簡易檢索 / 詳目顯示

研究生: 陳靖儀
Chen, Jing-Yi
論文名稱: 動態求解具迴流特性之多重產品開發專案排程問題
Dynamic Approach to Multiple Product Development Projects Scheduling with Reentrant process
指導教授: 張秀雲
Chang, Shiow-Yun
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系碩士在職專班
Department of Industrial and Information Management (on the job class)
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 77
中文關鍵詞: 彈性零工式流程平行機台迴流多重產品開發專案
外文關鍵詞: Flexible Job Shop, Parallel Machine, Reentrant Process, Multiple product development projects
相關次數: 點閱:126下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究對有彈性零工式流程特性,還有迴流加工作業特性之多重產品開發專案環境排程問題進行研究,透過平行機台排程、零工式流程排程、彈性零工式排程問題、迴流式流程排程與多重專案排程相關的文獻探討,針對在同時間有專案重疊數大於平行機台數的工作站透過數學規劃方法進行資源衝突決策,建構以總加權延遲工時最小化為目標之多重產品開發專案排程模型。
    在本研究中分別建構非線性(INLP)與線性(ILP)數學規劃模型,針對第一個時間點發生重疊兩個產品開發專案以上且機台資源不足的工作站,進行LINGO求解,決定各專案於該工作站的加工優先順序,解決資源衝突問題。在重新排程後,重複進行資源衝突決策,直到沒有機台資源衝突問題為止。
    實例驗證比較本研究提出之INLP及ILP數學規劃模型,結果顯示,總求解時間、延遲專案數、總延遲與總加權延遲的表現,不論是以完成時間或完成日期為比較基準,ILP皆優於INLP。在實務環境中,專案關注的是以完成日期為基準,若在本研究提出之基本假設條件下,ILP數學規劃模型表現亦優於個案公司目前之優先權方法,因此採用ILP數學規劃模型可得較佳之答案。

    This study focuses on the flexible job shop scheduling problem of multiple product development projects with reentrant process. We construct two mathematical models, nonlinear programming (INLP) and integer linear programming (ILP), to deal with the decision-making of resource conflicts. The resource conflicts occur when we simultaneous schedule two or more projects in the same workstation, and the number of projects is greater than the number of parallel machines. The objective function of multiple product development projects scheduling model is the minimization of the total weighted tardiness. First the activities of each project are scheduled without resource constraints and then the schedules are integrated to see whether there is any resource conflict. If there are resource conflicts, the first encounter resource conflict is resolved by one of the mathematical models. The mathematical models are solved by LINGO to schedule the timing of all activities assigned to each machine of that workstation. After solving by LINGO, the integrated schedule is remodified and then repeat the resource conflict decision-making until there are no more resource conflict. Comparing INLP with ILP mathematical model, the experiment shows that, for the total elapsed runtime, the number of delay projects, the total tardiness, and the total weighted tardiness, the performance of ILP is better than INLP. For the practical situation, the requirement of projects is the due date, and simulation results with the assumptions of this study, demonstrate that ILP mathematical model outperform current methods used in practice.

    摘要 ii 致謝 vii 目錄 viii 圖目錄 x 表目錄 xii 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 研究目的 4 1.4 研究範圍與限制 4 1.5 論文架構 5 第二章 文獻探討 7 2.1 平行機台與零工式流程排程 7 2.1.1 生產排程之種類 7 2.1.2 排程之作業型態 8 2.1.3 平行機台排程與零工式流程排程問題 9 2.1.4 彈性零工式流程排程問題 11 2.2 零工式迴流生產排程 13 2.3 多重專案排程 14 2.3.1 專案管理 14 2.3.2 專案時程控制技術 20 2.3.3 資源限制多重專案排程 24 2.4 文獻探討小結 26 第三章 研究方法 27 3.1 問題描述與假設 27 3.2 研究架構與步驟 34 3.3 模式建構與推導 34 3.3.1 符號定義 36 3.3.2 非線性規劃數學模型建立 36 3.3.3 線性規劃數學模型建立 37 3.4 範例說明 38 3.5 研究方法小結 50 第四章 實例驗證 51 4.1 個案公司產品製程簡介 51 4.2 實例問題描述 54 4.3 實例驗證與結果分析 59 4.4 實例驗證結論 64 第五章 結論與建議 65 5.1 結論 65 5.2 未來方向 66 參考文獻 67 附錄 72 附錄A. 平行機台之INLP數學規劃 – LINGO 72 附錄B. 平行機台之ILP數學規劃 – LINGO 75

    Ak, B., & Koc, E. (2012). A guide for genetic algorithm based on parallel machine scheduling and flexible job-shop scheduling. Procedia-Social and Behavioral Sciences, 62, 817-823.
    Azizoglu, M., & Kirca, O. (1998). Tardiness minimization on parallel machines.International Journal of Production Economics, 55(2), 163-168.
    Baker, K. R. (1974). Introduction to sequencing and scheduling. John Wiley & Sons.
    Bilge, Ü., Kıraç, F., Kurtulan, M., & Pekgün, P. (2004). A tabu search algorithm for parallel machine total tardiness problem. Computers & Operations Research, 31(3), 397-414.
    Biskup, D., Herrmann, J., & Gupta, J. N. (2008). Scheduling identical parallel machines to minimize total tardiness. International Journal of Production Economics, 115(1), 134-142.
    Brandimarte, P. (1993). Routing and scheduling in a flexible job shop by tabu search. Annals of Operations research, 41(3), 157-183.
    Chaudhry, I. A., & Drake, P. R. (2009). Minimizing total tardiness for the machine scheduling and worker assignment problems in identical parallel machines using genetic algorithms. The International Journal of Advanced Manufacturing Technology, 42(5-6), 581-594.
    Chen, J. C., Wu, C. C., Chen, C. W., & Chen, K. H. (2012). Flexible job shop scheduling with parallel machines using Genetic Algorithm and Grouping Genetic Algorithm. Expert Systems with Applications, 39(11), 10016-10021.
    Chen, T. R., & Hsia, T. C. (1994, December). Job shop scheduling with multiple resources and an application to a semiconductor testing facility. In Decision and Control, 1994., Proceedings of the 33rd IEEE Conference on (Vol. 2, pp. 1564-1570). IEEE.
    Chiang, T. C., & Lin, H. J. (2013). A simple and effective evolutionary algorithm for multiobjective flexible job shop scheduling. International Journal of Production Economics, 141(1), 87-98.
    Cochran, J. K., Horng, S. M., & Fowler, J. W. (2003). A multi-population genetic algorithm to solve multi-objective scheduling problems for parallel machines. Computers & Operations Research, 30(7), 1087-1102.
    Conway, R. W., Maxwell, W. L., & Miller, L. W. (1967). Theory of scheduling. 1967. Theory of Scheduling, Palo Alto-London.
    Dalfard, V. M., & Mohammadi, G. (2012). Two meta-heuristic algorithms for solving multi-objective flexible job-shop scheduling with parallel machine and maintenance constraints. Computers & Mathematics with Applications, 64(6), 2111-2117.
    Demir, Y., & İşleyen, S. K. (2013). Evaluation of mathematical models for flexible job-shop scheduling problems. Applied Mathematical Modelling, 37(3), 977-988.
    Dumond, J., & Mabert, V. A. (1988). Evaluating project scheduling and due date assignment procedures: an experimental analysis. Management Science,34(1), 101-118.
    Garey, M. R., Johnson, D. S., & Sethi, R. (1976). The complexity of flowshop and jobshop scheduling. Mathematics of operations research, 1(2), 117-129.
    Gambardella, L. M., & Mastrolilli, M. (1996). Effective neighborhood functions for the flexible job shop problem. Journal of scheduling, 3(3), 3-20.
    Guide, A. (2001). Project Management Body of Knowledge (PMBOK® GUIDE). In Project Management Institute.
    Goldratt, E. M. (1997). Critical chain. Great Barrington, MA: North River Press.
    Hu, P. C. (2004). Minimising total tardiness for the worker assignment scheduling problem in identical parallel-machine models. The International Journal of Advanced Manufacturing Technology, 23(5-6), 383-388.
    Hu, P. C. (2006). Further study of minimizing total tardiness for the worker assignment scheduling problem in the identical parallel-machine models. The International Journal of Advanced Manufacturing Technology, 29(1-2), 165-169.
    Kerzner, H. R. (2013). Project management: a systems approach to planning, scheduling, and controlling. John Wiley & Sons.
    Krüger, D., & Scholl, A. (2009). A heuristic solution framework for the resource constrained (multi-) project scheduling problem with sequence-dependent transfer times. European Journal of Operational Research, 197(2), 492-508.
    Lewis, J. P. (2005). Project Planning, Scheduling & Control, 4E. McGraw-Hill Pub. Co..
    Liao, C. J., & You, C. T. (1992). An improved formulation for the job-shop scheduling problem. Journal of the Operational Research Society, 43(11), 1047-1054.
    Liu, S. Q., & Kozan, E. (2009). Scheduling trains as a blocking parallel-machine job shop scheduling problem. Computers & Operations Research,36(10), 2840-2852.
    Lova, A., Maroto, C., & Tormos, P. (2000). A multicriteria heuristic method to improve resource allocation in multiproject scheduling. European Journal of Operational Research, 127(2), 408-424.
    Lova, A., & Tormos, P. (2002, April). Combining random sampling and backward-forward heuristics for resource-constrained multi-project scheduling. In Proceedings of the Eight International Workshop on Project Management and Scheduling (pp. 244-248).
    Manne, A. S. (1960). On the job-shop scheduling problem. Operations Research, 8(2), 219-223.
    Özgüven, C., Özbakır, L., & Yavuz, Y. (2010). Mathematical models for job-shop scheduling problems with routing and process plan flexibility. Applied Mathematical Modelling, 34(6), 1539-1548.
    Pan, J. C. H., & Chen, J. S. (2005). Mixed binary integer programming formulations for the reentrant job shop scheduling problem. Computers & operations research, 32(5), 1197-1212.
    Pinedo, M. L. (2012). Scheduling: theory, algorithms, and systems. Springer Science & Business Media.
    Sadeh, N. (1991). Look-ahead techniques for micro-opportunistic job shop scheduling (No. CMU-CS-91-102). CARNEGIE-MELLON UNIV PITTSBURGH PA SCHOOL OF COMPUTER SCIENCE.
    Singh, A. (2014). Resource Constrained Multi-Project Scheduling with Priority Rules & Analytic Hierarchy Process. Procedia Engineering, 69, 725-734.
    Singer, M., & Pinedo, M. (1998). A computational study of branch and bound techniques for minimizing the total weighted tardiness in job shops. IIE transactions, 30(2), 109-118.
    Steyn, H. (2002). Project management applications of the theory of constraints beyond critical chain scheduling. International Journal of Project Management,20(1), 75-80.
    Sun, J. U. (2009). A genetic algorithm for a re-entrant job-shop scheduling problem with sequence-dependent setup times. Engineering Optimization, 41(6), 505-520.
    Turner, J. R., & Cochrane, R. A. (1993). Goals-and-methods matrix: coping with projects with ill defined goals and/or methods of achieving them. International Journal of project management, 11(2), 93-102.
    Valencia, Spain.Rand, G. K. (2000). Critical chain: the theory of constraints applied to project management. International Journal of Project Management, 18(3), 173-177.
    Wiest, J. D. (1962). The scheduling of large projects with limited resources (No. ONR-RM-113). Carnegie Inst of Tech Pittsburghpa Granduate School of Industrial Administration.
    Yang, K. K., & Sum, C. C. (1997). An evaluation of due date, resource allocation, project release, and activity scheduling rules in a multiproject environment. European Journal of Operational Research, 103(1), 139-154.
    Zhang, G., Gao, L., & Shi, Y. (2011). An effective genetic algorithm for the flexible job-shop scheduling problem. Expert Systems with Applications, 38(4), 3563-3573.
    Zhang, Q., Manier, H., & Manier, M. A. (2012). A genetic algorithm with tabu search procedure for flexible job shop scheduling with transportation constraints and bounded processing times. Computers & Operations Research, 39(7), 1713-1723.
    Zoghby, J., Barnes, J. W., & Hasenbein, J. J. (2005). Modeling the reentrant job shop scheduling problem with setups for metaheuristic searches. European Journal of Operational Research, 167(2), 336-348.

    下載圖示 校內:立即公開
    校外:2018-09-09公開
    QR CODE