checkpoints. Genes & development 16, 245-256, (2002).
    19 Dyson, N. The regulation of E2F by pRB-family proteins. Genes & development 12, 2245-2262 (1998).
    20 Stevens, C. & La Thangue, N. B. E2F and cell cycle control: a double-edged sword. Archives of biochemistry and biophysics 412, 157-169 (2003).
    21 Black, A. R. & Azizkhan-Clifford, J. Regulation of E2F: a family of transcription factors involved in proliferation control. Gene 237, 281-302 (1999).
    22 Harbour, J. W. & Dean, D. C. The Rb/E2F pathway: expanding roles and emerging paradigms. Genes & development 14, 2393-2409 (2000).
    23 Sommer, L. & Rao, M. Neural stem cells and regulation of cell number. Progress in neurobiology 66, 1-18 (2002).
    24 Gotz, M. & Huttner, W. B. The cell biology of neurogenesis. Nature reviews. Molecular cell biology 6, 777-788, (2005).
    25 Kintner, C. Neurogenesis in embryos and in adult neural stem cells. The Journal of neuroscience : the official journal of the Society for Neuroscience 22, 639-643 (2002).
    26 Kohwi, M. & Doe, C. Q. Temporal fate specification and neural progenitor competence during development. Nature reviews. Neuroscience 14, 823-838, (2013).
    27 Franze, K., Janmey, P. A. & Guck, J. Mechanics in neuronal development and repair. Annual review of biomedical engineering 15, 227-251, (2013).
    28 Germain, N., Banda, E. & Grabel, L. Embryonic stem cell neurogenesis and neural specification. Journal of cellular biochemistry 111, 535-542, (2010).
    29 Ronan, J. L., Wu, W. & Crabtree, G. R. From neural development to cognition: unexpected roles for chromatin. Nature reviews. Genetics 14, 347-359, (2013).
    30 Demir, O., Singh, S., Klimaschewski, L. & Kurnaz, I. A. From birth till death: neurogenesis, cell cycle, and neurodegeneration. Anatomical record 292, 1953-1961, (2009).
    31 Frank, C. L. & Tsai, L. H. Alternative functions of core cell cycle regulators in neuronal migration, neuronal maturation, and synaptic plasticity. Neuron 62, 312-326, (2009).
    32 Hindley, C. & Philpott, A. Co-ordination of cell cycle and differentiation in the developing nervous system. The Biochemical journal 444, 375-382, (2012).
    33 Nguyen, L., Besson, A., Roberts, J. M. & Guillemot, F. Coupling cell cycle exit, neuronal differentiation and migration in cortical neurogenesis. Cell cycle 5, 2314-2318 (2006).
    34 Buttitta, L. A. & Edgar, B. A. Mechanisms controlling cell cycle exit upon terminal differentiation. Current opinion in cell biology 19, 697-704, (2007).
    35 van Lookeren Campagne, M. & Gill, R. Tumor-suppressor p53 is expressed in proliferating and newly formed neurons of the embryonic and postnatal rat brain: comparison with expression of the cell cycle regulators p21Waf1/Cip1, p27Kip1, p57Kip2, p16Ink4a, cyclin G1, and the proto-oncogene Bax. The Journal of comparative neurology 397, 181-198 (1998).
    36 Munoz, J. P., Sanchez, J. R. & Maccioni, R. B. Regulation of p27 in the process of neuroblastoma N2A differentiation. Journal of cellular biochemistry 89, 539-549, (2003).
    37 Nakamura, Y., Ozaki, T., Koseki, H., Nakagawara, A. & Sakiyama, S. Accumulation of p27 KIP1 is associated with BMP2-induced growth arrest and neuronal differentiation of human neuroblastoma-derived cell lines. Biochemical and biophysical research communications 307, 206-213 (2003).
    38 Kranenburg, O., Scharnhorst, V., Van der Eb, A. J. & Zantema, A. Inhibition of cyclin-dependent kinase activity triggers neuronal differentiation of mouse neuroblastoma cells. The Journal of cell biology 131, 227-234 (1995).
    39 Sasaki, K. et al. Expression and role of p27(kip1) in neuronal differentiation of embryonal carcinoma cells. Brain research. Molecular brain research 77, 209-221 (2000).
    40 Yang, Y. & Herrup, K. Cell division in the CNS: protective response or lethal event in post-mitotic neurons? Biochimica et biophysica acta 1772, 457-466, (2007).
