簡易檢索 / 詳目顯示

研究生: 陳建良
Chen, Jian-Liang
論文名稱: 高濁度原水前處理之研究
The Study of Pre-treatment of High Turbidity Raw Water
指導教授: 申永輝
Shen, Yun-Hwei
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2012
畢業學年度: 101
語文別: 中文
論文頁數: 85
中文關鍵詞: 高濁度水前處理阻隔板水質分析水資源管理
外文關鍵詞: high-turbidity, water pre-treatment, barrier board, water quality analysis, water resource management.
相關次數: 點閱:132下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於集水區山坡地水土保持不易,每當颱風或暴雨初期,易產生高濁度原水,影響淨水系統操作困擾。以慣性阻擋水流、延長水流路徑、增高溢流高度方法,可達到降低高濁度水質效益。經重力自行沉降去除,以達淨化水質目的。
    本研究為以距水表面下不同之深度,模擬不同高濁度原水水質變化,經阻隔板延長水流途徑和溢流高度變化,以不同流量變化前處理高濁度原水,探討進、出流水之濁度、粒徑及懸浮固體物變化,並觀察沉降底泥及分析表面溢流率(SOR)、顆粒滯流時間、水流平均流速項目操作規範與實場比較去除效果。
    經由實驗結果顯示,高濁度原水進流水濁度概略為1,500〜5,500 NTU之間,流量設計為:8、17、50和100 ml/s下,以慣性阻流、延長水流路徑、增高溢流高度方法,可達到降低高濁度水質效益。經重力自行沉降去除,以達淨化水質目的。以阻隔板前處理高濁度原水,大部份出流水皆於100〜1,000 NTU,去除率皆於50%以上,甚至可達70〜90%之間,甚可達90%以上,出流濁度可降至400 NTU。實驗沉降池表面溢流率(SOR)於19.1m/d時仍能維持54〜86%濁度去除效率、38.3m/d時能維持50〜72%去除率。顆粒滯流時間分別為:4〜141min,能縮短各操作條件,若小於90 min時,出流水質仍能維持50〜88%濁度去除效率,出流水質最佳可下降至530 NTU;平均流速大多數符合長方形沉澱池操作範疇,去除率為61%〜93%,出流水濁度為1,000 NTU以下,最佳可達380 NTU;符合傾斜管沉澱池操作範疇有3項,去除率為54%〜72%,出流水濁度為1,000〜1,650 NTU;可超越傾斜管沉澱池操作範疇有1項,進、出流水濁度為3,800下降至1,900 NTU,去除率為50%。高濁度原水體內具有大顆粒物資,易經長路徑而重力沉降。例如:進流水濁度為4,300〜5,300 NTU,經前處理實驗後出流水濁度為920〜750 NTU,去除率卻反而高達79〜86%。
    另於粒徑分析項目中,高濁度原水粒徑D98概略為100〜125 μm之間,經由以阻隔板前處理後,各出流水水質於<D6時粒徑為0.54〜1.84 μm之間,與進流水相差不多;<D10時粒徑為0.73〜2.13 μm之間,但隨累積粒徑百分比增加,D98粒徑各出流水均可<25 μm,其中低流量(8 ml/s)時D98粒徑各出流水均可<10 μm。進流原水懸浮固體概略為5,000〜9,000 mg/l之間,經由阻隔板曲折繞流,水體途徑延長,操作處理流量減少,水體沉降時間延長,去除率可由70%左右逐漸提高至90%以上,出流水懸浮固體亦逐漸下降,大部份出流水可降至800 mg/l以下,8 ml/s最低約為100〜400 mg/l。再配合溢流高度增高,最佳可達110 mg/l。
    因此,探討處理高濁度原水,使於降雨於時,仍能維持正常更供應水量,乃為努力目標。以無添加化學藥劑之物理處理方式,且於節省空間下,能預處理高濁度水質,降低原水濁度使其能達到操作負荷,減緩各淨水單元衝擊,維持正常供水之水量及水質,或能提高後續處理效率。

    Due to the difficulty of conserving the water and soil of the hillside land in the Catchment Basin Area, it tends to produce high-turbidity raw water during the initial period of typhoons or storms and affect the operation of the purifying system. The turbidity of high-turbidity water can be reduced by means of an inertia restrained flow, extending the flowing route and heightening the overflow level; thus, allowing the impurities to settle by themselves through gravity and then be removed.
    In this Research, the raw water presenting varied turbidity levels was sampled from different depths under the water surface to simulate the change of the water quality. During the research, a Barrier Board was used to extend the flowing route and the level change of the overflow; further, varied flow rates were also employed to carry out the pre-treatment of high-turbidity raw water in order to study the changes of turbidity,particle size and suspended solids of the influent and effluent water, with the settled bottom mud surveyed, the operating requirements of the Surface Overflow Rate (SOR), particle detention time, and the average flowing speed analyzed as well for comparing the removal effect with that in the physical field.
    The experiment results indicated that the turbidity of the high-turbidity influent raw water was between 1,500~5,500 NTU, with a flow rate designed at below 8, 17, 50 and 100 ml/s. When treating the igh-turbidity raw water with a barrier board, the majority of the effluent water was between 100~1,000 NTU, exhibiting an over 50% removal rate, which even reached 70~90% and over 90%; and the turbidity of the effluent water could be reduced to 380 NTU at its least. When the SOR of the sedimentation basin is set at 19.l m/d, a 54~86% turbidity removal rate can be achieved; whereas, a 50~72% removal rate can be achieved when set at 38.3 m/ d. The particle detention time is as follows: At 4~141 min, the operating time can be shortened; when this is less than 90 min, the effluent still can maintain a 50~88% turbidity removal rate and the water quality of the effluent can even drop to 530 NTU. During the test, most of the average flowing speed was within the operating scope of the rectangular sedimentation basin for which the removal rate was 61%~93% and the effluent turbidity was below 1,000 NTU and even up to the optimal 380 NTU. A total of 3 items meet the operating requirements of the inclinometer sedimentation basin, presenting a 54%~72% removal rate and 1,000~1,650 NTU of effluent turbidity; and one item exceeds the operating requirements of the inclinometer sedimentation basin, presenting a lowered 1,900 NTU of effluent turbidity from 3,800 NTU and a 50% removal rate. Large-size particles exist in the high-turbidity raw water, which tends to settle under the gravity effect during after a long-route flowing journey. For example, the turbidity of the influent is 4,300~5,300 NTU which was reduced to 920~750 NTU after the pre-treatment experiment presenting a 79~86% or higher removal rate.
    In respect to particle size analysis, the particle size (D98) of the high-turbidity raw water was roughly between 100~125 μm; after the pre-treatment with the barrier board, the particle size at <D10 was between 0.73~2.13 μm. With the increase of accumulated particle size percentage, the effluent water was able to reach <25 μm at D98 of particle size under the low rate (8 ml/s), the effluent water D98 was able to reach <10 μm. Raw water suspended solids roughly to 5,000-9,000 mg/l, the removal rate can be to about 70%-90 %, and reduced to 800 mg/l or less, 8 ml/s minimum about 100-400 mg/l, and then meet the overflow height increased, the best up to about 110 mg/l.
    Aiming to accomplish this, the treatment of high-turbidity raw water was studied in the hope that a normal water supply could be maintained during the rainy season. By doing so, a physical treatment method without any chemical agent will be employed, while saving space requirements, the high-turbidity raw water can be treated in advance to reduce its turbidity so as to achieve the planned operating load, mitigate the impact to the respective water purifying facility, and maintain a normal water supply and water quality while enhancing the efficiency of the subsequent treatment.

    摘要 Ⅰ Abstract Ⅲ 誌謝 Ⅵ 目錄 Ⅶ 表目錄 Ⅹ 圖目錄 Ⅺ 第一章 緒論 1 1-1前言 1 1-2研究背景 4 1-3研究目的 6 1-4研究架構及內容 7 第二章 文獻回顧 9 2-1原水濁度 9 2-1-1水中濁度來源及分析 9 2-1-2高濁度原水影響 11 2-2臺灣地區造成高濁度原水分析 14 2-3淨水場水源 15 2-3-1淨水場水源分析 15 2-3-2 高濁度影響淨水操作 16 2-3-3高濁度原水應變操作 19 2-4高濁度原水處理研究 21 2-4-1水質前處理 21 2-4-2高濁度原水處理研究 22 第三章 實驗步驟與方法 25 3-1實驗設備 25 3-1-1 高濁度原水貯水池 25 3-1-2 水體擾動攪拌機 26 3-1-3 前處理沉降模型廠 27 3-2 檢測儀器 28 3-3 實驗方法 30 3-3-1 高濁度原水 30 3-3-2 實驗流程 31 3-3-3 水質採樣分析 32 第四章 結果與討論 33 4-1 前處理沉降模型廠底泥粒徑 34 4-2 原水貯水池濁度分佈 35 4-3 濁度去除 36 4-3-1 出流水質濁度變化分析 37 4-3-2 濁度與出流深度分析 43 4-3-3 溢流板高度與水質濁度 44 4-3-4 表面溢流率(SOR)與水質濁度 45 4-3-5 顆粒滯流時間 48 4-3-6 出流水質濁度去除率分佈 51 4-4 粒徑分析 56 4-4-1 粒徑與流量分析 58 4-4-2 粒徑與溢流板高度分析 59 4-4-3 粒徑去除量分析 63 4-4-4 粒徑去除率分析 64 4-5 懸浮固體 66 4-5-1 進出流水質懸浮固體與去除率變化 68 4-5-2溢流高度與出流水質懸浮固體關係 70 4-5-3 懸浮固體與濁度關係 72 4-5-4 懸浮固體與粒徑關係 73 第五章 結論 75 第六章 建議與後續研究 77 參考文獻 79 自述 85

    Annadurai. G. , Sung, S. S , Lee, D. J.,“Simultaneous removal of turbidity and humic acid from high turbidity storm water,” Advances in Environmental Research, Vol. 8, No. 3-4, pp.713-725,2004。
    Annadurai G. , Sung, S. S. , Lee, D. J., “Flock characteristics and removal of turbidity and humic acid from high-turbidity storm water,” Journal of Environmental Engineering-ASCE , Vol. 129, No. 6, p.571-575,2003。
    Ching-Lin Ho, Chiu-Jung Liao, Yun-Hwei Shen, Tay-Lung Chung, Yu-Sheng Lin, Yuan-Chung Lin, Shu-Lung Kuo, Wen-Cheng Wu , Jian-Liang Chen ,“The Characteristics of Nanocatalysts by Modified Clay Minerals”,Intelligent Engineering Systems through Artificial Neural Networks,Issue 2,pp. 13-33,2011。
    Clair N. Sawyer, Perry L. McCarty, Gene F. Parkin.,“Chemistry for Environmental Engineering”,McGRAW-HILL,p. 439-443,1994。
    Guan-Wei Lin , Hongey Chen , Dave N. Petley, Ming-Jame Horng , Shuei-Ji Wu , Bin Chuang,“Impact of rainstorm-triggered landslides on high turbidity in a mountain reservoir,Engineering Geology”, Vol.117 ,Issue 1-2 ,pp. 97-103,2011。
    Li, G. B. and Gregory, J. “Flocculation AND Sedimentation OF High-Turbidity Waters”,Water Research., Vol. 25, No. 9, p.1137-1143,1991。
    Lin, W. W., Sung, S. S., Chen, L. C. , Chung, H. Y., Wang, C. C., Wu, R. M., Lee, D. J., Huang, C. P., Juang, R. S., Peng, X. F., Chang, H. L.,“Treating high-turbidity water using full-scale flock blanket clarifiers”, Journal of Environmental Engineering-ASCE,Vol. 130,No. 12,p.1481-1487,2004。
