簡易檢索 / 詳目顯示

研究生: 葉紹興
Yeh, Shao-Hsin
論文名稱: 以神經元為基礎之多陣列電極系統於細胞動作電位與電阻抗量測
Development of Action Potential and Impedance Measurement System for Cultured Neurons on Multielectrode Array
指導教授: 陳家進
Chen, Jia-Jin
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 40
中文關鍵詞: 細胞體外記錄PC12 細胞電流刺激電阻抗頻譜微陣列電極
外文關鍵詞: extracellular recording, electric impedance spectra, PC12, multielectrode array, current stimulation
相關次數: 點閱:111下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近來在體外電生理研究中微陣列電極已被應用於表面修改與微壓印圖案規畫的神經網路上進行體外電刺激與記錄其動態響應。因此本研究主要建構神經元培養在多通道電極上之細胞動作電位及電阻抗即時量測,利用電訊號傳遞方式提供神經元細胞達到體外電刺激與紀錄功能,用以觀察神經網路中電生理訊號傳遞情形。在體外電刺激器部分使用具負回授的電路產生穩定雙相微電流脈衝給予神經元細胞電刺激。
    經由電阻抗頻譜量測與長時間阻抗監控方法驗證了神經元電極界面是可由電阻與並聯電容所等效,透過此方法提供了神經細胞健康與形態上變化的生理資訊,在長期阻抗內測量中我們使用高滲透壓的PBS液體來模擬體外培養的神經細胞受到刺激或神經形態改變的狀況。在細胞體外電刺激研究中適當的刺激閥值已被找出並由分化的PC12 細胞上記錄到刺激後的電流電生理訊號,在電刺激的結果與神經細胞貼附電極的完整性有相關。在未來發展中此電生理系統將經由微壓印圖案規畫使腦皮質細胞培養在探針式的微陣列電極上進而植入大腦中,希望可以進一步的觀察當神經性疾病時之腦部活動情形。

    Recent electrophysiology development of multielectrode array (MEA) allows researchers to perform extracellular stimulation and sensing of patterned neural network cultured on a surface-modified substrate. The aims of this study were to construct an action potential (AP) and impedance measurement system for neurons cultured on multielectrode array (MEA) to validate the extracellular stimulation and recording for observing the electrophysiological signal transmission in neuronal network. An extracellular stimulator with negative feedback to produce the biphasic micro-current pulse for neuron stimulation was built in this study.
    In verifying of the sealing resistance and shunt capacitance between the neurons and electrode, experiments were performed by impedance spectra and long-term impedance monitoring for neurons or cells seeded and grew on multielectrode. In the long-term impedance measurement, we used the high osmosis PBS to simulate damage in neurons in vitro. For extracellular stimulation study, neuronal activity of differenced PC12 cells successful was recorded and the suitable stimulation window was determined. However, the stimulation results were affected by electrode impedance as well as sealing impedacen resulting from neuron cells covering the microelectrode. Further development of microcontact printing for patterned neuron network cultured on the MEA should provide an novel platform for in-vitro neuronal outgrowth under varied conditions via impedance and electrophysiological measurements.

    中文摘要 i Abstract ii 誌謝 iii Contents v List of Tables vi List of Figures vii Chapter 1 Introduction 1 1.1 Microelectrode arrays for neuronal network 1 1.2 Impedance measurement 1 1.3 Extracellular stimulation and sensing 3 1.4 Comparison of various stimulating systems in MEA 4 1.5 Motivation and purposes 5 Chapter 2 Material and Methods 6 2.1 Overall structure of extracellular electrophysiology system 6 2.2 Impedance spectroscopy measurement 7 2.3 The constant current stimulation system 8 2.4 The multichannel extracellular recording system 10 2.5 Fabrication of multielectrode arrays 12 2.6 Experimental design in impedance measurement 13 2.6.1 Impedance measure of MEA 13 2.6.2 Impedance measure of PC12 cultured MEA 13 2.6.3 In-vitro measurement of cortical neuron-electrode impedance 14 2.7 Experimental design for extracellular stimulation and sensing 14 Chapter 3 Results 16 3.1 Specifications of impedance and electrophysiology measurement 16 3.2 The constant current stimulating system 18 3.3 Evaluation of MEA using impedance measurement 20 3.4 Impedance spectra of neuron-electrode interface 21 3.4.1 In-vitro measurement of single PC12 cell-electrode impedance 21 3.4.2 Long-term impedance measurement of PC12 cell-electrode 22 3.4.3 In-vitro measurement of cortical neuron-electrode impedance 23 3.5 Experiments of extracellular recording 24 3.5.1 Tests of ground-loop noise 24 3.5.2 Recording of extracellular stimulation 28 Chapter 4 Discussion and Conclusion 33 Reference 35 Appendix 37

