| 研究生: |
李文敏 Lee, Wen-Min |
|---|---|
| 論文名稱: |
固定化纖維素分解酵素水解微藻細胞壁應用於葉綠素萃取之研究 Immobilized Cellulase for Chlorophyll Extraction from Microalgae |
| 指導教授: |
吳文騰
Wu, Wen-Teng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 纖維素分解酵素 、氧化鐵磁性奈米粒子(Fe3O4) 、葉綠素 、微藻 |
| 外文關鍵詞: | Cellulase, Magnetic nanoparticle(Fe3O4), Chlorophyll, Microalgae |
| 相關次數: | 點閱:98 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由聚丙烯腈包覆之氧化鐵(Fe3O4)磁性奈米粒子,可透過amidination reaction活化粒子表面之聚丙烯腈的C≡N官能基,與纖維素分解酵素上之胺基形成共價鍵結。於實驗條件為活化時間2.5分鐘,固定化酵素濃度為0.5wt%,固定化時間60分鐘,固定化溫度50℃,pH值為7.8的條件下,可製得較高蛋白質固定量之固定化纖維素分解酵素。本實驗進而將固定化酵素應用於水解微藻細胞壁,並藉由產生還原醣之濃度,決定最佳反應條件。經實驗證實在適當的水解時間下,固定化纖維素分解酵素可水解微藻之細胞壁,使藻體細胞壁破裂,但破裂程度不致使葉綠素釋出胞外,造成損失,並可提高後續以丙酮萃取葉綠素之效益。經固定化纖維素分解酵素水解後之微藻,利用丙酮於常溫下進行萃取反應,100 mg之藻體可萃得葉綠素1.5mg;相較未經過水解反應之藻體,則只可萃得0.4mg之葉綠素。重複進行批次反應10次以後,萃取率仍維持初始萃取率之88%。由於氧化鐵磁性奈米粒子具備磁性易回收,因此實驗所製得之固定化纖維素分解酵素,證明不僅可多次重複使用,並具有回收容易之優點。
The enzyme, Trichoderma reesei cellulase was immobilized on PAN (polyacrylonitrile) coated magnetic nanoparticles(Fe3O4) by amidination reaction for long term operation. In addition, covalent bond formation between enzyme molecule and the PAN coated magnetic nanoparticles was confirmed via FT-IR measurement. The optimal operation conditions of cellulase immobilization for the highest protein loading were under the enzyme concentration of 0.5 wt%, immobilization time of 60 min, temperature at 50°C and pH value at 7.8. The optimal conditions of hydrolysis reaction were determined by measuring the concentration of producing reducing sugar. The immobilized cellulase was further employed for hydrolyzing the cell walls of microalgae. The experimental results indicate that under the specific reaction time, cell walls of microalgae were broken without releasing of chlorophyll. After breaking the cell walls of microalgae by hydrolysis reaction with immobilized cellulase, 1.5 mg chlorophyll was extracted with acetone, on the other hand, only 0.4 mg chlorophyll was obtained from the microalgae without hydrolysis before extraction. In reusability experiments, the efficiency retained 88% of its initial value after 10 time uses of the immobilized cellulase. Since magnetic nanoparticles are super-paramagnetic materials with strong magnetic properties, the immobilized cellulase on PAN coated magnetic particles can be easily recovered.
Abudiab, T. and R. R. Beitle (1998). "Preparation of magnetic
immobilized metal affinity separation media and its use in the isolation of
proteins."Journal of Chromatography A 795(2): 211-217.
Bacri, J. C., R. Perzynski, et al. (1990). "IONIC FERROFLUIDS - A
CROSSING OF CHEMISTRY AND PHYSICS." Journal of
Magnetism and Magnetic Materials 85(1-3): 27-32.
Bhat, M. K. and Bhat, S., “Cellulose degrading enzymes and their
potential industrial applications” , Biotechnology advances, 15:5
83-620 (1997).
Bradford, M. M. A., “A rapid and sensitive method for the quantitation of
microgram quantities of protein utilizing the principle of
protein-dye binding”, Analytical Biochemistry, 72:248-54 (1976).
Bungay, H. R., “Confessions of a bioenergy advocate”, TRENDS in
Biotechnology, 22: 67-71(2004).
Chen, M., Zhao, J., Xia, L., “Enzymatic hydrolysis of maize straw
polysaccharides for the production of reducing sugars”,
Carbohydrate polymers, 71: 411-415(2008).
Converse, A. O., Matsuno, R., Tanaka, M., Taniguchi, M., “A model for
enzyme adsorption and hydrolysis of microcrystalline cellulose with slow deactivation of the adsorbed enzyme”, Biotechnol. Bioeng,
32:38–45(1988).
Dominguez, J.M., Acebal, C., Jimenez, J., Lamata, I.D., Macarron, R. and
Castillon, M.P., “Mechanisms of thermoinactivation of endoglucanase I from Trichoderma reesei QM 9414”, Biochem. J.,
287: 583-588 (1992).
Handa, T., Hirose, A., Yoshida, S., Tsuchiya, H., “The Effect of
Methylacrylate on the Activity of Glucoamylase Immobilized on
GranularPolyacrylonitrile”, Biotechnology and Bioengineering, 24:
1639-1652(1982).
Hildén, L., Johansson, G., “Recent developments on cellulases and
Carbohydrate-binding modules with cellulose affinity”,
Biotechnology Letters, 26: 1683–1693(2004).
Jason Jordan, Challa S.S.R. Kumar, Chandra Theegala, “Preparation and
characterization of cellulase-bound magnetite nanoparticles”, Journal
of Molecular Catalysis B: Enzymatic, 68, (2011) 139–146.
Jiménez, J., Domínguez, J.M., Castillón, M.P., Acebal, C.,
“Thermoinactivation of cellobiohydrolase I from Trichoderma reesei
QM 9414”, Carbohydrate Research, 268: 257-266(1995).
Kim, J. B., J. W. Grate, et al. (2008). "Nanobiocatalysis and its potential
applications." Trends in Biotechnology 26(11): 639-646.
Malcata, F. X., H. R. Reyes, et al. (1990). "Immobilized lipase
reactors for modification of fats and oils – a review." Journal of the
American Oil Chemists Society 67(12):890-910.
Mateo, C., Palomo, J.M., Fernandez-Lorente, J., Guisan, J.M.,
Fernandez-Lafuente, R., “Improvement of enzyme activity, stability andselectivity via immobilization techniques”, Enzyme and
Microbial Technology, 40: 1451-1463 (2007).
Mehta, R. V., R. V. Upadhyay, et al. (1997). "Direct binding of protein to
magnetic particles." Biotechnology Techniques 11(7): 493-496.
Shaw, S. Y., Y. J. Chen, et al. (2006). "Preparation and characterization
of Pseudomonas putida esterase immobilized on magnetic nanoparticles."Enzyme and Microbial Technology 39(5): 1089-1095.
Sun, Y., Cheng, J., “Hydrolysis of lignocellulosic materials for ethanol
production: a review ” , Bioresource Technology, 83: 1-11(2002).
Szczodrak, J., “The enzymatic hydrolysis and fermentation of pretreated
wheat straw to ethanol ” , Biotechnology and Bioengineering, 32:
771-776(1988).
Yong, Y., Y. X. Bai, et al. (2008). "Preparation and application of
polymer-grafted magnetic nanoparticles for lipase immobilization."
Journal of Magnetism and Magnetic Materials 320(19): 2350-2355.
劉英俊,酵素工程,中央圖書出版社,2002 年。
馬振基,奈米材料科技原理與應用,全華科技出版社,2003 年。
莊萬發,超微粒子理論應用,復漢出版社,2005 年。
尹邦躍,奈米時代,五南圖書出版社,2002 年。
張立德,奈米材料,五南圖書出版社,2002 年。
黃忠良,磁性流體理論應用,復漢出版社,1989 年。
鄭豐裕,四氧化三鐵磁性奈米粒子之製備及其在生物醫學上之應用,
碩士論文,國立成功大學化學研究所,2006 年。
張揚狀,表面被覆幾丁聚醣磁性之多功能磁性奈米載體的製備與用,
碩士論文,國立成功大學化學工程研究所,2005 年。
黃世宏,氧化鐵磁性奈米粒子在酵素固定化及分離上之應用研究,碩
士論文,成功大學化學工程研究所,2003年。
許青雲,葉綠素衍生物對誘發型DNA損傷之保護效應,博士論文,
台北醫藥大學,2008。
許祐川,製備磁性奈米粒子並應用於藥物的投遞及酵素的固定化,
碩士論文,成功大學化學研究所,2004年。
江善宗、殷儷容,纖維素分解酵素於綠藻工業之應用研究,農業
生技產業季刊,臺灣,第七期,2006
李昇峰,聚丙烯腈奈米纖維膜於脂肪分解酵素固定化之應用,博
士論文,國立成功大學,臺灣,2009。
陳國誠,生物固定化技術與產業應用,茂昌圖書有限公司,臺灣,
第48至57頁,1990。