簡易檢索 / 詳目顯示

研究生: 劉泰慰
Liu, Tai-Wei
論文名稱: 鋼筋混凝土房屋構架在高溫中、後之行為研究 ─ 普通混凝土與自充填混凝土外柱之行為
Behavior of Reinforced Concrete Building Frames Subjected to Elevated Temperature ─ Behavior of Exterior Column made of Ordinary and Self-Compacting Concrete
指導教授: 方一匡
Fang, I-Kuang
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 157
中文關鍵詞: 梁柱複合構件鋼筋混凝土性能設計
外文關鍵詞: column, reinforced concrete, beam-column sub-assemblages, performance-based design, fire
相關次數: 點閱:100下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 火災是建築物損害之一大因素,鋼筋混凝土目前最常被使用於建築物上,本研究之主要目的在探討實尺寸鋼筋混凝土梁柱複合構件在高溫中、後之行為,以期對建築物受火害之安全評估有所助益。
    實驗研究方面,以三座實尺寸梁柱複合構件模擬外柱之行為,柱為三面受火條件,在加載下並依ISO834標準升溫曲線加溫,主要量測項目為昇溫及冷卻過程之變形與溫度變化,並測試高溫後之殘餘強度;理論研究方面,利用套裝軟體ANSYS分析柱斷面內部之溫度變化,以與實驗值相互印證。
    主要研究成果如下:
    1.由實際溫度與理論值比較可知,內部溫度受爆裂與裂縫的影響很大。
    2.試體內部昇溫達100℃時,由於試體內的水蒸發,吸收大量的熱能,導致昇溫趨於緩慢。
    3.混凝土柱斷面溫度受縱向溫度之傳遞影響很小,故可將斷面溫度預測簡化成2D模型分析。
    4.殘餘強度測試階段,柱軸力加載越小,梁加載對柱的影響越大。
    5.高溫前後柱加載造成軸向壓縮量呈線性關係,高溫後軸向變形較大。
    關鍵字:梁柱複合構件、柱、鋼筋混凝土、火、性能設計

    Fire is a major factor which causes building damaged. At present, reinforced concrete is one of the most popular construction materials used in the buildings. This study aims at the discussion on the behavior of column in full-scale reinforced concrete beam-column sub-assemblage during and after elevated temperature test.
    In the experimental study, three full-scale beam-column sub-assemblages were constructed to simulate the exterior column, with three-face in fire. The specimens were loaded and exposed to fire following ISO 834 temperature-time curve. The primary objectives were the deformation of specimens during heating and cooling stages and the distribution of temperature, and the residual test. In the analytical study, the ANASYS program was used to predict the distribution of temperature in cross section and compare with tests.
    The primary findings according to this study are as follows:
    1.The spalling and cracking significantly affect the distribution of temperature in column section based on the comparisons of the test and predicted temperature.
    2.When the temperature in a section increased up to 100℃, following that the rate of increase in temperature became slow, due to the phase change of inner pore water of concrete.
    3.Because the heat transfer in the longitudinal direction of member is negligible, we can predict the distribution of temperature in cross section using 2D heat transfer analysis.
    4.In the residual strength test, the smaller the column axial compression, the lesser effect on the beam deflection.
    5.The load-deformation curve was almost linear before and after heating stages, however, the deformation at the residual stage was larger than that at preheating stage.

    Key words: beam-column sub-assemblages; column; reinforced concrete; fire; performance-based design

    目錄 摘要.................................................I Abstract............................................II 誌謝................................................IV 目錄................................................VI 表目錄..............................................IX 圖目錄...............................................X 符號表............................................XVII 第一章 緒論........................................1 1-1研究動機及目的....................................1 1-2研究方法..........................................1 第二章 文獻回顧......................................3 2-1混凝土與鋼筋於高溫下之熱學性質與熱參數............3 2-2混凝土高溫作用下之力學性質........................7 2-3 混凝土於高溫下之爆裂行為與預防..................11 2-4 混凝土骨材於高溫下之晶像與色彩變化..............19 2-5數值模擬火害後鋼筋混凝土之殘餘強度...............23 2-6 鋼筋混凝土柱火害後之探討........................29 第三章 試體規劃.....................................37 3-1梁柱複合構件試體之規劃與製作..................37 3-2加載與加溫試驗設備............................39 3-3量測儀器及量測方法............................40 3-3-1量測儀器.................................40 3-3-2量測方法.................................41 3-4試驗程序......................................42 3-5材料試驗......................................45 3-5-1混凝土圓柱試體實驗規劃及實驗程序.........45 3-5-2竹節鋼筋之試體規劃及實驗程序.............47 第四章 數值模擬.....................................49 4-1數值模擬之簡介................................49 4-2熱學參數......................................51 4-3梁柱複合構件之電腦模型 .......................52 4-4 數值模擬之驗證...............................54 4-5 鋼筋混凝土柱之殘餘強度.......................56 第五章 結果與討論 ..................................62 5-1高溫試驗中、後柱表面混凝土變化................62 5-2高溫試驗中柱內部溫度之變化....................63 5-2-1 探討柱斷面主要點位溫度與時間關係........63 5-2-2高溫中柱斷面之熱傳導行為.................64 5-3 柱在昇溫及冷卻測試過程中之變形...............66 5-3-1柱頂轉動角在昇溫與冷卻過程中之變化.......66 5-3-2柱的水平位移在昇溫及冷卻過程中之變化.....67 5-3-3柱垂直位移在昇溫及冷卻過程中之變化.............69 5-4柱在高溫後殘餘強度測試之變形..................69 5-5 柱高溫後自充填混凝土與普通混凝土之差異.......71 第六章 結論.........................................72 參考文獻............................................74 表目錄 表2-1-1 Eurocode2混凝土在高溫中之應力應變曲線相關公式..78 表3-1-1 自充填混凝土(SCC)之配比........................79 表3-1-2 普通混凝土(NC)之配比...........................79 表 3-5-1-1 常溫之自充填混凝土SCC抗壓強度發展...........80 表 3-5-1-2 常溫之普通混凝土NC抗壓強度發展..............80 表 3-5-1-3 高溫後之自充填混凝土SCC抗壓強度.............81 表 3-5-1-4 高溫後之普通混凝土NC抗壓強度................81 表 3-5-2-1常溫之鋼筋抗拉強度...........................82 表 3-5-2-2 高溫之鋼筋抗拉強度..........................82 表 4-2-1 由Eurocode2【2】建議之矽質骨材混凝土的熱傳導係數 k值...........................................83 表 4-2-2 由Eurocode2【2】建議混凝土的熱傳導係數ρc (× 106J/m3℃).......................................83 表 4-4-1 ANSYS模擬單根柱與梁柱複合構件在高溫中之變形...84 表4-5-1 殘餘測試階段柱殘餘強度.........................85 圖目錄 圖2-1-1 ACI216高溫中、後矽質骨材混凝土抗壓強度遞減之關係【1】.86 圖2-1-2 ACI216高溫中混凝土彈性模數遞減之關【1】.........86 圖2-1-3 Eurocode2高溫中混凝土抗壓強度折減遞減之關係【2】87 圖2-1-4 Eurocode2高溫中矽質骨材混凝應力應變曲線之關係【2】..87 圖2-1-5 Eurocode2及Ellingwood等人所提出的混凝土熱傳導係數k與溫度之關係【2】【3】..................................88 圖2-1-6 