    Lo, S. L., Wang, Y. L., Hu, C.Y.,“High turbidity removal by magnetite particles”,Research Journal of Chemistry and Environment,Vol. 12, No. 1,p. 40-45,2008。
    Jian-Liang Chen, Yi-Kuo Chang, Chin-Hsing Lai, Yun-Hwei Shen,“Particle Removal Efficiencies of a Barrier Board that Pre-Treats High-Turbidity Raw Water”,Applied Mechanics and Materials,Vols. 253-255,p. 921-926,2013。
    Jian-Liang Chen, Yi-Kuo Chang, Chin-Hsing Lai, Yun-Hwei Shen,“Suspended Solids Removal Efficiencies of a Barrier Board that Pre-Treats High-Turbidity Raw Water”,Applied Mechanics and Materials,Vols. 253-255,p. 969-974,2013。
    Jian-Liang Chen, Yun-Hwei Shen, Yi-Kuo Chang, Kun-Liao Chen and Wun-Jiun Guo ,“Research on utilizing Environmental Friendly Materials of Barrier Board for Turbidity Reduction of High-turbidity Raw Water”,Applied Mechanics and Materials ,Vols. 253-255 ,p. 847-852,2013。
    Jian-Liang Chen, Yun-Hwei Shen, Yi-Kuo Chang, Kun-Liao Chen and Wun-Jiun Guo ,“Research on utilizing Environmental Friendly Materials of Barrier Board for Particle Reduction of High-turbidity Raw Water”,Applied Mechanics and Materials,Vols. 602-604,p 1124-1129,2013。
    Jian-Liang Chen, Yi-Kuo Chang, Yun-Hwei Shen and Kun-Liao Chen ,“Research on the Implementation and Analysis of High-turbidity Raw Water Pre-treatment with a Barrier Board”,Advanced Materials Research,Vols. 610-613,p. 1402-1408,2013。
    Jian-Liang Chen, Yi-Kuo Chang, Yun-Hwei Shen and Kun-Liao Chen ,“Research on the Implementation and Analysis of High-turbidity Raw Water for Particle Pre-treatment with a Barrier Board”,Advanced Materials Research,Vols. 610-613,p. 1432-1438,2013。
    Kan, C. C., Huang, C. P., Pan, J. R., “Coagulation of high turbidity water: the effects of rapid mixing,” Journal of Water Supply Research and Technology, Vol. 51, No. 2, p.77-85,2002。
    Kerrigan J. E. and Polknowski L. B. ,“Experiments with Plastic Prefilter Media”,Jour. AWWA,Vol.57,No.1,p.85-98,1965。
    Kwon, S. B., Ahn, H. W., Ahn, C. J., Wang, C. K.,“A case study of dissolved air flotation for seasonal high turbidity water in Korea”,Water Science and Technology , Vol. 50, No. 12, p. 245-253,2004。
    Mark A. Shannon, Paul W. Bohn, Menachem Elimelech, et al. “Science and technology for water purification in the coming decades” [J]. Nature, Vol. 452, p.301-310, 2008。
    Rout, D., R. Verma and S. K. Agarwal,“Polyelectrolyte Treatment ─ An approach for Water Quality Improvement”,Water Science and Technology,Vol.40,No.2,p.137-141,1999。
    Shih, W. K. and C. L. Chiang,“Treatment of High Turbidity Water”,Proceeding 4th International Workshop on Drinking Water Quality Management and Treatment Technology,March 5-6,Taiwan,R.O.C.,1998。
    Stumm, W. and Morgan, J. J.,“The Solid-Solution Interface”,Aquatic Chemistry,John Wiley and Sons,New York,p.612,1981。
    Yagi M., K. Mizukawa, M. Kajino, S. Tatumi, M. Akiyama, and M. Ando,“Behaviour of Aluminum in Water Purification Process at Purification Plants in the River Yodo System”,Water Supply,Vol.10,No.4,p.65-75,1992。
    Yang Hun Choi and Ji Hyang Kweon,“Impacts of Highly Turbid Water on Microfiltration with Coagulation Pretreatment”,Engineering Geology,Vol. 117 ,Issue: 1-2,pp. 97-103,2011。
    Zahiruddin Khan and Rahimuddin Farooqi,“Roughing filtration as an effective pre-treatment system for high turbidity water”,Water Science and Technology,Vol.64 ,Issue: 7 ,p 1419-1427,2011。
    內政部營建署、臺灣水環境再生協會、教育部,“水、生活與下水道”,p.22,2005。
    王志雄、廖秋榮、謝壎煌,綠色水處理-以幾丁聚醣處理高濁度原水之研究,第二十四屆自來水研究論文集,桃園,2007。
    王炳鑫、高滄君、陳佩足,“莫拉克風災期間鳳山淨水場水質安全應變操作”,第七屆海峽兩岸水質安全控制技術與管理研討會論文集,臺南,2011。
    田巧玲,“水資源供給策略”,水資源管理會刊,第6卷第1期,p.25,2004。
    甘其銓,淨水場濁度去除效能評估之研究─以豐原淨水場為例,國立交通大學 環境工程研究所 碩士論文,新竹,1996。
    伍美玲,“臺灣水庫淤泥性質之研究”,國立成功大學 資源工程學系 碩士論文,臺南,2009。
    行政院環境保護署,飲用水水質標準,中華民國98年11月26日環署毒字第0980106331E號令修正發布,2009。
    行政院環境保護署,飲用水水源水質標準,中華民國86年9月24日環署毒字第56075號令發布,1997。
    李丁來、林老發、鄭志強、楊人仰,“高濁度水庫水源緊急取水技術之應用-以南化水庫為例”,第七屆海峽兩岸水質安全控制技術與管理研討會論文集,臺南,2011。
    李宗霖、蔡政男,“在國軍營舍應用省水器材之探討”,第八屆資源與環境學術研討會論文集,花蓮,p.343-355,2006。
    何清林,“水庫淤泥以酸液淋洗之研究-石門水庫”,國立成功大學 資源工程學系 博士論文,臺南,2011。
    林玉君,“以混凝─絮凝處理高濁度原水之研究”,國立臺灣科技大學 化學工程學系 碩士論文,臺北,1999。
    林玉寶、董金龍、葉美賢、劉傳崑、徐毓蘭、林畢修平,高濁度原水生態化處理之研究,第二十四屆自來水研究論文集,桃園,2007。
    洪仁陽、周珊珊、邵信、鄒文源、張王冠、張敏超,多孔性擔體濾除高濁度原水前處理之研究,第二十二屆研究發表會論文集,p.345-351,2007。
    翁韻雅,“以高分子凝集劑處理高濁度原水之研究”,國立成功大學 環境工程學系 碩士論文,臺南,2003。
    康世芳、廖志祥、陳建良、林政紀、湯可弘,“雙層濾料提高快濾池處理性能之模型場實驗(第一年)”,臺灣省自來水股份有限公司,1998。
    康世芳,“過濾新型濾料之選擇及新型濾廖之應用”,自來水會刊,第十五卷,第三期,p.26-31,1996。
    陳成亨,暴雨對水源濁度之影響及處理方法探討,國立臺灣大學 環境工程研究所 碩士論文,臺北,1981。
    陳建良,“校園廢污水處理回收再利用之探討”,第九屆資源與環境學術研討會論文集,花蓮,p.621-637,2007。
    常樂、徐浩、延衛、湯成莉,“飲用水安全及其深度處理技術”,第十三屆海峽兩岸環境保護學術研討會論文集,重慶,p.55-61,2010。
    黃永富、曾迪華,淨水場高濁度原水處理之探討,第二十七屆自來水研究論文集,新竹,2010。
    臺北自來水事業處,“高濁度水處理技術探討”,研究報告,臺北,1998。
    臺灣環境資訊協會,“環境資訊中心”,http://teia.e-info.org.tw/,2007。
    蘇金龍、杭子樵、黃永富、陳文祥、姚寶蓮、王耀文、郭明淑、傅復茂、蕭銘德、楊詩思,淨水程序中添加高分子凝聚劑(Polymer)技術之研究,第二十六屆自來水研究論文集,臺南,2009。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE