簡易檢索 / 詳目顯示

研究生: 易騰
Yi, Teng
論文名稱: 循環經濟架構下工業固體廢棄物系統性建材化研究 ——以造紙過程廢棄物系統為例
Research on Systematic Utilization of Industrial Solid Waste as Building Materials in Circular Economy Framework—Case of Papermaking Process Wastes System
指導教授: 劉舜仁
Liou, Shuenn-Ren
共同指導教授: 郭文毅
Kuo, Wen-Yih
學位類別: 博士
Doctor
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 144
中文關鍵詞: 循環建材鹼激發爐石基膠結材料造紙過程廢棄物田口—灰關聯分析生命週期分析材料驅動設計可逆式設計
外文關鍵詞: Circular materials, Alkali-activated cementitious materials, Papermaking Process Wastes, Taguchi-Grey relational analysis, Architectural design pattern
相關次數: 點閱:123下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I 關鍵字 I Extend Abstract II 誌謝 V 目錄 VI 表目錄 X 圖目錄 XII 符號對照表 XV 第一章 緒論 1 1.1研究動機 1 1.2研究目的 3 1.3本研究組織與内容 5 第二章 文獻回顧 7 2.1本研究之各工業體系產物盤點 7 2.1.1造紙過程廢棄物體系 7 2.1.2鋼鐵行業副產物爐石 8 2.2鹼激發膠結材料文獻回顧 9 2.2.1 鹼激發爐石膠結材料反應機理及產物 10 2.2.2 鹼激發爐石基膠結材存在之問題及其影響因素 11 2.2.3鹼激發膠結材料去化廢棄物可行性 12 2.3造紙製漿行業廢棄物建築材料化研究 13 2.4類水泥材料之塑形製成工藝研究 14 2.4循環經濟建築設計及案例研究 15 第三章 實驗方法及流程架構 16 3.1實驗流程架構總概 16 3.2 田口法論述 16 3.2.1田口法簡介 16 3.2.2 田口法實驗方法應用之流程架构 17 3.2.3田口法及灰關聯分析原理 18 3.2.4 田口法之應用範圍及其局限 22 3.3 材料預處理及理化性質 23 3.4材料實驗設計及測試 24 3.4.1循環漿體及砂漿實驗设计邏輯 24 3.4.2材料測試項目及實驗標準 25 第四章 循環漿體(C-Slurry) 製備 35 4.1單一類型造紙過程廢棄物製備循環漿體 35 4.2 造紙過程混合廢棄物製備循環漿體 36 4.2.1混合類型造紙過程廢棄物機械性能研究 36 4.2.2混合類型造紙過程廢棄物觀感紋理研究 36 4.3限製條件下最適之鹼當量研究 37 4.4小結 37 第五章 循環砂漿製備之控製因素相關性研究 44 5.1相關性實驗設計 44 5.1.1實驗設計 44 5.1.2實驗數據統計 44 5.2基於相關性的田口實驗模型構建 44 5.2.1控因相關性之抗壓實驗模式建構 44 5.2.2控因相關性之抗彎實驗模式建構 45 5.2.3 實驗模式回歸分析驗證 45 5.3顯著性因數及交互作用分析 46 5.3.1 抗壓實驗中廢棄物交互作用顯著項分析 46 5.3.2 抗壓實驗中其他顯著參數分析 47 5.3.3 抗彎實驗中鹼激發實驗反應條件分析 47 5.3.4 抗彎實驗中其他顯著參數分析 48 5.4 替代材料比例分析 48 5.5基於相關性的田口實驗模型構建 49 5.5.1抗壓實驗模式最優配比及驗證性實驗 49 5.5.2抗彎實驗模式最優配比及驗證性實驗 50 5.5.3田口實驗模型相關性之必要性驗證 51 5.6小結 51 第六章 工業廢棄物複合体系之多属性优化循環砂漿 59 6.1實驗材料與實驗設計 59 6.2實驗測試結果及討論 59 6.2.1凝結時間測試 59 6.2.2流度測試 60 6.2.3抗壓及抗彎測試 61 6.2.4收縮率測試 63 6.2.5吸水率測試 64 6.3田口—灰關聯分析法對PPW-BFS砂漿進行多反應優化 65 6.4優化配比實驗及微觀分析驗證 66 6.4.1優化配比實驗 66 6.4.2驗證性實驗XRD分析 66 6.4.3驗證性實驗FTIR分析 67 6.4.4驗證性實驗微觀形態分析 68 6.5小結 68 第七章 PPW-BFS複合體系砂漿的環境影響評估 85 7.1 PPW-BFS複合體系砂漿材料功能特性分析 85 7.2 PPW-BFS複合體系生命週期評價方法論 86 7.3 LCA結論分析 88 7.3.1 篩選配比之產品碳足跡分析 88 7.3.2篩選配比之用水量分析 89 7.3.3篩選配比之人類健康危害影響分析 89 7.3.4篩選配比之生態環境危害影響分析 90 7.3.5篩選配比之水泥強度效益分析 91 7.4 小結 91 第八章 基於材料之建築單元設計 103 8.1基於材料的建築設計研究 103 8.1.1材料體系研究目標及方法 103 8.1.2背景數據收集及篩選 103 8.1.3統計方法及詞匯共現網絡原理 104 8.1.4材料應用趨勢分析 105 8.1.5代表材料詞匯共現分析 106 8.2建築設計概念 108 8.2.1可逆式建築及模組化设计 108 8.2.2材料邏輯及限定條件分析 108 8.2.3設計邏輯及組構單元變形 110 8.3架構及組裝 113 8.3.1連接組件形態 113 8.3.2基本單元組合類型 113 8.3.3形態組合 114 8.4完成品展示 115 8.5 基於材料的建築設計方法 115 第九章 結論與建議 130 9.1結論 130 9.2建議及展望 131 參考文獻 133 論文著述 144

    1. Marinova, S.; Deetman, S.; van der Voet, E.; Daioglou, V., Global construction materials database and stock analysis of residential buildings between 1970-2050. Journal of Cleaner Production 2020, 247, 119146.
    2. Huntzinger, D. N.; Eatmon, T. D. J. J. o. c. p., A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies. 2009, 17 (7), 668-675.
    3. Kirthika, S.; Singh, S.; Chourasia, A., Alternative fine aggregates in production of sustainable concrete-A review. 2020, 268, 122089.
    4. 陳志賢. 含矽質廢棄物之無機聚合物. 國立成功大學, 2009.
    5. Provis, J. L.; Van Deventer, J. S., Alkali activated materials: state-of-the-art report, RILEM TC 224-AAM. Springer Science & Business Media: 2013; Vol. 13.
    6. Provis, J. L., Alkali-activated materials. Cement and Concrete Research 2018, 114, 40-48.
    7. Taiwan, E. P. A. o. Executive Yuan-Output and Flow of Key Business Waste—2018. https://waste.epa.gov.tw/prog/IndexFrame.asp?Func=5.
    8. Kilinc, M. B. Epicellulyse XT (Xerophilic Technology) - Paper Mill Sludge (Waste) To Energy&Organic Fertilizer. https://sdgs.un.org/partnerships/epicellulyse-xt-xerophilic-technology-paper-mill-sludge-waste-energyorganic-fertilizer.
    9. Buruberri, L. H.; Seabra, M. P.; Labrincha, J. A., Preparation of clinker from paper pulp industry wastes. J Hazard Mater 2015, 286, 252-60.
    10. García, R.; Vigil de la Villa, R.; Vegas, I.; Frías, M.; Sánchez de Rojas, M. I., The pozzolanic properties of paper sludge waste. Construction and Building Materials 2008, 22 (7), 1484-1490.
    11. Singh, S. K.; Singh, A.; Singh, B.; Vashistha, P., Application of thermo-chemically activated lime sludge in production of sustainable low clinker cementitious binders. Journal of Cleaner Production 2020, 264, 121570.
    12. Malaiskiene, J.; Kizinievic, O.; Kizinievic, V.; Boris, R., The impact of primary sludge from paper industry on the properties of hardened cement paste and mortar. Construction and Building Materials 2018, 172, 553-561.
    13. Borinaga- Treviño, R.; Cuadrado, J.; Canales, J.; Rojí, E., Lime mud waste from the paper industry as a partial replacement of cement in mortars used on radiant floor heating systems. Journal of Building Engineering 2021, 102408.
    14. Torres, C. M. M. E.; Silva, C. M.; Pedroti, L. G.; Fernandes, W. E. H.; Ballotin, F. C.; Zanuncio, A. J. V., Dregs and grits from kraft pulp mills incorporated to Portland cement clinker. Waste Management Research 2020, 1-11.
    15. Adesanya, E.; Ohenoja, K.; Luukkonen, T.; Kinnunen, P.; Illikainen, M., One-part geopolymer cement from slag and pretreated paper sludge. Journal of Cleaner Production 2018, 185, 168-175.
    16. Gao, X.; Yuan, B.; Yu, Q. L.; Brouwers, H. J. H., Characterization and application of municipal solid waste incineration (MSWI) bottom ash and waste granite powder in alkali activated slag. Journal of Cleaner Production 2017, 164, 410-419.
    17. Fang, S.; Lam, E. S. S.; Li, B.; Wu, B., Effect of alkali contents, moduli and curing time on engineering properties of alkali activated slag. Construction and Building Materials 2020, 249, 118799.
    18. Cherian, C.; Siddiqua, S., Pulp and paper mill fly ash: A review. Sustainability 2019, 11 (16), 4394.
    19. Rashad, A. M.; Morsi, W.; Khafaga, S. A., Effect of limestone powder on mechanical strength, durability and drying shrinkage of alkali-activated slag pastes. Innovative Infrastructure Solutions 2021, 6 (2), 1-12.
    20. Yan, S.; Sagoe-Crentsil, K., Properties of wastepaper sludge in geopolymer mortars for masonry applications. Journal of Environmental Management 2012, 112, 27-32.
    21. Novais, R. M.; Carvalheiras, J.; Senff, L.; Labrincha, J. A., Upcycling unexplored dregs and biomass fly ash from the paper and pulp industry in the production of eco-friendly geopolymer mortars: A preliminary assessment. Construction and Building Materials 2018, 184, 464-472.
    22. Saeli, M.; Senff, L.; Tobaldi, D. M.; Carvalheiras, J.; Seabra, M. P.; Labrincha, J. A., Unexplored alternative use of calcareous sludge from the paper-pulp industry in green geopolymer construction materials. Construction and Building Materials 2020, 246, 118457.
    23. Gao, X.; Yu, Q. L.; Brouwers, H. J. H., Properties of alkali activated slag–fly ash blends with limestone addition. Cement and Concrete Composites 2015, 59, 119-128.
    24. Wang, S.-D.; Scrivener, K. L.; Pratt, P. L., Factors affecting the strength of alkali-activated slag. Cement and Concrete Research 1994, 24 (6), 1033-1043.
    25. Stafford, F. N.; Dias, A. C.; Arroja, L.; Labrincha, J. A.; Hotza, D., Life cycle assessment of the production of Portland cement: A Southern Europe case study. Journal of cleaner production 2016, 126, 159-165.
    26. Li, C.; Cui, S.; Nie, Z.; Gong, X.; Wang, Z.; Itsubo, N., The LCA of Portland cement production in China. The International Journal of Life Cycle Assessment 2015, 20, 117-127.
    27. Tun, T. Z.; Bonnet, S.; Gheewala, S. H., Life cycle assessment of Portland cement production in Myanmar. The International Journal of Life Cycle Assessment 2020, 25, 2106-2121.
    28. Chen, C.; Habert, G.; Bouzidi, Y.; Jullien, A.; Ventura, A., LCA allocation procedure used as an incitative method for waste recycling: An application to mineral additions in concrete. Resources, Conservation and Recycling 2010, 54 (12), 1231-1240.
    29. Li, Y.; Liu, Y.; Gong, X.; Nie, Z.; Cui, S.; Wang, Z.; Chen, W., Environmental impact analysis of blast furnace slag applied to ordinary Portland cement production. Journal of Cleaner Production 2016, 120, 221-230.
    30. Saade, M. R. M.; da Silva, M. G.; Gomes, V. J. R., Conservation; Recycling, Appropriateness of environmental impact distribution methods to model blast furnace slag recycling in cement making. 2015, 99, 40-47.
    31. Karana, E.; Barati, B.; Rognoli, V.; Zeeuw Van Der Laan, A., Material driven design (MDD): A method to design for material experiences. International journal of design 2015, 9 (2), 35-54.
    32. Durmiševic, E., Reversible building design. In Designing for the Circular Economy, Routledge: 2018; pp 344-359.
    33. Wang, K.; de Regel, S.; Debacker, W.; Michiels, J.; Vanderheyden, J. In Why invest in a reversible building design?, IOP Conference Series: Earth and Environmental Science, IOP Publishing: 2019; p 012005.
