簡易檢索 / 詳目顯示

研究生: 陳宥辰
Chen, Yu-Chen
論文名稱: 奈米碳球/對排聚苯乙烯複材之結晶行為與微結構研究
Crystallization behavior and microstructure of carbon nanocapsule/syndiotactic polystyrene composites
指導教授: 王紀
Wang, Chi
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 123
中文關鍵詞: 對排聚苯乙烯柰米碳球結晶行為
外文關鍵詞: syndiotactic polystyrene, crystallization behavior, carbon nanocapsule
相關次數: 點閱:86下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對排聚苯乙烯(syndiotactic polystyrene,sPS),具有結晶速率快、高熔點(耐高溫) 以及機械性質佳等性質,是相當受到重視的一種工程塑膠。奈米碳球(carbon nanocapsules,CNC)是一種由碳組成的多面體型材料,每個碳原子均為sp2結構,這樣的結構使得奈米碳球具有導電性好、熱傳性佳、高強度、化學穩定性等特點。故本研究將此二材料進行混摻,針對其結晶行為與微結構進行研究。

    DSC結果顯示,CNC的摻入會使得sPS冷結晶峰溫度變低、熔融結晶峰溫度升高,幫助sPS更容易結晶,但亦會使得其結晶量下降。CNC含量愈多,sPS的結晶活化能有增加趨勢。CNC也會降低sPS的n值,由原本的2.5~3下降到1.8~2.2,並提昇k值,使sPS整體晶體成長速率變快。

    TEM結果顯示,CNC粒子大小約為數十奈米。而CNC含量的增加不會影響CNC聚集體之大小,約為數百奈米,僅會影響CNC聚集體間的間距。CNC會使sPS lamellae排列變得較雜亂無次序,平行度降低,但不會影響lamellae厚度。

    Syndiotactic polystyrene (sPS) possesses some properties, including high crystallization rate,
    high melting temperature and good mechanical strength.
    It is a noticeable engineering plastic. Carbon nanocapsule (CNC) is a polyhedral material which is composed of carbon. Each carbon atom has sp2 structure, making CNC as a material with good electric and heat conductivity, high strength and chemical durability. In this research, we blend sPS and CNC together to prepare sPS/CNC composites and focus on their crystallization behavior and microstructure developed.

    DSC results show that the addition of CNC decreases the cold crystallization temperature of sPS and increases the melt crystallization temperature. The more the content of CNC, the higher the crystallization activation energy is. Addition of CNC declines the Avrami exponent from a value of 2.5~3 to 1.8~2.2, but increases the overall crystallization rate of sPS.

    TEM results show that the size of CNC particle is about 50~100nm. The advancement of CNC doesn’t affect the size of CNC aggregates which is about 300~500nm, but influence the distance between CNC aggregates. Besides, the addition of CNC makes the arrangement of sPS lamellae more disordered and less parallel to one another. The lamellar thickness is not influenced by the CNC addition.

    中文摘要--------------------------------------------------i 英文摘要-------------------------------------------------ii 致謝----------------------------------------------------iii 目錄------------------------------------------------------v 表目錄--------------------------------------------------vii 圖目錄-------------------------------------------------viii 符號------------------------------------------------------x 一、前言--------------------------------------------------1 二、簡介--------------------------------------------------2 三、文獻回顧----------------------------------------------3 3-1 對排聚苯乙烯-------------------------------------3 3-2 奈米碳球相關碳簇材料-----------------------------5 3-3 以碳簇為filler之複合材料-------------------------9 四、理論-------------------------------------------------15 4-1 平衡熔點(Tmo)-----------------------------------15 4-2 結晶動力學--------------------------------------15 4-2-1 Avrami equation---------------------------15 4-2-2 Ozawa equation----------------------------17 4-2-3 結晶活化能--------------------------------18 4-3 結晶度量測--------------------------------------19 4-3-1 DSC結晶度---------------------------------19 4-3-2 WAXD結晶度--------------------------------19 4-4 布拉格方程式(Bragg’s Law) ---------------------20 五、實驗-------------------------------------------------24 5-1 實驗材料----------------------------------------24 5-2 實驗藥品----------------------------------------24 5-3 實驗器材與儀器----------------------------------25 5-4 實驗步驟----------------------------------------27 5-4-1 樣品製備----------------------------------27 5-4-2 示差掃描熱卡計(DSC)-----------------------27 5-4-3 廣角X光繞射儀(WAXD) ----------------------29 5-4-4 偏光顯微鏡(POM) --------------------------30 5-4-5 穿透式電子顯微鏡(TEM) --------------------30 六、結果與討論-------------------------------------------36 6-1 奈米碳球(CNC)形態研究---------------------------36 6-1-1 WAXD測試----------------------------------36 6-1-2 POM測試-----------------------------------36 6-1-3 TEM測試-----------------------------------37 6-2 動態結晶研究------------------------------------45 6-2-1第一次升溫---------------------------------45 6-2-2 第一次降溫--------------------------------46 6-2-3 第二次升溫--------------------------------47 6-3 非等溫結晶研究----------------------------------59 6-4 等溫結晶研究------------------------------------70 6-5 sPS/CNC混摻物之結晶形態與微結構研究-------------95 6-5-1 CNC於sPS matrix中分散之形態---------------95 6-5-2 sPS/CNC混摻物經260oC等溫2hr熱處理後之 結晶行為----------------------------------96 七、結論------------------------------------------------116 八、參考文獻--------------------------------------------117