    41 Lee, E. Y. et al. Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 359, 288-294, (1992).
    42 Athanasiou, M. C. et al. The transcription factor E2F-1 in SV40 T antigen-induced cerebellar Purkinje cell degeneration. Molecular and cellular neurosciences 12, 16-28, (1998).
    43 McShea, A., Harris, P. L., Webster, K. R., Wahl, A. F. & Smith, M. A. Abnormal expression of the cell cycle regulators P16 and CDK4 in Alzheimer's disease. The American journal of pathology 150, 1933-1939 (1997).
    44 Hoglinger, G. U. et al. The pRb/E2F cell-cycle pathway mediates cell death in Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America 104, 3585-3590, (2007).
    45 Jordan-Sciutto, K. L., Wang, G., Murphey-Corb, M. & Wiley, C. A. Cell cycle proteins exhibit altered expression patterns in lentiviral-associated encephalitis. The Journal of neuroscience : the official journal of the Society for Neuroscience 22, 2185-2195 (2002).
    46 Love, S. Neuronal expression of cell cycle-related proteins after brain ischaemia in man. Neuroscience letters 353, 29-32 (2003).
    47 Ranganathan, S. & Bowser, R. Alterations in G(1) to S phase cell-cycle regulators during amyotrophic lateral sclerosis. The American journal of pathology 162, 823-835, (2003).
    48 Yang, Y. & Herrup, K. Loss of neuronal cell cycle control in ataxia-telangiectasia: a unified disease mechanism. The Journal of neuroscience : the official journal of the Society for Neuroscience 25, 2522-2529, (2005).
    49 Herrup, K. & Yang, Y. Cell cycle regulation in the postmitotic neuron: oxymoron or new biology? Nature reviews. Neuroscience 8, 368-378, (2007).
    50 Lew, J., Beaudette, K., Litwin, C. M. & Wang, J. H. Purification and characterization of a novel proline-directed protein kinase from bovine brain. The Journal of biological chemistry 267, 13383-13390 (1992).
    51 Meyerson, M. et al. A family of human cdc2-related protein kinases. The EMBO journal 11, 2909-2917 (1992).
    52 Dhavan, R. & Tsai, L. H. A decade of CDK5. Nature reviews. Molecular cell biology 2, 749-759, (2001).
    53 Smith, D. S. & Tsai, L. H. Cdk5 behind the wheel: a role in trafficking and transport? Trends in cell biology 12, 28-36 (2002).
    54 Lee, M. S. et al. Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405, 360-364, (2000).
    55 Su, S. C. & Tsai, L. H. Cyclin-dependent kinases in brain development and disease. Annual review of cell and developmental biology 27, 465-491, (2011).
    56 Cruz, J. C. & Tsai, L. H. Cdk5 deregulation in the pathogenesis of Alzheimer's disease. Trends in molecular medicine 10, 452-458, (2004).
    57 Tseng, H. C., Zhou, Y., Shen, Y. & Tsai, L. H. A survey of Cdk5 activator p35 and p25 levels in Alzheimer's disease brains. FEBS letters 523, 58-62 (2002).
    58 Cruz, J. C. et al. p25/cyclin-dependent kinase 5 induces production and intraneuronal accumulation of amyloid beta in vivo. The Journal of neuroscience : the official journal of the Society for Neuroscience 26, 10536-10541, (2006).
    59 Matsuda, Y. et al. Chromosome mapping of human (ZNF179), mouse, and rat genes for brain finger protein (bfp), a member of the RING finger family. Genomics 33, 325-327 (1996).
    60 Seki, N., Hattori, A., Muramatsu, M. & Saito, T. cDNA cloning of a human brain finger protein, BFP/ZNF179, a member of the RING finger protein family. DNA research : an international journal for rapid publication of reports on genes and genomes 6, 353-356 (1999).
    61 Inoue, S. et al. A novel RING finger protein, BFP, predominantly expressed in the brain. Biochemical and biophysical research communications 240, 8-14, (1997).
    62 Lussier, M. P. et al. Ubiquitin ligase RNF167 regulates AMPA receptor-mediated synaptic transmission. Proceedings of the National Academy of Sciences of the United States of America 109, 19426-19431, (2012).
    63 Zhao, Q., Chen, K. S., Bejjani, B. A. & Lupski, J. R. Cloning, genomic structure, and expression of mouse ring finger protein gene Znf179. Genomics 49, 394-400, (1998).