    34. Van den Berg, M.; Durmisevic, E. J. V. C.; Buildings, R.; Sarajevo, BIM uses for reversible building design: Identification, classification & elaboration. 2017.
    35. Suhr, M.; Klein, G.; Kourti, I.; Gonzalo, M. R.; Santonja, G. G.; Roudier, S.; Sancho, L. D., Best available techniques (BAT) reference document for the production of pulp, paper and board. European Commission 2015, 906.
    36. Bajpai, P., Management of pulp and paper mill waste. Springer: 2015.
    37. Bajpai, P.; Bajpai, P., Brief description of the pulp and papermaking process. Biotechnology for pulp paper processing 2018, 9-26.
    38. Kim, C.-H.; Lee, J.-Y.; Park, S.-H.; Moon, S.-O., Global trends and prospects of black liquor as bioenergy. Pulp and paper technology 2019, 51 (5), 3-15.
    39. Joelsson, J.; Gustavsson, L., CO2 emission and oil use reduction through black liquor gasification and energy efficiency in pulp and paper industry. Resources, Conservation Recycling 2008, 52 (5), 747-763.
    40. Nurmesniemi, H.; Mäkelä, M.; Pöykiö, R.; Manskinen, K.; Dahl, O., Comparison of the forest fertilizer properties of ash fractions from two power plants of pulp and paper mills incinerating biomass-based fuels. Fuel Processing Technology 2012, 104, 1-6.
    41. Gavrilescu, D. J. E. E.; Journal, M., Energy from biomass in pulp and paper mills. 2008, 7 (5).
    42. Monte, M. C.; Fuente, E.; Blanco, A.; Negro, C., Waste management from pulp and paper production in the European Union. Waste Management Research 2009, 29 (1), 293-308.
    43. Karn, S. K.; Chakrabarti, S. K., Simultaneous biodegradation of organic (chlorophenols) and inorganic compounds from secondary sludge of pulp and paper mill by Eisenia fetida. International Journal of Recycling of Organic Waste in Agriculture 2015, 4, 53-62.
    44. Faubert, P.; Barnabé, S.; Bouchard, S.; Côté, R.; Villeneuve, C., Pulp and paper mill sludge management practices: What are the challenges to assess the impacts on greenhouse gas emissions? Resources, Conservation and Recycling 2016, 108, 107-133.
    45. de Azevedo, A. R. G.; Alexandre, J.; Xavier, G. d. C.; Pedroti, L. G., Recycling paper industry effluent sludge for use in mortars: A sustainability perspective. Journal of Cleaner Production 2018, 192, 335-346.
    46. de Azevedo, A. R. G.; Alexandre, J.; Marvila, M. T.; Xavier, G. d. C.; Monteiro, S. N.; Pedroti, L. G., Technological and environmental comparative of the processing of primary sludge waste from paper industry for mortar. Journal of Cleaner Production 2020, 249.
    47. de Azevedo, A. R. G.; Alexandre, J.; Pessanha, L. S. P.; Manhães, R. d. S. T.; de Brito, J.; Marvila, M. T., Characterizing the paper industry sludge for environmentally-safe disposal. Waste Management 2019, 95, 43-52.
    48. Makela, M.; Watkins, G.; Poykio, R.; Nurmesniemi, H.; Dahl, O., Utilization of steel, pulp and paper industry solid residues in forest soil amendment: relevant physicochemical properties and heavy metal availability. J Hazard Mater 2012, 207-208, 21-7.
    49. Toczyłowska-Mamińska, R., Limits and perspectives of pulp and paper industry wastewater treatment – A review. Renewable and Sustainable Energy Reviews 2017, 78, 764-772.
    50. Lindholm-Lehto, P. C.; Knuutinen, J. S.; Ahkola, H. S.; Herve, S. H., Refractory organic pollutants and toxicity in pulp and paper mill wastewaters. Environmental Science Pollution Research 2015, 22 (9), 6473-6499.
    51. Kaur, R.; Tyagi, R. D.; Zhang, X., Review on pulp and paper activated sludge pretreatment, inhibitory effects and detoxification strategies for biovalorization. Environ Res 2020, 182, 109094.
    52. Mandeep; Kumar Gupta, G.; Shukla, P., Insights into the resources generation from pulp and paper industry wastes: Challenges, perspectives and innovations. Bioresour Technol 2020, 297, 122496.
    53. Zhang, Q.; Khan, M. U.; Lin, X.; Yi, W.; Lei, H., Green-composites produced from waste residue in pulp and paper industry: A sustainable way to manage industrial wastes. Journal of Cleaner Production 2020, 262, 121251.
    54. Martins, F. M.; Martins, J. M.; Ferracin, L. C.; da Cunha, C. J., Mineral phases of green liquor dregs, slaker grits, lime mud and wood ash of a Kraft pulp and paper mill. J Hazard Mater 2007, 147 (1-2), 610-7.
    55. Vashistha, P.; Kumar, V.; Singh, S. K.; Dutt, D.; Tomar, G.; Yadav, P., Valorization of paper mill lime sludge via application in building construction materials: A review. Construction and Building Materials 2019, 211, 371-382.
    56. Tripathy, S. K.; Dasu, J.; Murthy, Y. R.; Kapure, G.; Pal, A. R.; Filippov, L. O., Utilisation perspective on water quenched and air-cooled blast furnace slags. Journal of cleaner production 2020, 262, 121354.
    57. Sasaki, M.; ONO, K.; SUZUKI, A.; OKUNO, Y.; YOSHIZAWA, K.-i., Formation and melt-down of softening-melting zone in blast furnace. Transactions of the Iron Steel Institute of Japan 1977, 17 (7), 391-400.
    58. Oner, A.; Akyuz, S., An experimental study on optimum usage of GGBS for the compressive strength of concrete. Cement concrete composites 2007, 29 (6), 505-514.
    59. Cusidó, J. A.; Cremades, L. V.; Soriano, C.; Devant, M., Incorporation of paper sludge in clay brick formulation: Ten years of industrial experience. Applied Clay Science 2015, 108, 191-198.
    60. Griffiths, C. T.; Krstulovich, J. M., Utilization of recycled materials in Illinois highway construction. 2002.
    61. Shi, J.; Tan, J.; Liu, B.; Chen, J.; Dai, J.; He, Z., Experimental study on full-volume slag alkali-activated mortars: air-cooled blast furnace slag versus machine-made sand as fine aggregates. Journal of Hazardous Materials 2021, 403, 123983.
