| 研究生: |
王珍珍 Wang, Chen-Chen |
|---|---|
| 論文名稱: |
混合聚亞醯胺配向膜調控液晶預傾角之研究及應用 Control of liquid crystal pre-tilt angle using mixed polyimide alignment layer and its application |
| 指導教授: |
傅永貴
Fuh, Y.G. Andy |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 150 |
| 中文關鍵詞: | 液晶 、預傾角 、聚亞醯胺 |
| 外文關鍵詞: | liquid crystal, pre-tilt angle, polyimide |
| 相關次數: | 點閱:71 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主題是利用混合水平及垂直聚亞醯胺 (polyimide,PI) 配向膜達成預傾角(液晶導軸與基板平面之夾角)調控的目的,採用之方式是藉由改變水平及垂直PI重量濃度比例,或改變硬烤溫度以及摩擦配向強度會影響水平及垂直配向力之間的競爭,因此可達成預傾角的調控,其調控範圍大約為15o~85o。接著我們利用研發出之預傾角角度與摩擦配向強度之間的關係去製作偏振轉換器 (polarization converter),入射偏振光的偏振狀態通過偏振轉換器後,會因不同位置上所感受到的相位延遲不同,使得出射光的偏振態可達到連續性的變化。最後,我們再利用混合PI配向膜製作不同預傾角角度的OCB cells,並且量測其光電特性,在此可藉由調控出高預傾角角度使液晶分子排列初始態處於彎曲態(bend I state),實現了不需要偏壓的OCB cell。並且觀察到在突然加高電壓至處於展曲態(splay state) 之OCB cell時,液晶分子排列會先轉變至暫態(transient state) 後再轉變成彎曲態 (bend I state),兩態之間並非是直接轉換的。
本文中調控預傾角的方法是利用傳統摩擦配向技術搭配PI配向材料與目前普遍存在使用的配向技術是相容的,因此此預傾角調控方法之應用潛力甚高。
Three approaches to control liquid crystal (LC) pre-tilt angle in a cell are demonstrated using a polyimide (PI) alignment layer coated on substrates, which is a mixture of horizontal (H) and vertical alignment (V) polyimides. The concentration ratio of H- to V-PI, baking temperature, and rubbing strength are found to affect the pre-tilt angle, and provide us the parameters to control the pre-tilt angle of a LC cell. Experimentally, the pre-tilt angles ranging from ~ 15o to 85o are achieved. Using the developed technique, we then fabricate a polarization converter, which allows us to change the polarization of an incident polarized light continuously depending on the beam position in the cell. Finally, optically compensated birefringence (OCB) cells with various pre-tilt angles are fabricated. Their electro-optical characteristics are measured. We demonstrate an un-biased OCB cell having a high pre-tilt angle (~50o) achieved using the technique developed in the present work; i.e. its initial state is stable in the bend I state without applying a bias voltage. In addition, we observe that a transient state forms during suddenly turning on the voltage applied to a low-pretilt-angle OCB cell at the splay state. It is found that the OCB cell does not transit from the splay state to the bend I state directly.
Notably, the technique developed in this thesis utilizes a conventional rubbing machine and mixture of commercial PIs. Thus, it is compatible with the existing manufacturing processes, and possesses high potential for practical application.
1. 松本正一 角田市良 合著,劉瑞祥 譯, “液晶之基礎與應用,”國立編譯館出版 (1996).
2. 液晶應用技術研究會 著, “最新液晶應用技術”, 建興出版社 (1997).
3. 顧鴻壽 編著, “光電液晶平面顯示器-第二版”, 新文京開發出版社(2004).
4. 小林駿介 著, “e世代液晶顯示器”, 全華圖書 (2002).
5. 趙中興 著, “顯示器原理與技術”, 全華圖書 (2001).
6. Pochi Yeh et al, “Optical of Liquid Crystal Display”, John Wiley & Sons Inc. (2006).
7. 李冠卿 著, “近代光學”, 聯經出版事業公司(1988).
8. 苗村 省平 著,陳建銘 譯, “液晶顯示器技術入門” ,全華圖書 (2005).
9. 林良貞, “Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal using double-side photo-alignment technique”, 國立成功大學, 物理研究所 (2007).
10. 郭建宏, “Fabrication and study of binary orthogonal hybrid liquid crystal phase grating based on dye-doped polyvinyl alchohol photoaligned substrate”, 國立成功大學, 物理研究所 (2007).