    64 Orimo, A. et al. Molecular cloning, localization, and developmental expression of mouse brain finger protein (Bfp)/ZNF179: distribution of bfp mRNA partially coincides with the affected areas of Smith-Magenis syndrome. Genomics 54, 59-69, (1998).
    65 Ferraiuolo, L. et al. Microarray analysis of the cellular pathways involved in the adaptation to and progression of motor neuron injury in the SOD1 G93A mouse model of familial ALS. The Journal of neuroscience : the official journal of the Society for Neuroscience 27, 9201-9219, (2007).
    66 Morton, A. J. et al. A combination drug therapy improves cognition and reverses gene expression changes in a mouse model of Huntington's disease. The European journal of neuroscience 21, 855-870, (2005).
    67 Kimura, T. et al. The brain finger protein gene (ZNF179), a member of the RING finger family, maps within the Smith-Magenis syndrome region at 17p11.2. American journal of medical genetics 69, 320-324 (1997).
    68 Shelley, B. P. & Robertson, M. M. The neuropsychiatry and multisystem features of the Smith-Magenis syndrome: a review. The Journal of neuropsychiatry and clinical neurosciences 17, 91-97, (2005).
    69 Andrews, P. W. From teratocarcinomas to embryonic stem cells. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 357, 405-417, (2002).
    70 Soprano, D. R., Teets, B. W. & Soprano, K. J. Role of retinoic acid in the differentiation of embryonal carcinoma and embryonic stem cells. Vitamins and hormones 75, 69-95, (2007).
    71 Rossant, J. & McBurney, M. W. The developmental potential of a euploid male teratocarcinoma cell line after blastocyst injection. Journal of embryology and experimental morphology 70, 99-112 (1982).
    72 Edwards, M. K., Harris, J. F. & McBurney, M. W. Induced muscle differentiation in an embryonal carcinoma cell line. Molecular and cellular biology 3, 2280-2286 (1983).
    73 Jones-Villeneuve, E. M., McBurney, M. W., Rogers, K. A. & Kalnins, V. I. Retinoic acid induces embryonal carcinoma cells to differentiate into neurons and glial cells. The Journal of cell biology 94, 253-262 (1982).
    74 Jones-Villeneuve, E. M., Rudnicki, M. A., Harris, J. F. & McBurney, M. W. Retinoic acid-induced neural differentiation of embryonal carcinoma cells. Molecular and cellular biology 3, 2271-2279 (1983).
    75 Martinez, S., Andreu, A., Mecklenburg, N. & Echevarria, D. Cellular and molecular basis of cerebellar development. Frontiers in neuroanatomy 7, 18, (2013).
    76 Okano-Uchida, T., Himi, T., Komiya, Y. & Ishizaki, Y. Cerebellar granule cell precursors can differentiate into astroglial cells. Proceedings of the National Academy of Sciences of the United States of America 101, 1211-1216, (2004).
    77 Kawauchi, T., Chihama, K., Nabeshima, Y. & Hoshino, M. Cdk5 phosphorylates and stabilizes p27kip1 contributing to actin organization and cortical neuronal migration. Nature cell biology 8, 17-26, (2006).
    78 Zhang, J. & Herrup, K. Nucleocytoplasmic Cdk5 is involved in neuronal cell cycle and death in post-mitotic neurons. Cell cycle 10, 1208-1214 (2011).
    79 Azuma-Hara, M., Taniura, H., Uetsuki, T., Niinobe, M. & Yoshikawa, K. Regulation and deregulation of E2F1 in postmitotic neurons differentiated from embryonal carcinoma P19 cells. Experimental cell research 251, 442-451, (1999).
    80 Slingerland, J. & Pagano, M. Regulation of the cdk inhibitor p27 and its deregulation in cancer. Journal of cellular physiology 183, 10-17, (2000).
    81 Zheng, Y. L. et al. Phosphorylation of p27Kip1 at Thr187 by cyclin-dependent kinase 5 modulates neural stem cell differentiation. Molecular biology of the cell 21, 3601-3614, (2010).
    82 Kamura, T. et al. Cytoplasmic ubiquitin ligase KPC regulates proteolysis of p27(Kip1) at G1 phase. Nature cell biology 6, 1229-1235, (2004).