    62. Yildirim, I. Z.; Prezzi, M., Use of steel slag in subgrade applications. 2009.
    63. Pellegrino, C.; Faleschini, F.; Pellegrino, C.; Faleschini, F., Recycled Aggregates for Concrete Production: State-of-the-Art. Sustainability Improvements in the Concrete Industry: Use of Recycled Materials for Structural Concrete Production 2016, 5-34.
    64. Gesoğlu, M.; Güneyisi, E.; Öz, H. Ö., Properties of lightweight aggregates produced with cold-bonding pelletization of fly ash and ground granulated blast furnace slag. Materials structures 2012, 45, 1535-1546.
    65. Purdon, A. J. J. o. t. S. o. C. I., The action of alkalis on blast-furnace slag. 1940, 59 (9), 191-202.
    66. Davidovits, J., Geopolymer, green chemistry and sustainable development solutions: proceedings of the world congress geopolymer 2005. Geopolymer Institute: 2005.
    67. Shi, C.; Roy, D.; Krivenko, P., Alkali-activated cements and concretes. CRC press: 2003.
    68. Huanhai, Z.; Xuequan, W.; Zhongzi, X.; Mingshu, T., Kinetic study on hydration of alkali-activated slag. Cement Concrete Research 1993, 23 (6), 1253-1258.
    69. Fernández-Jiménez, A.; Palomo, J. G.; Puertas, F., Alkali-activated slag mortars: Mechanical strength behaviour. Cement and Concrete Research 1999, 29 (8), 1313-1321.
    70. Duxson, P.; Provis, J.; Lukey, G.; Van Deventer, J.; Separovic, F.; Gan, Z., 39K NMR of free potassium in geopolymers. Industrial engineering chemistry research 2006, 45 (26), 9208-9210.
    71. Yu, P.; Kirkpatrick, R. J.; Poe, B.; McMillan, P. F.; Cong, X., Structure of calcium silicate hydrate (C‐S‐H): Near‐, Mid‐, and Far‐infrared spectroscopy. Journal of the American Ceramic Society 1999, 82 (3), 742-748.
    72. Wang, S.-D.; Pu, X.-C.; Scrivener, K.; Pratt, P. J. A. i. c. r., Alkali-activated slag cement and concrete: a review of properties and problems. 1995, 7 (27), 93-102.
    73. Chen, J. J.; Thomas, J. J.; Taylor, H. F.; Jennings, H. M., Solubility and structure of calcium silicate hydrate. Cement Concrete Research 2004, 34 (9), 1499-1519.
    74. Arbi, K.; Nedeljkovic, M.; Zuo, Y.; Grünewald, S.; Keulen, A.; Ye, G., Experimental study on workability of alkali activated fly ash and slag-based geopolymer concretes. Geopolymers: The route to eliminate waste
    emissions in ceramic cement manufacturing 2015, 75-78.
    75. Gong, C.; Yang, N., Effect of phosphate on the hydration of alkali-activated red mud–slag cementitious material. Cement Concrete Research 2000, 30 (7), 1013-1016.
    76. Wang, S.-D.; Scrivener, K. L.; Pratt, P. J. C.; research, c., Factors affecting the strength of alkali-activated slag. 1994, 24 (6), 1033-1043.
    77. Talling, B.; Brandstetr, J., Present state and future of alkali-activated slag concretes. Special Publication 1989, 114, 1519-1546.
    78. Neto, A. A. M.; Cincotto, M. A.; Repette, W., Drying and autogenous shrinkage of pastes and mortars with activated slag cement. Cement concrete research 2008, 38 (4), 565-574.
    79. Häkkinen, T., The influence of slag content on the microstructure, permeability and mechanical properties of concrete Part 1 Microstructural studies and basic mechanical properties. Cement Concrete Research 1993, 23 (2), 407-421.
    80. Roy, D. M., Alkali-activated cements opportunities and challenges. Cement concrete research 1999, 29 (2), 249-254.
    81. Akçaözoğlu, S.; Ulu, C., Recycling of waste PET granules as aggregate in alkali-activated blast furnace slag/metakaolin blends. Construction
    Building Materials 2014, 58, 31-37.
    82. Huang, X.; Huang, T.; Li, S.; Muhammad, F.; Xu, G.; Zhao, Z.; Yu, L.; Yan, Y.; Li, D.; Jiao, B., Immobilization of chromite ore processing residue with alkali-activated blast furnace slag-based geopolymer. Ceramics International 2016, 42 (8), 9538-9549.
    83. Zerfu, K.; Ekaputri, J. J. In Review on alkali-activated fly ash based geopolymer concrete, Materials Science Forum, Trans Tech Publ: 2016; pp 162-169.
    84. Kiventerä, J.; Perumal, P.; Yliniemi, J.; Illikainen, M., Mine tailings as a raw material in alkali activation: A review. International Journal of Minerals, Metallurgy
    Materials 2020, 27, 1009-1020.
    85. Provis, J. L.; Palomo, A.; Shi, C. J. C.; Research, C., Advances in understanding alkali-activated materials. 2015, 78, 110-125.
    86. Shi, C.; Fernández-Jiménez, A., Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements. Journal of hazardous materials 2006, 137 (3), 1656-1663.
    87. Bernal, S. A.; Rodríguez, E. D.; Kirchheim, A. P.; Provis, J. L., Management and valorisation of wastes through use in producing alkali‐activated cement materials. Journal of Chemical Technology Biotechnology 2016, 91 (9), 2365-2388.
    88. Yan, S.; Sagoe-Crentsil, K.; Shapiro, G., Reuse of de-inking sludge from wastepaper recycling in cement mortar products. Journal of Environment Management 2011, 92 (8), 2085-90.
    89. Martínez-Lage, I.; Velay-Lizancos, M.; Vázquez-Burgo, P.; Rivas-Fernández, M.; Vázquez-Herrero, C.; Ramírez-Rodríguez, A.; Martín-Cano, M., Concretes and mortars with waste paper industry: Biomass ash and dregs. Journal of Environmental Management 2016, 181, 863-873.
    90. de Azevedo, A. R. G.; Alexandre, J.; Marvila, M. T.; Xavier, G. d. C.; Monteiro, S. N.; Pedroti, L. G., Technological and environmental comparative of the processing of primary sludge waste from paper industry for mortar. Journal of Cleaner Production 2020, 249, 119336.
