| 研究生: |
游佳維 Yu, Jia-Wei |
|---|---|
| 論文名稱: |
時空守恆法在電泳分離行為之模擬與討論 The Simulation of Electrophoretic Separation by the Space-Time Conservation Element and Solution Element Method |
| 指導教授: |
楊瑞珍
Yang, Ruey-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 等速移動電泳法 、區間電泳法 、移動邊界電泳法 、時空守恆法 |
| 外文關鍵詞: | CESE method, moving boundary electrophoresis, zone electrophoresis, isotachophoresis |
| 相關次數: | 點閱:136 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要的研究目的在於利用時空守恆法來模擬毛細管中電泳分離的行為,其中包含了移動邊界電泳法,區間電泳法以及等速電泳法。茲簡略說明如下,電泳分離操控技術是在加入電位勢後,想要觀察或量測的樣品間藉由彼此遷移率速率的不同,而達到離子分離的效果。移動邊界電泳法是最早被發展出來的技術,此方法在當時分離了血清,使得人們在往後的研究中有很大的突破。區間電泳法以移動邊界電泳法作為基礎的技術,其在系統環境充滿均勻的緩衝液進行分離。等速電泳法則是在系統環境中為不連續的緩衝液而進行分離的技術。
時空守恆法利用統御方程式滿足積分形式守恆定律的概念,為在時間空間上均具有二階準確度的一種新數值方法。在傳統的數值計算方法用來模擬電泳分離中,一階準確度的方法所得到的結果會產生數值耗散;而二階準確度方法得到的解會產生數值震盪,其原因是在於在移動邊界電泳法和等速電泳法中,在分離過程達到定常後,樣品區會形成濃度不連續的介面,由於傳統方法是利用差分的概念,所以在描述濃度變化劇烈往往會產生數值震盪,而時空守恆在處理此問題時,並沒有此一問題發生而且能得到更精確的答案,因此我們期望此方法在往後應用於電泳分離的數值預測中能提供更準確的模擬結果。
The space-time conservation element and solution element (CESE) method is applied to simulate the moving boundary electrophoresis (MBE), zone electrophoresis (ZE) and isotachophoresis (ITP) separation phenomena. The CESE method expresses the governing equation in the integral form of the conservation law, and has a second-order accuracy in both space and time. The current results show that the CESE solutions for the ITP and ZE phenomena are more accurate than those obtained using conventional first-order numerical schemes, which are characterized by serious numerical diffusion. Furthermore, the CESE method suppresses the numerical oscillations or peaks observed in the results obtained using second-order finite difference schemes. Finally, the results reveal that the CESE method accurately models the sharp boundaries between adjacent ITP samples under steady-state conditions. Overall, the results presented in this study demonstrate the numerical accuracy of the CESE method and confirm its applicability to the modeling of a range of electrophoretic phenomena.
[1] R.A. Mosher, D.A. Saville, W. Thormann, The Dynamics of Electrophoresis, VCH, Wenhem, 1992
[2] D.A. Saville, O.A. Palusinski, “Theory of Electrophoretic Separations, Part I: Formation of a Mathematical Model”, AIChE Journal, vol. 32, pp. 207-214, 1986
[3] O.A. Palusinski, A. Graham, R.A. Mosher, M. Bier, D.A. Saville, “Theory of Electrophoretic Separations, Part II: Construction of a Numerical Simulation Scheme and its Applications”, AIChE Journal, vol. 32, pp. 215-223, 1986
[4] J.L. Beckers, B. Petr, “Sample stacking in capillary zone electrophoresis: Principles, advantages and limitations”, Electrophoresis, vol. 21, pp. 2747-2767, 2000
[5] R.A. Mosher, D. Dewey, W. Thormann, D.A. Saville, M. Bier, “Computer si,ulation and experimentoal validation of the electrophoretic behavior of proteins”, Analytical Chemistry, vol. 61, pp. 362-366, 1989
[6] R.A. Mosher, P. Gebauer, J. Caslavska, W. Thormann, “Computer simulation and experimental validation of the electrophoretic behavior of proteins. 2. model improvement and application to isotachophoresis”, Analytical Chemistry, vol. 64, pp. 2991-2997, 1992
[7] E.V. Dose, G.A. Guiochon, “High-Resolution Modeling of Capillary Zone Electrophoresis and Isotachophoresis” , Analytical Chemistry, vol. 63, pp. 1063-1072, 1991
[8] C. Schafer-Nielsen, “A computer model for time-based simulation of electrophoresis systems with freely defined initial and boundary conditions” Electrophoresis, vol. 16, pp. 1369-1376, 1995
[9] C. Schwer, B. Gas, F. Lottspeich, E. Kenndler, “Computer simulation and experimental evaluation of on-column sample preconcentration in capillary zone electrophoresis by discontinuous buffer systems“, Analytical Chemistry, vol. 65, pp. 2108-2115, 1993