    83 Harmey, D., Smith, A., Simanski, S., Moussa, C. Z. & Ayad, N. G. The anaphase promoting complex induces substrate degradation during neuronal differentiation. The Journal of biological chemistry 284, 4317-4323, (2009).
    84 Chang, Y. et al. Role of heat-shock factor 2 in cerebral cortex formation and as a regulator of p35 expression. Genes & development 20, 836-847, (2006).
    85 Harada, T., Morooka, T., Ogawa, S. & Nishida, E. ERK induces p35, a neuron-specific activator of Cdk5, through induction of Egr1. Nature cell biology 3, 453-459, (2001).
    86 Darbinian, N. et al. HIV-1 Tat inhibits NGF-induced Egr-1 transcriptional activity and consequent p35 expression in neural cells. Journal of cellular physiology 216, 128-134, (2008).
    87 Lee, J. H. & Kim, K. T. Induction of cyclin-dependent kinase 5 and its activator p35 through the extracellular-signal-regulated kinase and protein kinase A pathways during retinoic-acid mediated neuronal differentiation in human neuroblastoma SK-N-BE(2)C cells. Journal of neurochemistry 91, 634-647, (2004).
    88 Edwards, S. A., Darland, T., Sosnowski, R., Samuels, M. & Adamson, E. D. The transcription factor, Egr-1, is rapidly modulated in response to retinoic acid in P19 embryonal carcinoma cells. Developmental biology 148, 165-173 (1991).
    89 Lanoix, J., Mullick, A., He, Y., Bravo, R. & Skup, D. Wild-type egr1/Krox24 promotes and dominant-negative mutants inhibit, pluripotent differentiation of p19 embryonal carcinoma cells. Oncogene 17, 2495-2504, (1998).
    90 Conde, C. & Caceres, A. Microtubule assembly, organization and dynamics in axons and dendrites. Nature reviews. Neuroscience 10, 319-332, (2009).
    91 Schaefer, A. W. et al. Coordination of actin filament and microtubule dynamics during neurite outgrowth. Developmental cell 15, 146-162, (2008).
    92 Esmaeli-Azad, B., McCarty, J. H. & Feinstein, S. C. Sense and antisense transfection analysis of tau function: tau influences net microtubule assembly, neurite outgrowth and neuritic stability. Journal of cell science 107 ( Pt 4), 869-879 (1994).
    93 Prokop, A. The intricate relationship between microtubules and their associated motor proteins during axon growth and maintenance. Neural development 8, 17, (2013).
    94 Sakakibara, A., Ando, R., Sapir, T. & Tanaka, T. Microtubule dynamics in neuronal morphogenesis. Open biology 3, 130061, (2013).
    95 Benowitz, L. I. & Routtenberg, A. GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends in neurosciences 20, 84-91 (1997).
    96 Spencer, S. A., Schuh, S. M., Liu, W. S. & Willard, M. B. GAP-43, a protein associated with axon growth, is phosphorylated at three sites in cultured neurons and rat brain. The Journal of biological chemistry 267, 9059-9064 (1992).
    97 Mori, T., Wada, T., Suzuki, T., Kubota, Y. & Inagaki, N. Singar1, a novel RUN domain-containing protein, suppresses formation of surplus axons for neuronal polarity. The Journal of biological chemistry 282, 19884-19893, (2007).
    98 Eccles, J. C. The synapse: from electrical to chemical transmission. Annual review of neuroscience 5, 325-339, (1982).
    99 Sudhof, T. C. Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455, 903-911, (2008).
    100 Sudhof, T. C. The synaptic vesicle cycle. Annual review of neuroscience 27, 509-547, (2004).
    101 Jockusch, W. J. et al. CAPS-1 and CAPS-2 are essential synaptic vesicle priming proteins. Cell 131, 796-808, (2007).
    102 Tsuboi, T. & Fukuda, M. Rab3A and Rab27A cooperatively regulate the docking step of dense-core vesicle exocytosis in PC12 cells. Journal of cell science 119, 2196-2203, (2006).
    103 Wylie, C. J. et al. Distinct transcriptomes define rostral and caudal serotonin neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience 30, 670-684, (2010).
    104 Slager, R. E., Newton, T. L., Vlangos, C. N., Finucane, B. & Elsea, S. H. Mutations in RAI1 associated with Smith-Magenis syndrome. Nature genetics 33, 466-468, (2003).

    下載圖示 校內:2016-01-01公開
    校外:2016-01-01公開
    QR CODE