ACI216混凝土熱傳導係數與溫度之關係【1】.........88 圖2-1-7 Eurocode2與T.T.Lie建議的熱容比與溫度之比較【2】【4】.89 圖2-1-8 ACI216高溫中鋼筋抗拉強度遞減之關係【1】.........89 圖2-1-9 Eurocode2高溫中鋼筋降伏強度遞減之關係【2】......90 圖3-1-1 七層樓建築物之構架尺寸圖........................91 圖3-1-2 數值模擬分析之結果..............................92 圖3-1-3 梁柱複合構件與加載點之配置 .....................93 圖3-1-4 試體之鋼筋與熱耦線配置圖........................94 圖3-1-5 邊梁熱耦線配置圖................................95 圖3-1-6 柱熱耦線配置圖..................................96 圖3-2-1 複合構件實驗爐外觀..............................97 圖3-3-2-1 加壓桿、萬向軸承、量力計相關位置..............98 圖3-3-2-2 溫度記錄器....................................98 圖3-3-2-3 柱及梁柱接頭位移計示意圖......................99 圖3-3-2-4 水平陶瓷棒包覆防火棉圖.......................100 圖3-3-2-5 爐外端銜接彈簧圖.............................100 圖3-3-2-6 柱水平陶瓷棒反力支承示意圖...................101 圖3-3-2-7 柱在昇溫過程防火綿覆蓋示意圖.................101 圖3-3-2-8 柱在昇溫過程防火綿覆蓋圖.....................102 圖3-3-2-9 柱頂轉動角位移計架設圖.......................102 圖3-3-2-10 柱底轉動角位移計架設圖......................103 圖3-3-2-11 柱底在殘留載重測試過程中之示意圖............103 圖3-3-2-12 柱在殘留載重測試過程中曲率量測圖............104 圖3-4-1 安裝上下柱承壓鋼版之情形.......................105 圖3-4-2 溫度記錄器.....................................105 圖3-4-3 防火棉披覆之位置...............................106 圖3-4-4 實際防火棉包覆之情形...........................107 圖3-4-5 上柱高溫防護網實際圖...........................107 圖 3-4-6(a) SCC5、NC5與SCC4加載流程....................108 圖3-4-6(b) 試體的加載歷程中梁與柱之載重值..............109 圖3-5-1-1 混凝土抗壓強度與時間之關係...................110 圖3-5-1-2 混凝土抗壓強度與溫度之關係...................110 圖4-3-1 Solid70元素示意圖..............................111 圖4-3-2 模擬梁柱複合構件SCC4、SCC5、NC5試體之有限元素..111 圖4-4-1 Solid45元素示意圖..............................112 圖4-4-2 梁柱複合構件試體之分析模型.....................112 圖4-4-3 梁柱複合構件試體模型邊界設定與受力情形.........113 圖4-4-4 柱三面受火試體模型邊界設定與受力情形...........113 圖4-5-1 極限應變0.003 殘餘彎矩強度折減圖...............114 圖4-5-2 極限應變0.014 殘餘彎矩強度折減圖...............114 圖5-1-1 SCC5試體上下柱升溫過程混凝土剝落情況示意圖.....115 圖5-1-2 NC5試體上下柱升溫過程混凝土剝落情況示意圖......115 圖5-1-3 SCC4試體上下柱升溫過程混凝土剝落情況示意圖.....116 圖5-1-4試體昇溫過程爐溫值與理論值......................116 圖5-1-5 SCC5上下柱混凝土爆裂情形.......................117 圖5-1-6 NC5上下柱混凝土爆裂情形........................118 圖5-1-7 SCC4上下柱混凝土爆裂情形.......................119 圖5-2-1-1 CS1-1主筋溫度與理論值比較....................120 圖5-2-1-2 CS7-1主筋溫度與理論值比較....................120 圖5-2-1-3 CS7-4繫筋溫度與理論值比較....................121 圖5-2-1-4 CS7-4繫筋溫度與理論值比較....................121 圖5-2-1-5 CS7-6繫筋溫度與理論值比較....................122 圖5-2-1-6 CS7-5箍筋溫度與理論值比較....................123 圖5-2-1-7 CS7-5箍筋溫度與理論值比較....................123 圖5-2-1-8 CS7-9箍筋溫度與理論值比較....................124 圖5-2-1-9 CS7-9箍筋溫度與理論值比較....................124 圖5-2-1-10 CS7-2主筋溫度與理論值比較...................125 圖5-2-1-11 CS7-2主筋溫度與理論值比較...................125 圖5-2-1-12 CS7-8主筋溫度與理論值比較...................126 圖5-2-1-13 CS7-8主筋溫度與理論值比較...................126 圖5-2-1-14 NC5下柱角隅柱爆裂情形.......................127 圖5-2-1-15 CC7-2混凝土斷面溫度與理論值比較.............128 圖5-2-1-16 CC7-2混凝土斷面溫度與理論值比較.............128 圖5-2-1-17 CC7-1混凝土斷面溫度與理論值比較.............129 圖5-2-1-18 CC7-1混凝土斷面溫度與理論值比較.............129 圖5-2-1-19 CC7-4混凝土斷面溫度與理論值比較.............130 圖5-2-1-20 CC7-4混凝土斷面溫度與理論值比較.............130 圖5-2-1-21 CC7-8混凝土斷面溫度與理論值比較.............131 圖5-2-2-1 SCC5同斷面溫度比較...........................131 圖5-2-2-2 SCC5同斷面溫度比較...........................132 圖5-2-2-3 SCC5同斷面溫度比較...........................132 圖5-2-2-4 SCC5同斷面溫度比較...........................133 圖5-2-2-5 NC5同斷面溫度比較............................133 圖5-2-2-6 NC5同斷面溫度比較............................134 圖5-2-2-7 SCC5柱斷面主筋溫度比較.......................134 圖5-2-2-8 SCC5柱斷面主筋溫度比較.......................135 圖5-2-2-9 SCC5柱斷面主筋溫度比較.......................135 圖5-2-2-10 NC5柱斷面主筋溫度比較.......................136 圖5-2-2-11 NC5柱斷面主筋溫度比較.......................136 圖5-2-2-12 SCC5柱斷面剪力筋溫度比較....................137 圖5-2-2-13 SCC5柱斷面剪力筋溫度比較....................137 圖5-2-2-14 SCC5柱斷面剪力筋溫度比較....................138 圖5-2-2-15 NC5柱斷面剪力筋溫度比較.....................138 圖5-2-2-16 NC5柱斷面剪力筋溫度比較.....................139 圖5-2-2-17 SCC5柱縱向斷面混凝土溫度比較................139 圖5-2-2-18 SCC5柱縱向斷面混凝土溫度比較................140 圖5-2-2-19 SCC5柱縱向斷面混凝土溫度比較................140 圖5-2-2-20 NC5柱縱向斷面混凝土溫度比較.................141 圖5-2-2-21 NC5柱縱向斷面混凝土溫度比較.................141 圖5-2-2-22 NC5柱縱向斷面鋼筋溫度比較...................142 圖5-2-2-23 SCC5 CC5斷面混凝土X方向溫度梯度.............142 圖5-2-2-24 SCC5 CC7斷面混凝土X方向溫度梯度.............143 圖5-2-2-25 NC5 CC5斷面混凝土X方向溫度梯度..............143 圖5-2-2-26 NC5 CC5斷面混凝土XY方向溫度梯度.............144 圖5-2-2-27 NC5 CC7斷面混凝土X方向溫度梯度..............144 圖5-3-1-1 昇溫過程中柱頂轉動角之變化...................145 圖5-3-1-2 昇溫與冷卻過程中柱頂轉動角之變化.............145 圖5-3-1-3 昇溫與冷卻過程中柱頂轉動角之變化.............146 圖5-3-2-1 SCC5柱昇溫過程中之水平位移...................146 圖5-3-2-2 NC5柱昇溫過程中之水平位移....................147 圖5-3-2-3 SCC4柱昇溫過程中之水平位移...................147 圖5-3-2-4 NC5柱昇溫及冷卻過程中之水平位移..............148 圖5-3-2-5 SCC4柱昇溫及冷卻過程中之水平位移.............148 圖5-3-3-1 柱垂直位移於高溫前柱加載過程中之變化.........149 圖5-3-3-2 柱垂直位移於昇溫過程中之變化.................149 圖5-3-3-3 柱垂直位移於昇溫及冷卻過程中之變化...........150 圖5-3-3-4 柱垂直位移於昇溫及冷卻過程中之變化...........150 圖5-4-1 SCC5梁加載過程中對柱曲率之影響.................151 圖5-4-2 NC5梁加載過程中對柱曲率之影響..................151 圖5-4-3 SCC4梁加載過程中對柱曲率之影響.................152 圖5-4-4 SCC5梁加載過程中對柱水平位移之影響.............152 圖5-4-5 NC5梁加載過程中對柱水平位移之影響..............153 圖5-4-6 SCC4梁加載過程中對柱水平位移之影響.............153 圖5-4-7 SCC5梁加載過程中對柱頂與柱底轉動角之影響.......154 圖5-4-8 NC5梁加載過程中對柱頂與柱底轉動角之影響........154 圖5-4-9 SCC4梁加載過程中對柱頂與柱底轉動角之影響.......155 圖5-4-10 SCC5柱加載過程造成對自身軸向壓縮之影響........155 圖5-4-11 NC5柱加載過程造成對自身軸向壓縮之影響.........156 圖5-4-12 SCC4柱加載過程造成對自身軸向壓縮之影響........156

    1.ACI Committee 216, “ Guide for Determining the Fire Endurance of Concrete Elements,” American Concrete Institute, 1994.
    2.European Committee, “ Eurocode 2 : Design of concrete structures - Part 1-2 : General rules - Structural fire design,” ENV 1992-1-2: 1995.
    3.Ellingwood, B., and Shaver, J. R., “ Effects of Fire Reinforced Concrete Members,” Journal of the Structural Division, ASCE, Vol. 106, No. ST11, November 1980, pp. 2151-2166.
    4.Lie, T. T., and Barbaros, C., “ Method to Calculate the Fire Resistance of Circular Reinforced Concrete Columns,” ACI Materials Journal, Vol. 88, No. 1, January-February 1991, pp. 84-91.
    5.Chan, Y. N.; Peng, G. F.; and Anson, M., “Residual Strength and Pore Structure of High-Strength Concrete and Normal Strength Concrete after Exposure to High Temperatures,” Cement and Concrete Composites, Vol. 21, 1999, pp. 23-27.
    6.Kosmas, K. S., “Mechanical Characteristics of Self-Consolidating Concretes Exposed to Elevated Temperatures,” Journal of Materials in Civil Engineering, ASCE, Vol. 19, No. 8, August 2007, pp. 648-654.
    7.Kodur, V. K. R., and Phan, L., “Critical factors governing the fire performance of high strength concrete systems,” Fire Safety Journal, Vol. 42, 2007, pp. 482-488.
    8.Hertz, K. D., “Limits of Spalling of Fire-Exposed Concrete,” Fire Safety Journal, Vol. 38, 2003, pp. 103-116.
    9.Anderberg, Y., “Spalling Phenomena of HPC and OC,” NIST Workshop on Fire Performance of Hig Strength Concrete,” 1997.
    10.Noumowe, A.; Carre, H.; Daoud, A.; and Toutanji, H., “High-Strength Self-Compacting Concrete Exposed to Fire Test,” Journal of Materials in Civil Engineering, ASCE, Vol. 18, No. 6, December 2006, pp. 754-758.
    11.Arioz O., “Effect of Elevated Temperature on Properties of Concrete,” Fire Safety Journal, No.42, 2007, pp. 516-522.
    12.Short, N. R.; Purkiss, J. A.; and Guise, S. E., “Assessment of Fire Damaged Concrete Using Colour Image Analysis,” Construction and Building Materials, No. 15, 2001, pp. 9-15.
    13.Kodur, V. K. R., and Dwaikat, M., “A Numerical Model for Predicting the Fire Resistance of Reinforced Concrete Beams,” Cement & Concrete Composites, No. 30, 2008, pp. 431-443.
    14.Tan, K. H., and Yao, Y., “Fire Resistance of Reinforced Concrete Column Subjected to 1-,2-,and 3-Face Heating,” Journal of Structural Engineering, ASCE, Vol. 130, No. 11, Nov., pp. 1820-1828, 2004.
    15.Tan K. H., and Yao Y., “Fire Resistance of Four-Face Heated Reinforced Concrete Column,” Journal of Structural Engineering, ASCE, Vol. 129, No. 9, 2003, pp. 1220-1229.
    16.Kodur, V. K. R.; Wang, T. C.; and Cheng, F. P., “Predicting the Fire Resistance Bbehavior of High Strength Concrete Columns,” Cement & Concrete Composites, No. 26, 2004, pp. 141-153.
    17.Kodur, and Venkatesh, “Fire Endurance of High Strength Concrete Column,” Fire Technology, No. 39, 2003, pp. 73-87.
    18.Alia, F.; Nadjaia, A.; Silcocka, C; and Abu-Tairb, A., “Outcomes of a major research on fire resistance of concrete columns,” Fire Safety Journal, No. 39, 2004, pp. 433-445.
    19.Duthinha, D.; McGrattanb, K.; and Khaskia, A., “Recent advances in fire–structure analysis,” Fire Safety Journal, Vol. 43, 2008, pp. 161–167.
    20.陳舜田、 林建宏, 「火害後鋼筋混凝土柱構件之力學行為」, 建築物火害及災後安全評估法, 第153-172頁, 1999。
    21.楊旻森、 陳舜田、 林英俊, 「火害後混凝土之殘留應變」, 中國土木水利工程學刊, 第九卷, 第二期, 第327-333頁, 1997。
    22.張朝輝, Ansys 熱分析教程與實例解析, 中國鐵道出版社, 北京, 2007。
    23.博嘉科技, 有限元分析軟件-ANSYS 融會與貫通, 中國水利水電出版社, 北京, 2002。
    24.Nilson, A. H., “ Design of Prestressed Concrete 2/E,” Wiley, NewYork, 1987.
    25.黃國維, 「鋼筋混凝土梁柱複合構件承受高溫之行為研究-柱之承力行為」, 國立成功大學土木研究所, 碩士論文(2007)。
    26.洪瑋澤, 「鋼筋混凝土梁柱複合構件承於高溫中、後之行為研究-柱之承力行為」, 國立成功大學土木研究所, 碩士論文(2008)。

    下載圖示 校內:2012-07-28公開
    校外:2012-07-28公開
    QR CODE