    [1] J. Natta, “Une nouvelle classe de polymeres d'- olefines ayantune rkgularit de structure exceptionnelle”, J. Polym. Sci., 16, 143 (1955)
    [2] N. Ishihara, T. Seimiya, M. Kuramoto and M. Uoi, “Crystalline syndiotactic polystyrene”, Macromolecules, 19, 2464 (1986)
    [3] 吳中仁, “s-PS之特性與應用”, 化工資訊, 12 (1996)
    [4] 劉士榮, 高分子流變學, 滄海 (2005)
    [5] 黃贛麟, “奈米碳球科學與應用”, 化工資訊與商情, 54 (2006)
    [6] O. Gries, Y. Xu, T. Asano and J. Petermann, “Morphology and structure of syndiotactic polystyrene”, Polymer, 30, 590 (1989)
    [7] C. De Rosa, G. Guerra, V. Petraccone and P. Corradini, “Crystal structure of the -form of syndiotactic polystyrene”, Polym. J., 23, 1435 (1991)
    [8] Y. Chatani, Y. Fujii, Y. Shimane and T. Ijitsu, Polym. Prepr. Jpn. (Engl. Ed.), 37, E428 (1988)
    [9] C. De Rosa, M. Rapacciuolo, G. Guerra, V. Petraccone and P. Corradini, “On the crystal structure of the orthorhombic form of syndiotactic polystyrene”, Polymer, 33, 1423 (1992)
    [10] C. De Rosa, G. Guerra and P. Corradini, Rend. Fis. Acc. Lincei, 2, 227 (1991)
    [11] A. M. Evans, E. J. C. Kellar, J. Knowles, C . Galiotis, C. J.Carriere and E. H. Andrews, “The structure and morphology of syndiotactic
    polystyrene injection molded coupons”, Polym. Eng. Sci., 37, 153 (1997)
    [12] S. Rastogi, J. G. P. Goossens and P. J. Lemstra, “An in situ
    SAXS/WAXS/Raman spectroscopy study on the phase behavior of
    syndiotactic polystyrene (sPS)/solvent systems: compound formation and solvent (dis)ordering”, Macromolecules, 31, 2983 (1998)
    [13] G. Guerra, V. M. Vitagliano, C. De Rosa, V. Petraccone and P. Corradini, “Polymorphism in melt crystallized syndiotactic polystyrene samples”, Macromolecules, 23, 1539 (1990)
    [14] H. D. Wu, I. D. Wu and F. C. Chang, “Characterization of crystallization in
    syndiotactic polystyrene thin film samples”, Macromolecules, 33, 8915 (2000)
    [15] H. D. Wu, S. C. Wu, I. D. Wu and F. C. Chang, “Novel determination of the crystallinity of syndiotactic polystyrene using FTIR spectrum”, Polymer, 42, 4719 (2001)
    [16] B. K. Hong, W. H. Jo, S. C. Lee and J. Kim, “Correlation between melting behaviour and polymorphism of syndiotactic polystyrene and its blend with poly(2,6-dimethyl-l,4-phenylene oxide)”, Polymer, 39, 1793 (1998)
    [17] J. Arnauts and H. Berghmans, “Equilibrium melting behavior of syndiotactic polystyrene”, Polym. Commun., 31, 343 (1990)
    [18] E. M. Woo and F. S. Wu, “On the multiple melting behavior of polymorphic syndiotactic polystyrene and its behavior in a miscible state”, Macromol. Chem. Phys., 199, 2041 (1998)
    [19] N. V. Gvozdic and D. J. Meier, “On the melting temperature of syndiotactic polystyrene”, Polym. Commun., 32, 183 (1991)
    [20] N. V. Gvozdic and D. J. Meier, “On the melting temperature of syndiotactic polystyrene: 2. Enhancement of the melting temperature of semicrystalline polymers by a novel annealing procedure”, Polym. Commun., 32, 493 (1991)
    [21] C. Wang, Y. C. Hsu and C. F. Lo, “Melting behavior and equilibrium melting temperatures of syndiotactic polystyrene in and crystalline forms”, Polymer, 42, 8447 (2001)