    91. Ferreiro, S.; Frías, M.; Vigil de la Villa, R.; Sánchez de Rojas, M. I., The influence of thermal activation of art paper sludge on the technical properties of blended Portland cements. Cement and Concrete Composites 2013, 37, 136-142.
    92. Bhagath Singh, G. V. P.; Subramaniam, K. V. L., Production and characterization of low-energy Portland composite cement from post-industrial waste. Journal of Cleaner Production 2019, 239, 118024.
    93. Vashistha, P.; Singh, S. K.; Dutt, D.; Kumar, V., Sustainable utilization of paper mill solid wastes via synthesis of nano silica for production of belite based clinker. Journal of Cleaner Production 2019, 224, 557-565.
    94. Raut, S. P.; Sedmake, R.; Dhunde, S.; Ralegaonkar, R. V.; Mandavgane, S. A., Reuse of recycle paper mill waste in energy absorbing light weight bricks. Construction and Building Materials 2012, 27 (1), 247-251.
    95. Yaras, A., Combined effects of paper mill sludge and carbonation sludge on characteristics of fired clay bricks. Construction and Building Materials 2020, 249, 118722.
    96. Antunes Boca Santa, R. A.; Bernardin, A. M.; Riella, H. G.; Kuhnen, N. C., Geopolymer synthetized from bottom coal ash and calcined paper sludge. Journal of Cleaner Production 2013, 57, 302-307.
    97. Mamat, N.; Kusbiantoro, A.; Rahman, N., Hydrochloric acid based pre-treatment on paper mill sludge ash as an alternative source material for geopolymer. Materials Today: Proceedings 2018, 5 (10, Part 2), 21825-21831.
    98. 劉舜仁, 循環經濟時代的設計挑戰. 台灣建築學會會刊雜誌 2018, 91, 50-59.
    99. 黃兆龍, 混凝土性質與行為, 詹氏書局. 1999.
    100. Breccolotti, M.; Gentile, S.; Tommasini, M.; Materazzi, A. L.; Bonfigli, M. F.; Pasqualini, B.; Colone, V.; Gianesini, M. J. E. S., Beam-column joints in continuous RC frames: Comparison between cast-in-situ and precast solutions. 2016, 127, 129-144.
    101. Moehle, J. P.; Ghodsi, T.; Hooper, J. D.; Fields, D. C.; Gedhada, R. J. N. s. d. t. b., Seismic design of cast-in-place concrete special structural walls and coupling beams. 2011, 6.
    102. ASTM, C109/C109M-20,“Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens)”, ASTM Int. (2020).
    103. Liska, M.; Al-Tabbaa, A.; Carter, K.; Fifield, J. J. P. o. t. I. o. C. E.-C. M., Scaled-up commercial production of reactive magnesium cement pressed masonry units. Part I: Production. 2012, 165 (4), 211-223.
    104. Murmu, A. L.; Patel, A. J. C.; materials, b., Towards sustainable bricks production: An overview. 2018, 165, 112-125.
    105. Silva, V. M. d.; Góis, L. C.; Duarte, J. B.; Silva, J. B. d.; Acchar, W. J. M. R., Incorporation of ceramic waste into binary and ternary soil-cement formulations for the production of solid bricks. 2014, 17, 326-331.
    106. Sambucci, M.; Sibai, A.; Fattore, L.; Martufi, R.; Lucibello, S.; Valente, M. J. J. o. C. S., Finite element multi-physics analysis and experimental testing for hollow brick solutions with lightweight and eco-sustainable cement mix. 2022, 6 (4), 107.
    107. Yuan, X.; Tang, Y.; Li, Y.; Wang, Q.; Zuo, J.; Song, Z. J. J. o. C. P., Environmental and economic impacts assessment of concrete pavement brick and permeable brick production process-A case study in China. 2018, 171, 198-208.
    108. Kim, H.-S.; Lee, S.-H.; Kim, B. J. A. S., Properties of extrusion concrete panel using waste concrete powder. 2017, 7 (9), 910.
    109. Buswell, R. A.; De Silva, W. L.; Jones, S. Z.; Dirrenberger, J. J. C.; Research, C., 3D printing using concrete extrusion: A roadmap for research. 2018, 112, 37-49.
    110. Perrot, A.; Rangeard, D.; Pierre, A. J. M.; Structures, Structural built-up of cement-based materials used for 3D-printing extrusion techniques. 2016, 49, 1213-1220.
    111. 马国伟,王里, 水泥基材料3D打印关键技术. 中国建材工业出版社: 中国, 2020.
    112. Nguyen-Van, V.; Li, S.; Liu, J.; Nguyen, K.; Tran, J. P. J. A. M., Modelling of 3D concrete printing process: A perspective on material and structural simulations. 2022, 103333.
    113. Lin, A.; Goel, A.; Yeo, C.; Chung, J.; Dai Pang, S.; Wang, C.-H.; Taylor, H.; Kua, H. W. J. A. i. C., Compressive load-dominated concrete structures for customized 3D-printing fabrication. 2022, 141, 104467.
    114. Kozminska, U. In Circular design: reused materials and the future reuse of building elements in architecture. Process, challenges and case studies, IOP Conference Series: Earth and Environmental Science, IOP Publishing: 2019; p 012033.
    115. Cruz Rios, F.; Grau, D.; Bilec, M., Barriers and enablers to circular building design in the US: An empirical study. Journal of construction engineering management 2021, 147 (10), 04021117.
    116. Attia, S.; Al-Obaidy, M. In Design criteria for circular buildings, Crossing Boundaries, 2021.
    117. Eberhardt, L. C. M.; Birkved, M.; Birgisdottir, H., Building design and construction strategies for a circular economy. Architectural Engineering Design Management 2022, 18 (2), 93-113.
    118. Phadke, M. S., Quality engineering using robust design. Prentice Hall PTR: 1995.
    119. Lee, H.-H., Taguchi methods: principles and practices of quality design. Gau Lih Book Co., Ltd: 2000.
    120. Taguchi, G.; Konishi, S., Orthogonal arrays and linear graphs. na: 1987.
    121. Barrett, J. D., Taguchi's quality engineering handbook. Taylor & Francis: 2007.
    122. Hadi, M. N. S.; Farhan, N. A.; Sheikh, M. N., Design of geopolymer concrete with GGBFS at ambient curing condition using Taguchi method. Construction and Building Materials 2017, 140, 424-431.
