| 研究生: |
劉泰慰 Liu, Tai-Wei |
|---|---|
| 論文名稱: |
鋼筋混凝土房屋構架在高溫中、後之行為研究
─ 普通混凝土與自充填混凝土外柱之行為 Behavior of Reinforced Concrete Building Frames Subjected to Elevated Temperature ─ Behavior of Exterior Column made of Ordinary and Self-Compacting Concrete |
| 指導教授: |
方一匡
Fang, I-Kuang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 157 |
| 中文關鍵詞: | 梁柱複合構件 、鋼筋混凝土 、柱 、性能設計 、火 |
| 外文關鍵詞: | column, reinforced concrete, beam-column sub-assemblages, performance-based design, fire |
| 相關次數: | 點閱:100 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
火災是建築物損害之一大因素,鋼筋混凝土目前最常被使用於建築物上,本研究之主要目的在探討實尺寸鋼筋混凝土梁柱複合構件在高溫中、後之行為,以期對建築物受火害之安全評估有所助益。
實驗研究方面,以三座實尺寸梁柱複合構件模擬外柱之行為,柱為三面受火條件,在加載下並依ISO834標準升溫曲線加溫,主要量測項目為昇溫及冷卻過程之變形與溫度變化,並測試高溫後之殘餘強度;理論研究方面,利用套裝軟體ANSYS分析柱斷面內部之溫度變化,以與實驗值相互印證。
主要研究成果如下:
1.由實際溫度與理論值比較可知,內部溫度受爆裂與裂縫的影響很大。
2.試體內部昇溫達100℃時,由於試體內的水蒸發,吸收大量的熱能,導致昇溫趨於緩慢。
3.混凝土柱斷面溫度受縱向溫度之傳遞影響很小,故可將斷面溫度預測簡化成2D模型分析。
4.殘餘強度測試階段,柱軸力加載越小,梁加載對柱的影響越大。
5.高溫前後柱加載造成軸向壓縮量呈線性關係,高溫後軸向變形較大。
關鍵字:梁柱複合構件、柱、鋼筋混凝土、火、性能設計
Fire is a major factor which causes building damaged. At present, reinforced concrete is one of the most popular construction materials used in the buildings. This study aims at the discussion on the behavior of column in full-scale reinforced concrete beam-column sub-assemblage during and after elevated temperature test.
In the experimental study, three full-scale beam-column sub-assemblages were constructed to simulate the exterior column, with three-face in fire. The specimens were loaded and exposed to fire following ISO 834 temperature-time curve. The primary objectives were the deformation of specimens during heating and cooling stages and the distribution of temperature, and the residual test. In the analytical study, the ANASYS program was used to predict the distribution of temperature in cross section and compare with tests.
The primary findings according to this study are as follows:
1.The spalling and cracking significantly affect the distribution of temperature in column section based on the comparisons of the test and predicted temperature.
2.When the temperature in a section increased up to 100℃, following that the rate of increase in temperature became slow, due to the phase change of inner pore water of concrete.
3.Because the heat transfer in the longitudinal direction of member is negligible, we can predict the distribution of temperature in cross section using 2D heat transfer analysis.
4.In the residual strength test, the smaller the column axial compression, the lesser effect on the beam deflection.
5.The load-deformation curve was almost linear before and after heating stages, however, the deformation at the residual stage was larger than that at preheating stage.
Key words: beam-column sub-assemblages; column; reinforced concrete; fire; performance-based design
1.ACI Committee 216, “ Guide for Determining the Fire Endurance of Concrete Elements,” American Concrete Institute, 1994.
2.European Committee, “ Eurocode 2 : Design of concrete structures - Part 1-2 : General rules - Structural fire design,” ENV 1992-1-2: 1995.
3.Ellingwood, B., and Shaver, J. R., “ Effects of Fire Reinforced Concrete Members,” Journal of the Structural Division, ASCE, Vol. 106, No. ST11, November 1980, pp. 2151-2166.
4.Lie, T. T., and Barbaros, C., “ Method to Calculate the Fire Resistance of Circular Reinforced Concrete Columns,” ACI Materials Journal, Vol. 88, No. 1, January-February 1991, pp. 84-91.