    [22] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl and R. E. Smalley, “C60 : buckminsterfullerence”, Nature, 318, 162 (1985)
    [23] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 354, 56 (1991)
    [24] S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter”, Nature, 363, 603 (1993)
    [25] D. S. Bethune, C. H. Klang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez and R. Beyers , “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls”, Nature, 363, 605 (1993)
    [26] M. S. Dresselhaus, G. Dresselhaus and R. Saito, “Physics of carbon nanotubes”, Carbon, 33, 883 (1995)
    [27] R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S, G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomnek, J. E. Fischer and R. E. Smalley, “Crystalline ropes of metallic carbon nanotubes”, Science, 273, 483 (1996)
    [28] Z.W. Pan, S.S. Xie, B.H. Chang, L.F. Sun, W.Y. Zhou and G. Wang, “Direct growth of aligned open carbon nanotubes by chemical vapor deposition”, Chem. Phys. Letters, 299, 97 (1999)
    [29] C. J. Lee, D. W. Kim, T. J. Lee, Y. C. Choi, Y. S. Park, Y. H. Lee, W. B. Choi, N. S. Lee, G. S. Park and J. M. Kim, “Synthesis of aligned carbon nanotubes using thermal chemical vapor deposition” Chem. Phys. Letters, 312, 461 (1999)
    [30] M. Jung, K. Y. Eun, J. K. Lee, Y. J. Baik, K. R. Lee and J. W. Park, “Growth of carbon nanotubes by chemical vapor deposition”, Diamond and Related Materials, 10, 1235 (2001)
    [31] A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. J. Rodrguez-Macas, P. J. Boul, A. H. Lu, D. Heymann, D. T. Colbert, R. S. Lee, J. E. Fischer, A. M. Rao, P. C. Eklund and R. E. Smalley, “Large-scale purification of single-wall carbon nanotubes: process, product, and characterization”, Appl. Phys.A, 67, 29 (1998)
    [32] Y. Chen, R.C. Haddon, S. Fang, A.M. Rao, P.C. Eklund, W.H. Lee, E.C. Dickey, E.A. Grulke, J.C. Pendergrass, A. Chavan, B.E. Haley and R.E. Smalley, “Chemical attachment of organic functional groups to a single-walled carbon nanotube material”, J. Mater. Res., 13, 2423 (1998)
    [33] G. M. Rosen and E. J. Rauckman, “Spin trapping of supperoxide and hydroxyl radicals”, Oxygen radicals in biological systems, 105, 204 (1984)
    [34] F. Gubbels, R. Jrme, Ph. Teyssi, E. Vanlathem, R. Deltour, A. Calderone, V. Parent and J. L. Brdas, “Selective localization of carbon black in immiscible polymer blends: A useful tool to design electrical conductive composites”, Macromolecules, 27, 1972 (1994)
    [35] F. Gubbels, S. Blacher, E. Vanlathem, R. Jrme, J R. Deltour, F. Brouers and Ph. Teyssi, “Design of electrical conductive composites: Key role of the morphology on the electrical properties of carbon black filled polymer blends”, Macromolecules, 28, 1559(1995)
    [36] J. Feng, J. X. Li and C. M. Chan, “Distribution of carbon black in semicrystalline polypropylene studied by transmission electron microscopy”, J. Appl. Polym. Sci., 85, 358 (2002)
    [37] M. Hindermann-Bischoff and F. Ehrburger-Dolle, “Electrical conductivity of carbon black-polyethylene composites Experimental evidence of the change of cluster connectivity in the PTC effect”, Carbon, 39, 375 (2001)
    [38] L. Valentini, J. Biagiotti, J. M. Kenny and S. Santucci, “Effects of single-walled carbon nanotubes on the crystallization behavior of polypropylene”, J. Appl. Polym. Sci., 87, 708 (2003)
    [39] W. D. Zhang, L. Shen, I. Y. Phang and T. Liu, “Carbon nanotubes reinforced nylon-6 composite prepared by simple melt-compounding”, Macromolecules, 37, 256 (2004)
    [40] I. Y. Phang, J. Ma, L. Shen, T. Liu and W. D. Zhang, “Crystallization and melting behavior of multi-walled carbon nanotube-reinforced nylon-6 composites”, Polym Int, 55, 71 (2006)
    [41] S. Kumar, T. Rath, R.N. Mahaling and C.K. Das, “Processing and characterization of carbon nanofiber/syndiotactic polystyrene composites in the absence and presence of liquid crystalline polymer”, Composites: Part A, 38, 1304 (2007)
    [42] J. D. Hoffman and J. J. Weeks, “Melting process and the equilibrium melting temperature of polychlorotrifluoroethylene”, J. Res. Natl. Bur. Stand. (U.S.), A66, 16 (1962)
    [43] M. Avrami, “Kinetics of phase change. I General theory”, J. Chem. Phys., 7, 1103 (1939)
    [44] M. Avrami, “Kinetics of phase change. II Transformation-time relations for random distribution of nuclei”, J. Chem. Phys., 8, 212 (1939)
    [45] J. Weliy and I. Sons, “Avrami analysis: Three experimental limitingfactors”, J. Polym. Sci. Polym. Phys. Ed., 18, 1655 (1980)
    [46] L. H. Sperling, “Introduction to physical polymer science”, Wiley-Interscience, New York (1986)
    [47] T. Ozawa, “Nonisothermal kinetics of crystal growth from preexisting nuclei”, Bull. Chem. Soc. Jpn., 57, 639 (1984)
    [48] H. E. Kissinger, “Variation of peak temperature with heating rate in differential thermal analysis”, J. Res. Natl. Stand. (US), 57, 217 (1956)
    [49] P. J. Flory, “Principles of polymer chemistry”, Cornell University Press, Ithaca, New York (1953)
    [50] F. J. Balta-Calleja and C. G. Vonk, “X-ray scattering of synthetic polymers”, Elserier, New York (1989)
    [51] 曾李全, “對排聚苯乙烯摻合體相與結晶行為之研究”, 國立成功大學化學工程研究所碩士論文 (2004)
    [52] C. Manfredi, C. De Rose, G. Guerra, M. Rapacciuolo, F. Auriemma and P. Corradini, “Structural changes induced by thermal treatments on emptied and filled clathrates of syndiotactic polystyrene”, Macromol. Chem. Phys., 196, 2795 (1995)
    [53] S. Han, Y. Yun, K. W. Park, Y. E. Sung and T. Hyeon, “Simple solid-phase synthesis of hollow graphitic nanoparticles and their application to direct methanol fuel cell electrodes”, Adv. Mater., 15, 1922 (2003)
    [54] F. K. Su, J. L. Hong, G. F. Liao, L. L. Lin, G. L. Hwang and T. C. Day, “Photoluminescent carbon nanocapsule/polycyanate composites with
    hydrogen bond interactions”, J. Appl. Polym. Sci., 100, 3784 (2006)
    [55] 許耀中,“對位聚苯乙烯結晶動力學研究”, 私立元智大學化學工程研究所碩士論文 (1999)
    [56] 鄭詠文, “以穿透性電子顯微鏡觀察高分子混摻之微結構”, 國立成功大學化學工程研究所碩士論文 (2002)

    下載圖示 校內:2012-07-27公開
    校外:2012-07-27公開
    QR CODE