11. 游琮宏, “Study of adjustable pretilt angle controlled with blending silanes on glass substrate of liquid crystal cells”, 國立成功大學, 光電科學與工程研究所 (2007).
12. 許維婷, “Methods of Cell Gap Measurement for Liquid Crystal Cells”, 國立成功大學, 光電科學與工程研究所 (2004).
13. Berreman D W, Phys. Rev. Lett. 28, 1683 (1972).
14. John L. Janning , Appl. Phys, Lett. 21, No. 4 , 173–174 (1972).
15. K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, Langmuir, 4, 1214(1988)
16. W. Gibbons, P. Shannon, S. Sun, and B. Swetlin, nature , 351, 49 (1991)
17. M. Schadt, K. Schmitt, V. Hozinkov, and V. Chigrinov, Jpn. J. Appl. Phys. 31, 2155(1992)
18. Y. Iimura, T. Saitoh, S. Kobayashi, and T. Hashimoto, J. Photopolymer Sci. and Tech. 8, 257 (1995)
19. M. Hasegawa and Y. Taira, Proc. 14th IDRC, 213 (1994)
20. Frederic J. Kahn, Appl. Phys, Lett. 22, No. 8 , 386–388 (1973).
21. P. J. Bos, K. R. Koehler/Beran, Mol. Cryat. liq. Cryst. 113, 329 (1984)
22. Y. Yamaguchi, T. Miyashita, T. Uchida, SID 1993 Digest, 277 (1993)
23. T. Miyashita, Y. Yamaguchi, T. Uchida, Jpn. J. Appl. Phys. 34, L177 –L179 (1995)
24. Fion Sze-Yan Yeung and Hoi-Sing Kwok, Appl. Phys. Lett. 88, 063505 (2006)
25. P. D. Brimicombe and E. P. Raynes , Liquid Crystals, 32, No. 10, 1273–1283 (2005)
26. P. D. Brimicombe and E. P. Raynes, Appl. Phys. Lett. 89, 031121 (2006)
27. Yang et al. , Appl. Phys. Lett. 91, 071119 (2007)
28. M. Noguchi, H. Nakamura, SID 1997 Digest , 61 (1997)
29. N. Nagae, T. Miyashita, T. Uchida, SID 2000 Digest , 26 (2000)
30. S. H. Lee, S. H. Homg, J. D. Noh, H. Y. Kim, D. S. Seo, Jpn. J. Appl. Phys. 40, L389 (2001)
31. H. Kikuchi, H. Yamamoto, H. Sato, M. Kawakita, K. Takizawa, H. Fujikake, Jpn. J. Appl. Phys. 44, 981–989 (2005)
32. F. Sze-Yan Yeung, F.-C. Xie, H.-S. Kwok, J. Wan, O. Tsui, and P. Sheng , SID 05 DIGEST, 1081–1083 (2005).
33. Koki Hiroshima, Jpn. J. Appl. Phys. 21, No. 12, L761–L763 (1982).
34. Michinori Nishikawa and John L. West, Jpn. J. Appl. Phys. 38, No. 9A, 5183–5188 (1999).
35. Sang Hwa KIM and Liang-Chy CHIEN, Jpn. J. Appl. Phys. 43, No. 11A, 7643–7647 (2004)
36. Robert W. Filas abd J. S. Patel, Appl. Phys. Lett. 50, No. 20, 1426–1428 (1987).
37. Jong Bok Kim, Kyung Chan Kim, Han Jin Ahn, Byoung Har Hwang, Jong Tae Kim, Sung Jin Jo, Chang Su Kim, and Hong Koo Baik ,Appl. Phys. Lett. 91, 023507 (2007).
38. Fion S. Yeung, Jacob Y. Ho, Y. W. Li, F. C. Xie, Ophelia K. Tsui, P. Sheng, and H. S. Kwok, Appl. Phys. Lett. 88, 051910 (2006).
39. Karen E. Vaughn, Matthew Sousa, Daeseung Kang, and Charles Rosenblatt, Appl. Phys. Lett. 90, 194102 (2007).
40. Kwan-Young Han, Tatsuo Uchida, SID 1995 Digest , 15~21 (1995)
41. B. S. Ban, Y. B. Kim, J. Appl. Polym. Sci. 74, 267–271 (1999)