5.Chan, Y. N.; Peng, G. F.; and Anson, M., “Residual Strength and Pore Structure of High-Strength Concrete and Normal Strength Concrete after Exposure to High Temperatures,” Cement and Concrete Composites, Vol. 21, 1999, pp. 23-27.
6.Kosmas, K. S., “Mechanical Characteristics of Self-Consolidating Concretes Exposed to Elevated Temperatures,” Journal of Materials in Civil Engineering, ASCE, Vol. 19, No. 8, August 2007, pp. 648-654.
7.Kodur, V. K. R., and Phan, L., “Critical factors governing the fire performance of high strength concrete systems,” Fire Safety Journal, Vol. 42, 2007, pp. 482-488.
8.Hertz, K. D., “Limits of Spalling of Fire-Exposed Concrete,” Fire Safety Journal, Vol. 38, 2003, pp. 103-116.
9.Anderberg, Y., “Spalling Phenomena of HPC and OC,” NIST Workshop on Fire Performance of Hig Strength Concrete,” 1997.
10.Noumowe, A.; Carre, H.; Daoud, A.; and Toutanji, H., “High-Strength Self-Compacting Concrete Exposed to Fire Test,” Journal of Materials in Civil Engineering, ASCE, Vol. 18, No. 6, December 2006, pp. 754-758.
11.Arioz O., “Effect of Elevated Temperature on Properties of Concrete,” Fire Safety Journal, No.42, 2007, pp. 516-522.
12.Short, N. R.; Purkiss, J. A.; and Guise, S. E., “Assessment of Fire Damaged Concrete Using Colour Image Analysis,” Construction and Building Materials, No. 15, 2001, pp. 9-15.
13.Kodur, V. K. R., and Dwaikat, M., “A Numerical Model for Predicting the Fire Resistance of Reinforced Concrete Beams,” Cement & Concrete Composites, No. 30, 2008, pp. 431-443.
14.Tan, K. H., and Yao, Y., “Fire Resistance of Reinforced Concrete Column Subjected to 1-,2-,and 3-Face Heating,” Journal of Structural Engineering, ASCE, Vol. 130, No. 11, Nov., pp. 1820-1828, 2004.
15.Tan K. H., and Yao Y., “Fire Resistance of Four-Face Heated Reinforced Concrete Column,” Journal of Structural Engineering, ASCE, Vol. 129, No. 9, 2003, pp. 1220-1229.
16.Kodur, V. K. R.; Wang, T. C.; and Cheng, F. P., “Predicting the Fire Resistance Bbehavior of High Strength Concrete Columns,” Cement & Concrete Composites, No. 26, 2004, pp. 141-153.
17.Kodur, and Venkatesh, “Fire Endurance of High Strength Concrete Column,” Fire Technology, No. 39, 2003, pp. 73-87.
18.Alia, F.; Nadjaia, A.; Silcocka, C; and Abu-Tairb, A., “Outcomes of a major research on fire resistance of concrete columns,” Fire Safety Journal, No. 39, 2004, pp. 433-445.
19.Duthinha, D.; McGrattanb, K.; and Khaskia, A., “Recent advances in fire–structure analysis,” Fire Safety Journal, Vol. 43, 2008, pp. 161–167.
20.陳舜田、 林建宏, 「火害後鋼筋混凝土柱構件之力學行為」, 建築物火害及災後安全評估法, 第153-172頁, 1999。
21.楊旻森、 陳舜田、 林英俊, 「火害後混凝土之殘留應變」, 中國土木水利工程學刊, 第九卷, 第二期, 第327-333頁, 1997。
22.張朝輝, Ansys 熱分析教程與實例解析, 中國鐵道出版社, 北京, 2007。
23.博嘉科技, 有限元分析軟件-ANSYS 融會與貫通, 中國水利水電出版社, 北京, 2002。
24.Nilson, A. H., “ Design of Prestressed Concrete 2/E,” Wiley, NewYork, 1987.
25.黃國維, 「鋼筋混凝土梁柱複合構件承受高溫之行為研究-柱之承力行為」, 國立成功大學土木研究所, 碩士論文(2007)。
26.洪瑋澤, 「鋼筋混凝土梁柱複合構件承於高溫中、後之行為研究-柱之承力行為」, 國立成功大學土木研究所, 碩士論文(2008)。