    [1] J. C. Changa, G. J. Brewerb, B. C. Wheeler, “A modified microstamping technique enhances polylysine transfer and neuronal cell patterning.”, Biomaterials, Vol. 24, pp. 2863–2870, 2003.
    [2] T. Meyer, K. H. Boven, E. Gunther, M. Fejtl, “Micro-Electrode Arrays in Cardiac Safety Pharmacology, A Novel Tool to Study QT Interval Prolongation.”, Drug Safly, Vol. 27, No. 11, pp. 763-772, 2004.
    [3] A. Sarje, N. Thakor “Neural Interfacing,” Proceedings of the 26th Annual International Conference of the IEEE EMBS, pp. 5325–5328, 2004.
    [4] J. C. Chang, G. J. Brewer, B. C. Wheeler, “Modulation of Neural Network Activity by Patterning. ”, Biosensors & Bioelectronics, Vol.16 , pp. 527-533 , 2001.
    [5] Y. Nam, J. Chang, D. Khatami, G. J. Brewer and B. C. Wheeler, “Patterning to Enhance Activity of Cultured Neuronal Networks.”, IEE Proceedings of Nonobiotechnol, Vol. 151, No. 3, pp. 109-115, 2004.
    [6] T. Stiegutz, M. Schuettler, K. P. Koch “Implantable Biomedical Microsystems for Neural Prostheses,” IEEE Engineering in Medicine and Biology Magazine, pp. 58-65,2005.
    [7] N. Yoonkey, J. C. Chang, B. C. Wheeler, and G. J. Brewer, “Gold-Coated
    Microelectrode Array With Thiol Linked Self-Assembled., ” IEEE Transactions on
    Biomedical Engineering, Vol. 51 (1), pp. 158-165, 2004.
    [8] J. R. Buitenweg, W. L. C. Rutten, W. P. A. Willems, J. W. Van Nieuwkasteele,“Measurement of Sealing Resistance of Cell-Electrode Interfaces in Neuronal Cultures using Impedance Spectroscopy.”, Cellular Engineering, Vol. 36, pp. 630-637, 1998.
    [9] J. R. Buitenweg, W. L. C. Rutten, Marani, ” Finite Element Modeling of the
    Neuron-Electrode Interface.,” IEEE Engineering in Medicine and Biology Magazine, vol. 19(6), pp. 46-52, 2000.
    [10] Y. Jimbo, N.Kasai, K. Torimitsu, T. Tateno, H.P. C. Robinson, “A System for MEA-Based Multisite Stimulation.”, IEEE Transactions on Biomedical Engineering, Vol. 50. No.2, pp. 241-248, 2003.
    [11] D. A. Wagenaar, S. M. Potter,“A Versatile all-Channel Stimulator for Electrode Arrays with Real Time Control.”, Journal of Neuroscience Engineering, Vol. 1, pp. 39-45, 2004.
    [12] D. A. Wagenaar, J. Pine, S. M. Potter, “Effective Parameters for Stimulation of Dissociated Cultures Using Multi-electrode Arrays.”, Journal of Neuroscience Methods, Vol. 138, pp. 27-37, 2004.
    [13] D. A. Borkholder, J. Bao, N. I. Maluf, E. R. Perl, G. T. A. Kovacs, “Microelectrode Arrays for Stimulation of Neural Slice Preparations.”, Journal of Neuroscience Methods, Vol. 77, pp. 61-66, 1997.
    [14] A. Kotwal, C. E. Schmidt, “Electrical Stimulation Alters Protein Adsorption and Nerve Cell Interactions with Electrically Conducting Biomaterials.”, Biomaterials, Vol. 22, pp. 1055-1064, 2001.
    [15] M. P. Maher, J. Pine, J. Wright, Y. C. Tai, “The Neurochip: a new Multielectrode Device for Stimulating and Recording from Cultured Neurons Recording from Cultured Neurons.”, Journal of Neuroscience Mathods, Vol. 87, pp. 45-56, 1999.
    [16] J. R. Buitenweg, W. L. C. Rutten, E. Marani, S.K.L. Polman, J. Ursum, ” Extracellular Detection of Active Membrane Currents in the Neuron-Electrode Interface.,” Journal of Neuroscience Methods , 115 , pp. 211-221, 2002.
    [17] U. Egert, B. Schlosshauer, S. Fennrich, W. Nisch, M. Fejtl, T. Knott, T. Muller, “A Novel Organotypic Long-Term Culture of the Rat Hippocampus on Substrate-Interated Multielectrode Arrays.”, Brain Research Protocols, no. 2, pp. 229-242, 1998.
    [18] M. Maher, J. Pine, J. Wright c, Y. C. Tai, “The Neurochip: A New Multielectrode Device for Stimulating and Recording from Cultured Neurons.”, Journal of Neuroscience Methods, Vol. 87, pp. 45-56,1999.
    [19] M. Sandison, A.S.G. Curtis, C.D.W. Wilkinson, “Effective Extra-Cellular Recording from Vertebrate Neurons in Culture Using a New Type of Micre-Electrode Array.”, Journal of Neuroscience Methods, Vol. 114, pp. 63-71, 2002.
    [21] J. D. Weiland, D. J. Anderson, “Chronic Neural Stimulation with Thin-Film, Iridium Oxide Electrodes.”, IEEE Transactions on Biomedical Engineering, Vol. 47, No. 7, pp. 911-918, 2000.
    [22] S. Butovas, C. Schwarz, “Spatiotemporal Effects of Microstimulation in Rat Neocortex: a Parametric Study Using Multiele.”, Journal of Neuophysiol, Vol. 90, pp. 3024-3039, 2004.
    [23] D. Eytan, N. Brenner, S. Marom, “Selective Adaptation in Networks of Cortical Neurons.”, The Journal of Neuroscience, Vol. 23, No. 28, pp. 9349-9356, 2003.

    下載圖示 校內:2008-08-24公開
    校外:2008-08-24公開
    QR CODE