| 研究生: |
李承豫 Lee, Chen-Yu |
|---|---|
| 論文名稱: |
管壁表面改質對閉迴路震盪式熱管性能影響之研究 Effects of Surface Modification on the Performance of a Closed Loop Oscillating Heat Pipe |
| 指導教授: |
呂宗行
Leu, Tzong-Shyng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 超疏水表面 、閉迴路震盪式熱管 、熱傳提升 |
| 外文關鍵詞: | super-hydrophobic surface, oscillating heat pipe (OHP), heat transfer enhancement |
| 相關次數: | 點閱:85 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
震盪型熱管(Oscillating Heat Pipe, OHP) 為一非常具有前景的新型兩相流熱傳裝置,其具有構造簡單、熱傳量大且無須毛細結構即可作動等特點。本研究主旨在於利用銅表面改質技術將震盪式熱管內壁改質為表面接觸角大於150 度之超疏水表面,探討此種改變對系統效能所產生的影響。本研究所使用之閉迴路震盪型熱管(Close Loop OHP,CLOHP)由內徑2 mm、外徑3 mm 之銅管製作而成,固定填充比率為 50%,工作流體使用乙醇或水。研究中首先以未表面改質OHP 系統進行效能與操作極限之測試,再配合全尺寸可視化系統進一步了解OHP運作情形,最後將OHP 系統內壁表面改質為超疏水表面,並測試其性能與未改質系統性能相比較。結果顯示系統震盪行為會受表面接觸角與傾斜角影響,而超疏水內壁將促使系統內部流體產生單方向系統循環,另外推測系統藉由循環與冷凝行為由膜式冷凝轉為滴式冷凝而有效提升系統熱傳效率約10%。
Oscillating heat pipe (OHP) is a new type of two-phase heat transfer device which has the characteristics of simple construction, high heat flux capability and no need of wicking structures for liquid transport. The purpose of this study is using surface modification to fabricate a super-hydrophobic OHP system which has contact angle over 150∘and
investigates its effects on its system performance. The closed-loop oscillating heat pipe is designed by using 2mm ID and 3mm OD copper tubes. The filling ratio is fixed at 50%. Working fluid is using ethanol or DI water. In this study, the performance and operating limit of the OHP system
is firstly tested without surface modification. A full-size OHP visualization model is also constructed to visualize the flow behaviors. Finally the super-hydrophobic OHP system is tested. The results show that the system oscillating behavior is related to inner wall contact angle and sysem tilting angle, the inner flow field of OHP system with super-hydrophobic surfaces has a trend to circulate in one direction. In addition, the reason of heat transfer enhancement is suspect that the motion of condensation changing from filmwise condensation to dropwise condensation, heat transfer efficiency of super-hydrophobic OHP system can be enhanced about 10%.
參考文獻
[1]H. Akachi, “Structure of a heat pipe”, US Patent No. 4921041, 1990.
[2]H. Akachi, F. Polášek, P. SStulc, “Pulsating heat pipes”, Proceedings of the 5th International Heat Pipe Symposium,Melbourne, Australia, 1996, 208–217 (ISBN 0-08-042842-8).
[3]Q. Cai, C.L. Chen, J.F. Asfia, Operating characteristic investigations in pulsating heat pipes, ASME J. Heat Transfer 128 (2006) 1329–1334.
[4]L. Lin, R. Ponnappan, J. Leland, “Experimental investigation of oscillating heat pipes”, AIAA J. Thermophys. Heat Transfer 15 (2001) 395–400.
[5]S. Khandekar, M. Schneider, P. Sch€afer, R. Kulenovic, M. Groll, “Thermofluid dynamic study of flat plate closed loop pulsating heat pipes”, Microsc. Thermophys. Eng. (2002) 303–318 (ISSN 1089-3954).
[6]M.B. Shafii, A. Faghri, Y. Zhang, “Thermal modeling of unlooped and looped pulsating heat pipes”, ASME J. Heat Transfer 123 (2001) 1159–1172.
[7]B.Y. Tong, T.N. Wong, K.T. Ooi, “Closed loop pulsating heat pipe”, Appl. Therm. Eng. 21 (2001) 1845–1862 (ISSN 1359-4311).