[10] S.V. Ermakov, O.S. Mazhorova, Y.P. Popov, “Finite-difference algorithm for convection-diffusion equation applied to electrophoresis problem”, Informatica, vol. 3, pp. 173-197, 1992
[11] S.V. Ermakov, O.S. Mazhorova, M.Y. Zhukov, “Computer simulation of transient state in capillary zone electrophoresis and isotachophoresis”, Electrophoresis, vol. 13, pp. 838-848, 1992
[12] S.V. Ermakov, M.S. Bello, P.G. Righetti, “Numerical algorithms for capillary electrophoresis”, Journal of Chromatography A, vol. 661, pp. 265-278, 1994
[13] J.H.P.A. Martens, J.C. Reijenga, J.H.M ten Thije Boonkkamp, R.M.M. Mattheij, F.M. Everaerts, “Transient modeling of capillary electrophoresis Isotachophoresis”, Journal of Chromatography A, vol. 772, pp. 49-62, 1997
[14] N. Ikuta, T. Hirokawa, “Numerical simulation for capillary electrophoresis, I. Development of a simulation program with high numerical stability”, Journal of Chromatography A, vol. 802, pp. 49-57, 1998
[15] N. Ikuta, H. Sakamoto, Y. Yamada, T. Hirokawa, “Numerical simulation for capillary electrophoresis, II. Relaxation effect of potential gradient in capillary zone electrophoresis”, Journal of Chromatography A, vol. 838, pp. 19-29, 1999
[16] T.L. Sounart, J.C. Baygents, “Simulation of electrophoretic separations by flux-corrected transport method”, Journal of Chromatography A, vol. 890, pp. 321-336, 2000
[17] H. Cui, P. Dutta, C.F. Ivory, “Isotachophoresis of protein in a networked microfluidic chip: Experiment and 2-D simulation”, Electrophoresis, vol. 28, pp. 1138-1145, 2007
[18] B. Jung, R. Bharadwaj, J.G. Santiago, “On-chip Milionfold sample stacking using transient isotachophoresis”, Analytical Chemistry, vol. 78, pp. 2319-2327, 2006
[19] S.C. Chang, “The Method of Space-Time Conservation Element and Solution Element–A New Approach for Solving the Navire-Stokes and Euler Equation”, Journal of Computational Physics, vol. 199, pp. 295-342, 1995
[20] S.C. Chang, X.Y. Wang, W.M. To, “Application of the Space-Time Conservation Element and Solution Element Method to One-Dimensional Convection-Diffusion Problems”, Journal of Computational Physics, vol. 165, pp. 189-215, 2000
[21] F.E.P. Mikkers, F.M. Everaerts, Th.P.E.M. Verheggen, “High-Performance Zone Electrophoresis”, Journal of Chromatography, vol. 169, pp. 1-10, 1979
[22] F.E.P. Mikkers, “Concentration Distributions in Capillary Zone Electrophoresis: CZE in a Spreadsheet”, Analytical Chemistry, vol. 71, pp. 522-533. 1999
[23] K.A. Hoffmann, S.T. Chiang, Computational Fluid Dynamics for Engineers, vol. I, Engineering Education System, Wichita, Kansas, 1993
[24] J. Petr, V. Maier, J. Horakova, J. Sevcik, Z. Stransky, “Capillary isotachophoresis from the student point of view – images and the reality”, Journal of Separation Science, vol. 29, pp. 2705-2715, 2006
[25] W. Thormann, T. Huang, J. Pawliszyn, R.A. Mosher, “High-resolution computer simulation of the dynamics of isoelectric focusing of proteins”, Electrophoresis, vol. 25, pp. 324-337, 2004
[26] S.H. Shim, A. Riaz, K. Choi, D.S. Chung, “Dual stacking of unbuffered saline samples, transient isotachophoresis plus induced pH junction focusing”, Electrophoresis, vol. 24, pp. 1603-1611, 2003
[27] W. Thormann, C.X. Zhang, J. Caslavska, P. Gebauer, R.A. Mosher, “Modeling of the ionic strength on the electroosmotic flow in capillary electrophoresis with uniform and discontinuous buffer system”, Analytical Chemistry, vol. 70, pp. 549-562, 1998
[28] K. Ludmila, B. Michaela, G. Petr, B. Petr, “Importance of the counterion in optimization of a borate electrolyte system for analyses of anions in samples with complex matrices performed by capillary zone electrophoresis”, Electrophoresis, vol. 25, pp. 3406-3415, 2004