    123. Taguchi, G., Introduction to quality engineering: designing quality into products and processes. 1986.
    124. Krishnaiah, K.; Shahabudeen, P., Applied design of experiments and Taguchi methods. PHI Learning Pvt. Ltd.: 2012.
    125. Prusty, J. K.; Pradhan, B., Multi-response optimization using Taguchi-Grey relational analysis for composition of fly ash-ground granulated blast furnace slag based geopolymer concrete. Construction building materials 2020, 241, 118049.
    126. Chang, C. Y.; Huang, R.; Lee, P. C.; Weng, T. L., Application of a weighted Grey-Taguchi method for optimizing recycled aggregate concrete mixtures. Cement and Concrete Composites 2011, 33 (10), 1038-1049.
    127. Canbolat, A. S.; Bademlioglu, A. H.; Arslanoglu, N.; Kaynakli, O., Performance optimization of absorption refrigeration systems using Taguchi, ANOVA and Grey Relational Analysis methods. Journal of Cleaner Production 2019, 229, 874-885.
    128. Kuo, Y.; Yang, T.; Huang, G.-W., The use of grey relational analysis in solving multiple attribute decision-making problems. Computers & Industrial Engineering 2008, 55 (1), 80-93.
    129. Choi, H.; Choi, Y. C., Setting characteristics of natural cellulose fiber reinforced cement composite. Construction and Building Materials 2021, 271, 121910.
    130. Wyrzykowski, M.; Ghourchian, S.; Sinthupinyo, S.; Chitvoranund, N.; Chintana, T.; Lura, P., Internal curing of high performance mortars with bottom ash. Cement Concrete Composites 2016, 71, 1-9.
    131. Dai, X.; Aydin, S.; Yücel Yardimci, M.; Qiang, R. E. N.; Lesage, K.; De Schutter, G., Rheology, early-age hydration and microstructure of alkali-activated GGBFS-Fly ash-limestone mixtures. Cement and Concrete Composites 2021, 124, 104244.
    132. Silva, G.; Kim, S.; Bertolotti, B.; Nakamatsu, J.; Aguilar, R. J. C.; Materials, B., Optimization of a reinforced geopolymer composite using natural fibers and construction wastes. 2020, 258, 119697.
    133. Chen, J.-H. Silicon-Contained Waste as a Raw Material of Inorganic Polymers. dissertation, National Cheng Kung University, 2009.
    134. Luukkonen, T.; Sreenivasan, H.; Abdollahnejad, Z.; Yliniemi, J.; Kantola, A.; Telkki, V.-V.; Kinnunen, P.; Illikainen, M., Influence of sodium silicate powder silica modulus for mechanical and chemical properties of dry-mix alkali-activated slag mortar. Construction and Building Materials 2020, 233, 117354.
    135. Li, L. G.; Kwan, A. K. H., Adding limestone fines as cementitious paste replacement to improve tensile strength, stiffness and durability of concrete. Cement and Concrete Composites 2015, 60, 17-24.
    136. Courard, L.; Michel, F.; Perkowicz, S.; Garbacz, A., Effects of limestone fillers on surface free energy and electrical conductivity of the interstitial solution of cement mixes. Cement and Concrete Composites 2014, 45, 111-116.
    137. Ramezanianpour, A. M.; Hooton, R. D., A study on hydration, compressive strength, and porosity of Portland-limestone cement mixes containing SCMs. Cement and Concrete Composites 2014, 51, 1-13.
    138. Mozaffari, E.; Kinuthia, J. M.; Bai, J.; Wild, S., An investigation into the strength development of Wastepaper Sludge Ash blended with Ground Granulated Blastfurnace Slag. Cement and Concrete Research 2009, 39 (10), 942-949.
    139. Al-Majidi, M. H.; Lampropoulos, A.; Cundy, A.; Meikle, S., Development of geopolymer mortar under ambient temperature for in situ applications. Construction and Building Materials 2016, 120, 198-211.
    140. Kim, M. S.; Jun, Y.; Lee, C.; Oh, J. E., Use of CaO as an activator for producing a price-competitive non-cement structural binder using ground granulated blast furnace slag. Cement and Concrete Research 2013, 54, 208-214.
    141. Ben Haha, M.; Le Saout, G.; Winnefeld, F.; Lothenbach, B., Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags. Cement and Concrete Research 2011, 41 (3), 301-310.
    142. Al-Otaibi, S., Durability of concrete incorporating GGBS activated by water-glass. Construction and Building Materials 2008, 22 (10), 2059-2067.
    143. Krizan, D.; Zivanovic, B., Effects of dosage and modulus of water glass on early hydration of alkali–slag cements. Cement and Concrete Research 2002, 32 (8), 1181-1188.
    144. Fang, S.; Lam, E. S. S.; Li, B.; Wu, B., Effect of alkali contents, moduli and curing time on engineering properties of alkali activated slag. Construction and Building Materials 2020, 249.
    145. Sithole, N. T.; Mashifana, T., Geosynthesis of building and construction materials through alkaline activation of granulated blast furnace slag. Construction and Building Materials 2020, 264, 120712.
    146. De Filippis, U.; Prud'homme, E.; Meille, S., Relation between activator ratio, hydration products and mechanical properties of alkali-activated slag. Construction and Building Materials 2021, 266, 120940.
    147. Ke, X.; Bernal, S. A.; Provis, J. L., Controlling the reaction kinetics of sodium carbonate-activated slag cements using calcined layered double hydroxides. Cement and Concrete Research 2016, 81, 24-37.
    148. Panesar, D. K.; Zhang, R., Performance comparison of cement replacing materials in concrete: Limestone fillers and supplementary cementing materials – A review. Construction and Building Materials 2020, 251, 118866.
    149. Chen, J. J.; Kwan, A. K. H.; Jiang, Y., Adding limestone fines as cement paste replacement to reduce water permeability and sorptivity of concrete. Construction and Building Materials 2014, 56, 87-93.
    150. Aydın, S.; Baradan, B., Effect of activator type and content on properties of alkali-activated slag mortars. Composites Part B: Engineering 2014, 57, 166-172.
    151. Ye, H.; Cartwright, C.; Rajabipour, F.; Radlińska, A., Understanding the drying shrinkage performance of alkali-activated slag mortars. Cement and Concrete Composites 2017, 76, 13-24.
    152. Türkmen, İ.; Gül, R.; Çelik, C., A Taguchi approach for investigation of some physical properties of concrete produced from mineral admixtures. Building and Environment 2008, 43 (6), 1127-1137.
    153. Teimortashlu, E.; Dehestani, M.; Jalal, M., Application of Taguchi method for compressive strength optimization of tertiary blended self-compacting mortar. Construction and Building Materials 2018, 190, 1182-1191.
    154. Dave, S. V.; Bhogayata, A., The strength oriented mix design for geopolymer concrete using Taguchi method and Indian concrete mix design code. Construction and Building Materials 2020, 262, 120853.
    155. Mehta, A.; Siddique, R.; Singh, B. P.; Aggoun, S.; Łagód, G.; Barnat-Hunek, D., Influence of various parameters on strength and absorption properties of fly ash based geopolymer concrete designed by Taguchi method. Construction and Building Materials 2017, 150, 817-824.
    156. Yi, T.; Liou, S.-R.; Kuo, W.-Y., The Interaction Effects of the Parameters on Optimization Design in Paper Production Waste Usage on Alkali-Activated Slag with Taguchi Method. Journal of Renewable Materials 2022, 10 (6), 1753-1772.
    157. Andrade, L. B.; Rocha, J. C.; Cheriaf, M., Influence of coal bottom ash as fine aggregate on fresh properties of concrete. Construction and Building Materials 2009, 23 (2), 609-614.
    158. Gebregziabiher, B. S.; Thomas, R.; Peethamparan, S., Very early-age reaction kinetics and microstructural development in alkali-activated slag. Cement and Concrete Composites 2015, 55, 91-102.
    159. Rakhimova, N. R.; Rakhimov, R. Z.; Naumkina, N. I.; Khuzin, A. F.; Osin, Y. N., Influence of limestone content, fineness, and composition on the properties and microstructure of alkali-activated slag cement. Cement and Concrete Composites 2016, 72, 268-274.
    160. Gao, X.; Yu, Q. L.; Brouwers, H. J. H., Reaction kinetics, gel character and strength of ambient temperature cured alkali activated slag–fly ash blends. Construction and Building Materials 2015, 80, 105-115.
    161. Puertas, F.; Martı́nez-Ramı́rez, S.; Alonso, S.; Vázquez, T., Alkali-activated fly ash/slag cements: strength behaviour and hydration products. Cement concrete research 2000, 30 (10), 1625-1632.
    162. Ismail, I.; Bernal, S. A.; Provis, J. L.; San Nicolas, R.; Hamdan, S.; van Deventer, J. S. J., Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash. Cement and Concrete Composites 2014, 45, 125-135.
    163. Chen, X.; Zhang, J.; Lu, M.; Chen, B.; Gao, S.; Bai, J.; Zhang, H.; Yang, Y., Study on the effect of calcium and sulfur content on the properties of fly ash based geopolymer. Construction and Building Materials 2022, 314, 125650.
    164. Li, Z.; Lu, T.; Liang, X.; Dong, H.; Ye, G., Mechanisms of autogenous shrinkage of alkali-activated slag and fly ash pastes. Cement and Concrete Research 2020, 135, 106107.
    165. Bakharev, T.; Sanjayan, J. G.; Cheng, Y. B., Effect of admixtures on properties of alkali-activated slag concrete. Cement and Concrete Research 2000, 30 (9), 1367-1374.
    166. Chi, M.; Huang, R., Binding mechanism and properties of alkali-activated fly ash/slag mortars. Construction and Building Materials 2013, 40, 291-298.
    167. Gao, X.; Yu, Q. L.; Brouwers, H. J. H., Assessing the porosity and shrinkage of alkali activated slag-fly ash composites designed applying a packing model. Construction and Building Materials 2016, 119, 175-184.
    168. Ma, Y.; Ye, G., The shrinkage of alkali activated fly ash. Cement and Concrete Research 2015, 68, 75-82.
    169. Son, H.; Park, S. M.; Seo, J. H.; Lee, H. K., Effect of CaSO4 incorporation on pore structure and drying shrinkage of alkali-activated binders. Materials 2019, 12 (10), 1673.
    170. Poon, C. S.; Kou, S.; Lam, L.; Lin, Z., Activation of fly ash/cement systems using calcium sulfate anhydrite (CaSO4). Cement Concrete research 2001, 31 (6), 873-881.
    171. Adesina, A. In Properties of alkali activated slag concrete incorporating waste materials as aggregate: A review, Materials Science Forum, Trans Tech Publ: 2019; pp 214-220.
    172. Ismail, I.; Bernal, S. A.; Provis, J. L.; San Nicolas, R.; Brice, D. G.; Kilcullen, A. R.; Hamdan, S.; van Deventer, J. S. J., Influence of fly ash on the water and chloride permeability of alkali-activated slag mortars and concretes. Construction and Building Materials 2013, 48, 1187-1201.
    173. Guo, X.; Shi, H.; Dick, W. A., Compressive strength and microstructural characteristics of class C fly ash geopolymer. Cement and Concrete Composites 2010, 32 (2), 142-147.
    174. Bernal, S. A.; de Gutierrez, R. M.; Provis, J. L.; Rose, V., Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags. Cement and Concrete Research 2010, 40 (6), 898-907.
    175. Jang, J. G.; Lee, H. K., Effect of fly ash characteristics on delayed high-strength development of geopolymers. Construction and Building Materials 2016, 102, 260-269.
    176. Puligilla, S.; Mondal, P., Co-existence of aluminosilicate and calcium silicate gel characterized through selective dissolution and FTIR spectral subtraction. Cement and Concrete Research 2015, 70, 39-49.
    177. Zhang, Y.; Hou, D.; Jiang, J., Colloid Model of CSH in Cement: From a Single Molecule to Microstructure. Colloid Model of CSH in Cement: From a Single Molecule to Microstructure.
    178. Yi, T.; Liou, S.-R.; Kuo, W.-Y., Optimizing a Hybrid Mortar for an Alkali-Activated Material using Taguchi–Grey Relational Analysis of Paper Production Wastes. Case Studies in Construction Materials 2023, e02116.
    179. Organization, I. S., ISO 14040: Environmental Management-Life Cycle Assessment-Principles and Framework. 1997.
    180. Standardization, I. O. f., Environmental management: life cycle assessment; requirements and guidelines. ISO Geneva, Switzerland: 2006; Vol. 14044.
    181. Heijungs, R.; Guinée, J. B. J. W. m., Allocation and ‘what-if’scenarios in life cycle assessment of waste management systems. 2007, 27 (8), 997-1005.