[8]E.T. White, R.H. Beardmore, “The velocity of rise of single cylindrical air bubbles through liquids contained in vertical tubes” Chemical Engineering Science, 1962, Vol. 17, pp. 351-361
[9]S. khandekar, A. Prasad Gautam , P. K. Sharma, “Multiple quasi-steady states in a closed loop pulsating heat pipe” International Journal of Thermal Sciences 48 (2009) 535–546
[10]S. Khandekar , M. Groll, “An insight into thermo-hydrodynamic coupling in closed loop pulsating heat pipes”, International Journal of Thermal Sciences 43 (2004) 13–20
[11]T. Katoh , G. Xu , M. Voge , S. Novotny “New attempt of forced-air cooling for high heat flux applications”, 2004 Inter Society Conference on Thermal Phenomena, (2004) 34-39
[12]W. Shao , Y. Zhang , “Analysis of oscillatory flow and heat transfer in an oscillating heat pipe”
[13]J. Yulong , C. Wilson , C.Hsiu-hung , M.Hongbin “Particle shape effect on heat transfer performance in an oscillating heat pipe” Ji et al. Nanoscale Research Letters, (2011) 6:296
[14]T. Cubaud , U. Ulmanella, H. Chih-Ming, “Two-Phase Flow in Microchannels with Surface Modifications”, 5th International Conference on Multiphase Flow, (2004) No. PL5
[15]N. Kammuang-lue, P. Sakulchangsatjatai, P. Terdtoon “Horizontal Closed-Loop Pulsating Heat Pipe With Multiple Heat Sources”, 16th International Heat Pipe Conference, (2012)
[16]X. Haizhen, L. Dengying, S.Fumin, Y. Yongping, D. Xiaoze, A. Mujumdar, H. Lixin, “Study on Heat Transfer Enhancement of Oscillating-Flow Heat Pipe for Drying”, Drying Technology, ( 2007) 25: 723–729
[17] C. Y. Lee, S. Y. Lee, “Pressure drop of two-phase dry-plug flow in round mini-channels: Effect of moving contact line”, Experimental Thermal and Fluid Science 34, (2010) 1–9
[18]J. Yulong, C. Wilson, Hsiu-hung Chen, Hongbin Ma, “Particle shape effect on heat transfer performance in an oscillating heat pipe”, Ji et al. Nanoscale Research Letters (2011), 6:296
[19]H. Yang, S. Khandekar , M. Groll, “Operational limit of closed loop pulsating heat pipes”, Applied Thermal Engineering 28, (2008) 49–59
[20]N. Shirtcliffe, G. McHale, M. Newton, Y. Zhang, “Superhydrophobic Copper Tubes with Possible Flow Enhancement and Drag Reduction”, Applied materials and interfaces VOL. 1NO. 6, (2009) 1316–1323
[21]N. Bhuwakietkumjohn, S. Rittidech, “Internal flow patterns on heat transfer characteristics of a closed-loop oscillating heat-pipe with check valves using ethanol and a silver nano-ethanol mixture”, Experimental Thermal and Fluid Science 34, (2010) 1000–1007
[22]S. Rittidech, 1L. Yodluk and 2K. Songsorn, “Effect of Internal Flow Patterns of a Closed-end Oscillating Heat Pipe at Vertical Position”, American Journal of Applied Sciences, (2007) 1071-1074
[23]S. Rittidech, S. Sangiamsuk, “Internal flow Patterns of the Horizontal Heat Mode Closed-Loop Oscillating Heat Pipe with Check Valves (HHMCLOHP/CV) ”, Research Journal of Applied Sciences, (2013) 865-869
[24]R. Daniello, E. Waterhouse, J. Rothstein “Drag reduction in turbulent flows over superhydrophobic surfaces” , Physics Of Fluids 21, (2009) 085103
[25]J. Yulong, “Hydrophobic Surface Effect on Heat Transfer Performance in an Oscillating Heat Pipe” Journal of Heat Transfer , (2012) Vol. 134 / 074502-1
[26]T. Takamasa , T. Hazuku , T. Hibiki, “Experimental Study of gas–liquid two-phase flow affected by wall surface wettability”, International Journal of Heat and Fluid Flow 29 (2008), 1593–1602
[27]S. Khandekar, P. Charoensawan, M. Groll, Pradit. Terdtoon, “Closed loop pulsating heat pipes Part A: parametric experimental investigations“, Applied Thermal Engineering 23 (2003), 2009–2020
[28]S. Khandekar , P. Charoensawan, M. Groll, P. Terdtoon, “Closed loop pulsating heat pipes Part B: visualization and semi-empirical modeling“, Applied Thermal Engineering 23, (2003) 2021–2033
[29]C. Y. Lee, S. Y. Lee, “Influence of surface wettability on transition of two-phase flow pattern in round mini-channels“ International Journal of Multiphase Flow 34, (2008), 706–711
[30]T. M. Wang, Y. M. Chen, “The Design, Manufacture and Performance Test of Capillary Structure in a Loop Heat Pipe “ National Taiwan University Master Thesis (2002)