    182. Batuecas, E.; Ramón-Álvarez, I.; Sánchez-Delgado, S.; Torres-Carrasco, M., Carbon footprint and water use of alkali-activated and hybrid cement mortars. Journal of Cleaner Production 2021, 319, 128653.
    183. Jiang, M.; Chen, X.; Rajabipour, F.; Hendrickson, C. T., Comparative life cycle assessment of conventional, glass powder, and alkali-activated slag concrete and mortar. Journal of Infrastructure Systems 2014, 20 (4), 04014020.
    184. 中華民國内政部建築研究所, 低碳建築評估手冊. 2023.
    185. Sharma, P.; Singh, S. P., Pollutants characterization and toxicity assessment of pulp and paper industry sludge for safe environmental disposal. Emerging Treatment Technologies for Waste Management 2021, 207-223.
    186. He, J.; Lange, C. R.; Dougherty, M., Laboratory study using paper mill lime mud for agronomic benefit. Process Safety and Environmental Protection 2009, 87 (6), 401-405.
    187. Pöykiö, R.; Nurmesniemi, H.; Kuokkanen, T.; Perämäki, P., The use of a sequential leaching procedure for assessing the heavy metal leachability in lime waste from the lime kiln at a caustizicing process of a pulp mill. Chemosphere 2006, 65 (11), 2122-2129.
    188. Muse, J. K.; Mitchell, C. C. J. A. J., Paper mill boiler ash and lime by‐products as soil liming materials. 1995, 87 (3), 432-438.
    189. Nurmesniemi, H.; Pöykiö, R.; Perämäki, P.; Kuokkanen, T. J. C., Extractability of trace elements in precipitated calcium carbonate (PCC) waste from an integrated pulp and paper mill complex. 2008, 70 (7), 1161-1167.
    190. Mahmoudkhani, M.; Richards, T.; Theliander, H. J. P. S.; Protection, E., Recycling of solid residues to the forest: experimental and theoretical study of the release of sodium from lime mud and green liquor dregs aggregates. 2004, 82 (3), 230-237.
    191. Yatongchai, C.; Thavornyutikarn, B. J. M. C.; Physics, Conversion of lime mud waste to hydroxyapatite biomaterials. 2021, 266, 124544.
    192. Catalan, L. J.; Kumari, A. J. J. o. E. E.; Science, Efficacy of lime mud residues from kraft mills to amend oxidized mine tailings before permanent flooding. 2005, 4 (4), 241-256.
    193. Serafimova, E.; Mladenov, M.; Mihailova, I.; Pelovski, Y. J. J. o. t. U. o. C. T.; Metallurgy, Study on the characteristics of waste wood ash. 2011, 46 (1), 31-34.
    194. Pöykiö, R.; Mäkelä, M.; Watkins, G.; Nurmesniemi, H.; Olli, D. J. T. o. N. M. S. o. C., Heavy metals leaching in bottom ash and fly ash fractions from industrial-scale BFB-boiler for environmental risks assessment. 2016, 26 (1), 256-264.
    195. Nurmesniemi, H.; Pöykiö, R.; Kuokkanen, T.; Rämö, J. J. W. m.; research, Chemical sequential extraction of heavy metals and sulphur in bottom ash and in fly ash from a pulp and paper mill complex. 2008, 26 (4), 389-399.
    196. Nurmesniemi, H.; Pöykiö, R.; Keiski, R. L.; Matsuto, T. J. T.; Metal, E. H.; 171, S. C. i. F. A. f. a. L.-S. F. B. B. a. a. P. M. I. B., Total and extractable heavy metal and sulfur concentrations in fly ash from a large-sized (90 MW) fluidized bed boiler at a pulp mill incinerating biofuels. 2008, 171.
    197. Barbosa, R.; Dias, D.; Lapa, N.; Lopes, H.; Mendes, B. J. F. P. T., Chemical and ecotoxicological properties of size fractionated biomass ashes. 2013, 109, 124-132.
    198. Pöykiö, R.; Mäkelä, M.; Nurmesniemi, H.; Dahl, O.; Oguchi, M. J. W.; Valorization, B., Application of the BRC sequential extraction scheme for assessing the leaching of elements in wood-based ash fractions from a large-sized (115 MW) industrial power plant of a pulp and board mill. 2013, 4, 821-830.
    199. ArchDaily Archdaily Main Page. https://www.archdaily.com/ (accessed 10.20).
    200. Cimadomo, G.; García Rubio, R.; Shahdadpuri Aswani, V., Towards a (new) Architectural History for a digital age. Archdaily as a dissemination tool for architectural knowledge. 2018.
    201. Mahto, D. K.; Singh, L. In A dive into Web Scraper world, 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), IEEE: 2016; pp 689-693.
    202. Higuch, K. KH Coder 3. https://khcoder.net/en/ (accessed 12.09).
    203. Higuchi, K. J. K. R. U., KH Coder 3 reference manual. 2016.
    204. Higuchi, K., New Quantitative Text Analytical Method and KH Coder Software. Japanese Sociological Review 2017, 68 (3), 334-350.
    205. Koyama, Y.; Matsumoto, K. In Analysis of descriptions in Autobiography of Intercultural Encounters using KH coder: The development of framework of teaching intercultural competence in EFL classes in Japan, Society for Information Technology & Teacher Education International Conference, Association for the Advancement of Computing in Education (AACE): 2014; pp 1119-1124.
    206. Baltranaite, E.; Povilanskas, R. In Quantitative content analysis of the influence of natural factors on the competitiveness of South Baltic seaside resorts using the KH Coder 2.0 method, Geophysical Research Abstracts, 2019.
    207. Niwattanakul, S.; Singthongchai, J.; Naenudorn, E.; Wanapu, S. In Using of Jaccard coefficient for keywords similarity, Proceedings of the international multiconference of engineers and computer scientists, 2013; pp 380-384.
    208. Hamers, L. J. I. P.; Management, Similarity measures in scientometric research: The Jaccard index versus Salton's cosine formula. 1989, 25 (3), 315-18.
    209. Flack, R. W.; Ross, B. J. In Evolution of architectural floor plans, European conference on the applications of evolutionary computation, Springer: 2011; pp 313-322.
    210. LiLinLab, C.-H. C-slurry. https://materialdistrict.com/material/c-slurry/ (accessed 12.21).

    無法下載圖示 校內:2028-07-04公開
    校外:2028-07-04公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE