簡易檢索 / 詳目顯示

研究生: 吳雅玲
Wu, Ya-Ling
論文名稱: 氧化鎵奈米結構成長及其應用
Synthesis and Application of Gallium Oxide Nanostructures
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 102
中文關鍵詞: 氧化鎵奈米柱場發射光偵測器氣體感測器酸鹼度感測器光電化學電解水產氫
外文關鍵詞: Ga2O3, Nanowires, Field emission, Photodetectors, Gas Sensor, EGFET pH sensor, Photoelectrochemical, Hydrogen generation
相關次數: 點閱:135下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文致力於研究氧化鎵奈米結構的成長特性,詳細探討材料及光電特性,並且應用於紫外光檢測器、氣體感測器、酸鹼度感測器、及電化學電解水產氫。
    單斜晶系的氧化鎵(β-Ga2O3)為n型寬能隙(4.9 eV)半導體材料,具高耐熱性及良好的化學穩定性,在光電元件的應用上深具潛力。本研究中,利用化學氣象沉積,氣-液-固機制製備高品質單斜晶氧化鎵奈米線於二氧化矽/矽基板。隨著成長溫度增加,氧化鎵奈米線長度、密度、晶性及場發射特性都隨之提升。並藉由紫外光照射,氧化鎵奈米線的起始電場由
    2 V/μm 減為 1.2 V/μm,增益因子(β)由4489增為 6926,這可歸因於較大的能帶扭曲和更多的電子積累,優越的場發射特性顯示其氧化鎵奈米線在元件應用上極具潛力。
    在氧化鎵系列紫外光檢測器研製方面,探討不同成長溫度的氧化鎵奈米線,對其檢測器的影響,實驗結果顯示,擁有較佳晶性的氧化鎵奈米線光偵測器,有明顯的截止波長位於為255nm,在偏壓5V下,響應值可達3.43×10-3 A/W。
    於氣體感測器應用,利用材料特性最佳的成長溫度950℃的氧化鎵奈米線製成異丙醇氣體感測器,探討不同操作溫度及不同的氣體濃度下的靈敏度。實驗結果顯示,在較低的操作溫度及較低的濃度下,仍有良好的靈敏度。
    酸鹼度檢測器方面,我們首次利用氧化鎵奈米線製備延伸式閘極場效電晶體酸鹼度感測器。藉由奈米線結構提高反應面積,有效提升酸鹼度感測特性,電流及電壓感測度分別達15.8μA/pH及24.8 mV/pH,在pH量測方面展現出應用上之發展潛力。
    光電化學電解水產氫部分,探討不同成長參數的奈米線,其電解水產氫效率,由研究結果發現照光產生的光電流與氧化鎵奈米線的形貌和晶性有絕對相關性,奈米結構提高工作電極與電解液之間有效反應面積,良好的晶性則可降低漏電流,增加光電流及產氫速率。我們也證實了氧化鎵的抗腐蝕性及發展光電化學電極的潛力。

    In this thesis, the synthesis and characterization of Ga2O3 nanowires have been conducted. We also investigate the application for field emitter, photodetectors, gas sensor, pH sensor, and photoelectrochemical hydrogen generation.
    Monoclinic Ga2O3 (β-Ga2O3) with bandgap energy of 4.9 eV has an excellent thermal and chemical stability potentially suitable for device applications. In this study, we report the vapor–liquid–solid (VLS) growth of β-Ga2O3 nanowires on the cost-effective SiO2/Si template by vapor phase transport. It was found that average length, density, quality, density, and field emission properties of the nanowires all increased as we increased the growth temperature. For the sample prepared at 950oC, the turn-on field from 2 V/μm reduce to only 1.2 V/μm while enhance the field-enhancement factor β from 4489 to 6926 by UV irradiation. It should be attributed to the larger band distortion and more electrons accumulation. The superior performances suggest that our Ga2O3 nanowires field emitters are potentially useful for device applications.
    On the part of Ga2O3 photodetectors, using a different growth conditions to discuss the impact on the performance of Ga2O3 photodetectors. With an incident light wavelength of 255 nm and an applied bias of 5V, it was found that measured responsivity of the photodetector prepared at 950oC was 3.43×10-3 A/W.
    In this section, detailed growth procedures and the isopropanol gas sensing properties of the fabricated device will also be discussed. With a large surface-to-volume ratio and high quality of Ga2O3 nanowires, it has been shown that nanowire-based gas sensors could provide a high sensitivity. The responses were measured at different operating temperatures and isopropanol gas concentrations. The superior performances suggest that the β-Ga2O3 nanowire gas sensor proposed in this study is potentially useful at low working temperatures.
    For the fabrication of pH sensor, this is the first research to take show new possibilities to fabricate extended-gate field-effect transistors pH sensor by the synthesis of Ga2O3 nanowires. The sensitivity of the sensors could be quantified from the slope of the IDS - pH and the VREF - pH relations were 15.8 μA/pH and 24.8 mA/pH, respectively. This result suggested that the β-Ga2O3 nanowires are promising for designing high-performance pH sensors in virtue of their high surface areas for more surface binding sites and larger effective sensing areas.
    On the part of photoelectrochemical hydrogen generation, it is observed that variations of the photocurrent with bias voltage depend strongly on the morphology and crystal quality of β-Ga2O3 nanowires in the electrolyte. The smaller dark current density observed from the sample prepared at 950℃ should again be attributed to the improved crystal quality. Three-electrode Photoelectrochemical efficiencies of Ga2O3 nanowires are 0.006%, 0.803%, and 1.684% at zero bias voltage for the samples grown at 850, 900, and 950oC respectively. An essential requirement of resistance to reactions such as photo-corrosion, electrochemical corrosion, and dissolution at the solid–liquid interface was demonstrated. The results suggest that the Ga2O3 nanowires can be applied to high-performance Photoelectrochemical devices.

    摘要 I Abstract III 誌謝 VI Contents VII Table Captions IX Figure Captions X Chapter 1 Introduction 1 1-1 Background of Ga2O3 Material 1 1-2 Organization of This Dissertation 2 Reference 5 Chapter 2 Relevant Theory and Experimental Equipment 7 2.1 Related Theory 7 2.2 Experimental Apparatus 12 Reference 18 Chapter3 Synthesis and Field Emission Characteristics of Ga2O3 Nanowires 21 3.1 Introduction 21 3.2 Experimental Process 22 3.3 Material Investigation of Ga2O3 Nanowires 22 3.4 Field Emission Characteristics of Ga2O3 Nanowires 23 3.5 Summary 25 Reference 30 Chapter 4 Fabrication of β-Ga2O3 Nanowires for Photodetector 33 4.1 Introduction 33 4.2 Experimental Process 35 4.3 Material Investigation of Ga2O3 Nanowires 36 4.4 I-V Characteristics of Photodetectors 38 4.5 Summary 40 Reference 50 Chapter 5 Highly Sensitive β-Ga2O3 Nanowire Gas Sensor 54 5.1 Introduction 54 5.2 Ga2O3 Nanowires Growth and Device Fabrication 56 5.3 Material Investigation 57 5.4 I-V Characteristics of β-Ga2O3 Nanowire Gas Sensor 59 5.5 Summary 61 Reference 68 Chapter 6β-Ga2O3 Nanowires for Photoelectrochemical Hydrogen Generation and pH Sensor 72 6.1 Introduction 72 6.2 Synthesis of Ga2O3 Nanowires, and Device Fabrication 74 6.3 Material Investigation of Ga2O3 Nanowires 76 6.4 I-V Characteristics of Photoelectrochemical Hydrogen Generation 77 6.5 I-V Characteristics of EGFET pH Sensor 80 6.6 Summary 81 Reference 91 Chapter 7 Conclusion and Future Work 96 7.1 Conclusion 96 7.2 Future Work 98 Reference 101

    Chapter1
    [1] S. Geller,“Crystal Structure of β-Ga2O3”, J. Chem. Phys. vol.33, pp.676-684, 1960.
    [2] R. Roy, V. G. Hill and E. F. Osborn,“Polymorphism of Ga2O3 and the system Ga2O3-H2O”, J. Am. Ceram. Soc., vol. 74, pp.719-722, 1952.
    [3] D. Gourier, L. Binet and E. Aubay,“Magnetic bistability and memory of conduction electrons released from oxygen vacancies in gallium oxide”, Radiat Eff. Defects Solids, vol. 134, pp. 223-228, 1995.
    [4] J. A. Kohn, G. Katz and J. D. Broder, “Characterization of β-Ga2O3 and its alumina isomorph, θ-Al2O3”, Am. Mineral., vol. 42, pp. 398-407, 1957.
    [5] Y. Huang, S. Yue, Z. Wang, Q. Wang, C. Shi, Z. Xu, X. D. Bai, C. Tang, and C. Gu, "Preparation and electrical properties of ultrafine Ga2O3 nanowires." J. Phys. Chem. B, vol. 110, pp. 796-800, 2006.
    [6] C. H. Liang, G. W. Meng, G. Z. Wang, Y. W. Wang, L. D. Zhang, and S.Y. Zhang,“Catalytic synthesis and photoluminescence of β-Ga2O3 nanowires,” Appl. Phys. Lett., vol. 78, pp. 3202, 2001.
    [7] K.-W. Chang and J.-J. Wu, Adv. Mater,“Low‐Temperature Growth of Well‐Aligned β‐Ga2O3 Nanowires from a Single‐Source Organometallic Precursor,” Adv. Mater., vol.16, pp.545-549, 2004.
    [8] P. Feng, J. Y. Zhang, Q. H. Li, and T. H. Wang, “Individual β-Ga2O3nanowires as solar-blind photodetectors.” Appl. Phys. Lett., vol.88, pp.153107,2006.
    [9] L. Fu, Y. Liu, P. Hu, K. Xiao, G. Yu, and D. Zhu, “Ga2O3 nanoribbons: synthesis, characterization, and electronic properties,” Chem. Mater., Vol 15, pp.4287,2003.
    [10] J. Zhan, Y. Bando, J. Hu, Y. Li, and D. Golberg, Chem. Mater.,“Metastable vanadium dioxide nanobelts: hydrothermal synthesis, electrical transport, and magnetic properties.” Angew. Chem. Int. Ed., vol 16, pp.5158, 2004.
    [11] F. Zhu, Z. X. Yang, W. M. Zhou, and Y. F. Zhang, “Direct synthesis of beta gallium oxide nanowires, nanobelts, nanosheets and nanograsses by microwave plasma,” Solid State Commun., vol 137, pp. 177-181,2006.
    chapter2
    [1]Fowler, R.H.; Dr. L. Nordheim. “Electron Emission in Intense Electric Fields,” Proc. R. Soc. London, Ser. A., vol. 119, pp.173–181, 1928.
    [2]C. Lea,“Field emission from tetrahedral amorphous carbon,” Appl. Phys. Lett., vol. 71, pp. 1430, 1997.
    [3]Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,”Appl. Phys. Lett., vol. 84, pp. 3654, 2004.
    [4]M. Batzill and U. Diebold,“Surface studies of gas sensing metal oxides,” Phys. Chem. Chem. Phys., vol. 9, pp. 2307-2318, 2007.
    [5]P. Mitra, A. P. Chatterjee, and H. S. Maiti,“ZnO thin film sensor,” Mater. Lett., vol. 35, pp. 33-38, 1998.
    [6]A. Kolmakov, Y. Zhang, G. Chen, and M. Moskovits, “Detection of CO and O2 using tin oxide nanowire sensor,” Adv. Mater., vol. 12, pp. 997-1000, 2003.
    [7]L.L. Chi, J. C. Chou, W.Y. Chung, T.P. Sun, S.K. Hsiung,“Study on extended gate field effect transistor with tin oxide sensing membrane,” Mater. Chem. Phys. vol. 63, pp. 19-23, 2000.
    [8]B.S. Kang, H.T. Wang, F. Ren, S.J. Pearton, T.E. Morey, D.M. Dennis, J.W. Johnson, P. Rajagopal, J.C. Roberts, E.L. Piner, K.J. Linthicum,“Enzymatic glucose detection using ZnO nanorods on the gate region of AlGaN/GaN high electron mobility transistors,” Appl. Phys. Lett. vol. 91, pp. 252103, 2007.
    [9]S. Muhammad, U. Ali, O. Nur, M. Willander, B. Danielsson,“Glucose detection with a commercial MOSFET using a ZnO nanowires extended gate,” IEEE Trans. Nanotechnol. vol. 8, pp. 1678-683, 2009.
    [10]P. Bergveld,“Development of an ion sensitive solid -state device for neurophysiological measurements,” IEEE Trans. Biomed. Eng., vol. 17, pp. 70-71, 1970.
    [11]J. Van der Spiegel, I. Lauks, P. Chan, and D. Babic, “The extended gate chemical sensitive field effect transistor as multi-species microprobe,” Sens. Actuator B, vol 4, pp. 291-298, 1983.
    [12]T. Prodromakis, Y. Liu, and C. Toumazou,“A low-cost disposable chemical sensing platform based on discrete components,” IEEE Electron Device Lett., vol. 32, pp. 417–419, 2011.
    [13]B. Parkinson,“On the efficiency and stability of photoelectrochemical devices,” Acc. Chem. Res., vol. 17, pp. 431-437, 1984.
    [14]A. Fujishima and K. Honda,“Electrochemical photolysis of water at a semiconductor electrode,” Nature, vol. 238, pp. 37-38, 1972.
    [15]Y. J. Hwang, C. Hahn, B. Liu and P. Yang, “Photoelectrochemical Properties of TiO2 Nanowire Arrays: A Study of the Dependence on Length and Atomic Layer Deposition Coating,” ACS Nano, vol. 6, pp. 5060-5069,2012.
    [16]K. Sivula, F. L. Formal and M. Gr¨atzel,“Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes.,” ChemSusChem, vol. 4, pp. 432-449, 2011.
    [17]Y. J. Hwang, C. Hahn, B. Liu and P. Yang, “Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation,” Energy Environ. Sci., vol. 4, pp. 1781-1787, 2011.
    [18]R. Abe, M. Higashi and K. Domen,“Facile Fabrication of an Efficient Oxynitride TaON Photoanode for Overall Water Splitting into H2 and O2 under Visible Light Irradiation,” J. Am. Chem. Soc., vol. 132, pp. 17828-11829, 2010.
    [19]Y. Cong, H. S. Park, S. Wang, H. X. Dang, F.-R. F. Fan, C. B. Mullins and A. J. Bard,“Synthesis of Ta3N5 Nanotube Arrays Modified with Electrocatalysts for Photoelectrochemical Water Oxidation,”J. Phys. Chem. C., vol. 116, pp. 14541-14550, 2012.
    [20]B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaars, and J. S. Speck,“Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films,”Appl. Phys. Lett., vol. 68, pp. 643, 1996.
    [21]M. G. Cheong, K. S. Kim, C. S. Oh, N. W. Namgung, G. M. Yang, C. H. Hong, K. Y. Lim, E. K. Suh, K. S. Nahm, H. J. Lee, D. H. Lim, and A. Yoshikawa, “Conductive layer near the GaN/sapphire interface and its effect on electron transport in unintentionally doped n-type GaN epilayers,” Appl. Phys. Lett., vol. 77, pp. 2557, 2000.
    [22]Y. Fu, Y. T. Moon, F. Yun, U. Ozgur, J. Q. Xie, S. Dogan, H. Morkoc, C. K. Inoki, T. S. Kuan, L. Zhou, and D. J. Smith, “Effectiveness of TiN porous templates on the reduction of threading dislocations in GaN overgrowth by organometallic vapor-phase epitaxy,” Appl. Phys. Lett., vol. 86, pp. 043108, 2005.
    Chapter3
    [1]C. Y. Lu, S. J. Chang, S. P. Chang, C. T. Lee, C. F. Kuo, H. M. Chang Y. Z. Chiou, C. L. Hsu and I. C. Chen, “Ultraviolet photodetectors with ZnO nanowires prepared on ZnO: Ga/glass templates,” Appl. Phys. Lett., vol. 89, pp. 153101, 2006.
    [2]T. J. Hsueh, Y. W. Chen, S. J. Chang, S. F. Wang, C. L. Hsu, Y. R. Lin, T. S. Lin and I. C. Chen,“ZnO nanowire-based CO sensors prepared on patterned ZnO: Ga/SiO2/Si templates,”Sens. Actuators, B, vol. 125, pp. 498-503,2007.
    [3]H. T. Hsueh, T. J. Hsueh, S. J. Chang, T. Y. Tsai, F. Y. Hung, S. P. Chang, W. Y. Weng and B. T. Dai, “CuO-nanowire field emitter prepared on glass substrate,” IEEE Tran. Nanotechnol., vol. 10, pp. 1161-1165, 2011
    [4]Y. K. Tseng, C. J. Huang, H. M. Cheng, I. N. Lin, K. S. Liu and I. C. Chen, “Characterization and field-emission properties of needle-like zinc oxide nanowires grown vertically on conductive zinc oxide films,” Adv. Funct. Mater., vol. 13, pp. 811-814, 2003.
    [5]J. Zhou, Y. Ding, S. Z. Deng, L. Gong, N. S. Xu and Z. L. Wang, “Three-dimensional tungsten oxide nanowire networks,” Adv. Mater., vol. 17, pp. 2107-2110, 2005.
    [6]Y. M. Chen, C. A. Chen, Y. S. Huang, K. Y. Lee, and K. K. Tiong, “Characterization and enhanced field emission properties of IrO2-coatedcarbon nanotube bundle arrays,” Nanotecanol., vol. 21, no. 3, pp. 035702, 2010.
    [7]Q. Wan, P. Feng and T. H. Wang, “Vertically aligned tin-doped indium oxide nanowire arrays: Epitaxial growth and electron field emission properties,” Appl. Phys. Lett., vol. 89, pp. 123102, 2006.
    [8]C. L. Cheng, Y. F. Chen, R. S. Chen and Y. S. Huang, “Raman scattering and field-emission properties of RuO2 nanorods,” Appl. Phys. Lett., vol. 87, pp. 103104, 2005.
    [9]L. Mazeina, V. M. Bermudez, F. K. Perkins, S. P. Arnold and S. M. Prokes,“Interaction of functionalized Ga2O3 NW-based room temperature gas sensors with different hydrocarbons,” Sens. Actuators, B, vol. 151, pp. 114-120, 2010.
    [10]S. C. Vanithakumari and K. K. Nanda, “A one-step method for the growth of Ga2O3-nanorod-based white-light-emitting phosphors,” Adv. Mater., vol. 21, pp. 3581-3584, 2009.
    [11]P. C. Chang, Z. Y. Fan, W. Y. Tseng, A. Rajagopal and J. G. Lu, “β-Ga2O3 nanowires: Synthesis,characterization, and p-channel field-effect transistor,” Appl. Phys. Lett., vol. 86, pp. 222102, 2005.
    [12]W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang and S. C. Hung,“Growth of Ga2O3 nanowires and the fabrication of solar-blind photodetector,” IEEE Tran. Nanotechnol., vol. 10, pp. 1047-1052, 2011.
    [13]Y. Huang, Z. L. Wang, Q. Wang, C. Z. Gu, C. C. Tang, Y. Bando and D. Golberg,“Quasi-aligned Ga2O3 nanowires grown on brass wire meshes and their electrical and field-emission properties,” J. Phys. Chem. C, vol. 113, pp. 1980-1983, 2009.
    [14]G. Sinha, A. Datta, S. K. Panda, P. G. Chavan, M. A. More, D. S. Joag and A. Patra,“Self-catalytic growth and field-emission properties of Ga2O3 nanowires,” J. Phys. D: Appl. Phys., vol. 42, pp. 185409-6, 2009.
    [15]C. H. Chen, S. J. Chang, S. P. Chang, Y. C. Tsai, I. C. Chen, T. J. Hsueh and C. L. Hsu, "Enhanced field emission of well-aligned ZnO nanowire arrays illuminated by UV", Chem. Phys. Lett., vol. 490, pp. 176-179, 2010
    [16]C. L Hsu and Y. C. Tsai,“Field emission of ZnO nanowires in low vacuum following various enhancements made by exposure to UV”, IEEE Tran. Nanotechnol., vol. 11, pp. 1110-1116, 2012.
    [17]L. Li, E. Auer, M. Y. Liao, X. S. Fang, T. Y. Zhai, U. K. Gautam, A. Lugstein, Y. Koide, Y. Bando and D. Golberg,“Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts,” Nanoscale, vol. 3, pp. 1120-1126, 2011.
    [18]C. X. Xu and X. W. Sun, “Field emission from zinc oxide nanopins,” Appl. Phys. Lett., vol. 83, pp. 3806-3808, 2003.
    [19]Y. L. Chueh, M. T. Ko, L. J. Chou, L. J. Chen, C. S. Wu and C. D. Chen,“TaSi2 nanowires: a potential field emitter and interconnect,” Nano Lett., vol. 6, pp.1637-1644 ,2006.
    [20]Y. Huang, S. Yue, Z. Wang, Q. Wang, C. Shi, Z. Xu, X. D. Bai, C. Tang and C. Gu, “Preparation and electrical properties of ultrafine Ga2O3nanowires,” J. Phys. Chem. B, vol. 110, pp. 796-800, 2006.
    Chapter4
    [1]S. J. Chang, K. H. Lee, P. C. Chang, Y. C. Wang, C. L. Yu, C. H. Kuo, and S. L. Wu,“GaN-based Schottky barrier photodetectors with a 12-pair MgxNy-GaN buffer layer,” IEEE J. Quantum Electron., vol. 44, pp. 916-921, 2008.
    [2]P. C. Chang, C. L. Yu, S. J. Chang, K. H. Lee, C. H. Liu, and S. L. Wu,“High-detectivity nitride-based MSM photodetectors on InGaN-GaN multiquantum well with the unactivated Mg-doped GaN layer,” IEEE J. Quantum Electron., vol. 43, pp. 1060-1064, 2007.
    [3]M.-L. Lee, Y.-H. Yen, and S.-J. Tu,“Solar-blind p-i-n photodetectors formed on SiO2-patterned n-GaN templates,” IEEE J. Quantum Electron., vol. 48, pp. 1305-1309, 2012.
    [4]M. Fleischer, L. Höllbauer, and H. Meixner,“Effect of the sensor structure on the stability of Ga2O3 sensors for reducing gases,” Sens. Actuators B, Chem., vol. 18, pp. 119-124, 1994.
    [5]T. Minami, H. Yamada, Y. Kubota, and T. Miyata,“Mn-activated CaO-Ga2O3 phosphors for thin-film electroluminescent devices,” Jpn. J. Appl. Phys., vol. 36, pp. L1191-L1194, 1997.
    [6]N. Ueda, H. Hosono, R. Waseda, and H. Kawazoe, “Synthesis and control of conductivity of ultraviolet transmitting β-Ga2O3 single crystals,” Appl. Phys. Lett., vol. 70, pp. 3561-3562, 1997.
    [7]K. Matsuzaki, H. Yanagi, T. Kamiya, H. Hiramatsu, K. Nomura, M. Hirano, and H. Hosono,“Field-induced current modulation in epitaxial film of deep-ultraviolet transparent oxide semiconductor Ga2O3,” Appl. Phys. Lett., vol. 88, pp. 0921061, 2006.
    [8]Y. Kokubun, K. Miura, F. Endo, and S. Nakagomi,“Sol-gel prepared β-Ga2O3 thin films for ultraviolet photodetectors,” Appl. Phys. Lett., vol. 90, pp. 031912-1–031912-3, 2007.
    [9]C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang,“ZnO nanowire UV photodetectors with high internal gain,” Nano Lett., vol. 7, pp. 1003–1009, 2007.
    [10]R. S. Chen, T.H. Yang, H.Y. Chen, L.C. Chen, K.H. Chen, Y.J. Yang, C.H. Su, and C.R. Lin,“High-gain photoconductivity in semiconducting InN nanowires,” Appl. Phys. Lett., vol. 95, pp. 162112-1–162112-3, 2009.
    [11]C. L. Kuo and M. H. Huang,“The growth of ultralong and highly blue luminescent gallium oxide nanowires and nanobelts, and direct horizontal nanowire growth on substrates,” Nanotechnology, vol. 19, pp. 155604, 2008.
    [12]L.-W. Chang, C.-F. Li, Y.-T. Hsieh, C.-M. Liu, Y.-T. Cheng, J.-W. Yeh, and H.-C. Shih,“Ultrahigh-density β-Ga2O3 /N-doped β-Ga2O3 Schottky and p-n nanowire junctions: Synthesis and electrical transport properties,” J. Electrochem. Soc., vol. 158, pp. 136-142, 2011.
    [13]W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and S. C. Hung,“Growth of Ga2O3 nanowires and the fabrication of solar-blind photodetector,” IEEE Trans. Nanotechnol., vol. 10, pp. 1047-1052, 2011
    [14]W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and S. P. Chang,“A solar-blind β-Ga2O3 nanowire photodetector,” IEEE Photon. Technol. Lett., vol. 22, pp. 709-711, 2010.
    [15]G. Guzman-Navarro, M. Herrera-Zaldivar, J. Valenzuela-Benavides, and D. Maestre,“CL study of blue and UV emissions in β-Ga2O3 nanowires grown by thermal evaporation of GaN,” J. Appl. Phys., vol. 110, pp. 034315-1–034315-5, 2011.
    [16]J. Zhou, Y. D. Gu, Y. F. Hu, W. J. Mai, P. H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang,“Zinc oxide nanowire networks for microelectronic devices,” Appl. Phys. Lett., vol.94, pp. 163501-1–163501-3, 2009.
    [17]H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang,“Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater., vol. 14, pp. 158-160, 2002.
    [18]G. Cheng, X. Wu, B. Liu, B. Li, and X. Zhang,“ZnO nanowire Schottky barrier ultraviolet photodetector with high sensitivity and fast recovery speed,” Appl. Phys. Lett., vol., 99, pp. 203105-1–203105-3, 2011.
    [19]X. F. Duan, Y. Huang, Y. Cui, J. F. Wang, and C. M. Lieber,“Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature, vol. 409, pp. 66–69, 2001.
    [20]Y. Cui and C. M. Lieber,“Functional nanoscale electronic devices assembled using silicon nanowire building blocks,” Science, vol. 291, pp. 851–853, 2001.
    [21]C. Y. Yan, N. Singh, and P. S. Lee,“Wide-bandgap Zn2GeO4 nanowire networks as efficient ultraviolet photodetectors with fast response and recovery time,” Appl. Phys. Lett., vol. 96, pp. 053108-1-053108-3, 2010.
    [22]J. A. Garrido, E. Monroy, I. Izpura, and E. Munoz, “Photoconductive gain modeling of GaN photodetectors,” Semicond. Sci. Technol., vol.13, pp. 563–568, 1998.
    [23]C. H. Lin, R. S. Chen, T. T. Chen, H. Y. Chen, Y. F. Chen, K. H. Chen, and L. C. Chen,“High photocurrent gain in SnO2 nanowires,” Appl. Phys. Lett., vol. 93, pp. 112115-3, 2008.
    Chapter5
    [1]H. C. Menezes, L. C. Amorim, and Z. L. Cardeal, “Sampling and analytical methods for determining VOC in air by biomonitoring human exposure,” Critical Rev. Environ. Sci. Technol., vol. 43, pp. 1-39, 2013.
    [2]S. Król, B. Zabiegała, and J. Namie´snik,“Monitoring VOCs in atmospheric air I. On-line gas analyzers,” Trends Anal. Chem., vol. 29, pp. 1092-1100, 2010.
    [3]J. Angerer, U. Ewers, and M. Wilhelm,“Human biomonitoring: State of the art,” Int. J. Hygiene Environ. Health, vol. 210, pp. 201-228, 2007.
    [4]T. J. Hsueh, S. J. Chang, C. L. Hsu, Y. R. Lin, and I. C. Chen,“Highly sensitive ZnO nanowire ethanol sensor with Pd adsorption,” Appl. Phys. Lett., vol. 91, pp. 053111-1–053111-3, 2007.
    [5]M. A. Carpenter, S. Mathur, and A. Kolmakov, Metal Oxide Nanomaterials for Chemical Sensors. New York, NY, USA: Springer-Verlag, 2013.
    [6]C. M. Liu, W. L. Liu, W. J. Chen, S. H. Hsieh, T. K. Tsai, and L. C. Yang, “ITO as a diffusion barrier between Si and Cu,” J. Electrochem. Soc., vol. 152, pp. 234-239, 2005.
    [7]Y. Cui and C. M. Lieber, “Functional nanoscale electronic devices assembled using silicon nanowire building blocks,” Science, vol. 291, pp. 851-853, 2001.
    [8]Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of semiconducting oxides,” Science, vol. 291, pp. 1947-1949, 2001.
    [9]M. Bartic, C. I. Baban, H. Suzuki, M. Ogita, and M. Isaiz, “β-Gallium oxide as oxygen gas sensors at a high temperature,” J. Amer. Ceram. Soc., vol. 90, pp. 2879-2884, 2007.
    [10]B. Baban, Y. Toyoda, and M. Ogita, “Oxygen sensing at high temperatures using Ga2O3 films,” Thin Solid Films, vol. 484, pp. 369-373, 2005.
    [11]T. Schwebel, M. Fleischer, H. Meixner, and C. D. Kohl, “CO-sensor for domestic use based on high temperature stable Ga2O3 thin films,” Sens. Actuators B, Chem., vol. 49, pp. 46-51, 1998.
    [12]M. Ogita, K. Higo, Y. Nakanishi, and Y. Hatanaka, “Ga2O3 thin film for oxygen gas sensor at high temperature,” Appl. Surf. Sci., vols. 175–176, pp. 721-725, 2001.
    [13]M. Ogita, K. Higo, Y. Nakanishi, and Y. Hatanaka, “Oxygen sensing properties at high temperatures of β-Ga2O3 thin films deposited by the chemical solution deposition method,” J. Appl. Phys., vol. 102, pp. 023709-1–023709-6, 2007.
    [14]S. E. Collins, M. A. Baltanas, and A. L. Bonivardi, “Hydrogen chemisorption on gallium oxide polymorphs,” Langmuir, vol. 21, pp. 962-970, 2005.
    [15]J. Frank, M. Fleischer, and H. Meixner, “Electrical doping of gassensitive, semiconducting Ga2O3 thin films,” Sens. Actuators B, Chem., vol. 34, pp. 373–377, 1996.
    [16]S. C. Vanithakumari and K. K. Nanda, “A one-step method for the growth of Ga2O3-nanorod-based white-light-emitting phosphors,” Adv. Mater., vol. 21, pp. 3581-3584, 2009.
    [17] W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and S. C. Hung, “Growth of Ga2O3 nanowires and the fabrication of solar-blind photodetector,” IEEE Trans. Nanotechnol., vol. 10, pp. 1047-1052, 2011.
    [18]P. C. Chang, Z. Y. Fan, W. Y. Tseng, A. Rajagopal, and J. G. Lu, “β- Ga2O3 nanowires: Synthesis, characterization, and pchannel field-effect transistor,” Appl. Phys. Lett., vol. 87, pp. 222102-1–222102-3, 2005.
    [19]S. J. Chang, T. J. Hsueh, I. C. Chen, S. F. Hsieh, S. P. Chang, C. L. Hsu, et al., “Highly sensitive ZnO nanowire acetone vapor sensor with Au adsorption,” IEEE Trans. Nanotechnol., vol. 7, pp. 754–759, 2008.
    [20]H. T. Hsueh, S. J. Chang, F. Y. Hung, W. Y. Weng, C. L. Hsu, T. J. Hsueh, et al., “Ethanol gas sensor of crabwise CuO nanowires prepared on glass substrate,” J. Electrochem. Soc., vol. 158, pp. J106–J109, 2011.
    [21] A. Qurashi, T. Yamazaki, E. M. El-Maghraby, and T. Kikuta, “Fabrication and gas sensing properties of In2O3 nanopushpins,” Appl. Phys. Lett., vol. 95, pp. 153109-1–153109-3, 2009.
    [22] Z. F. Liu, T. Yamazaki, Y. B. Shen, T. Kikuta, N. Nakatani, and Y. X. Li, “O2 and CO sensing of Ga2O3 multiple nanowire gas sensors,” Sens. Actuators B, Chem., vol. 129, pp. 666-670, 2008.
    [23]N. D. Cuong, Y. W. Park, and S. G. Yoon, “Microstructural and electrical properties of Ga2O3 nanowires grown at various temperatures by vapor-liquid-solid technique,” Sens. Actuators B, Chem., vol. 140, pp. 240-244, 2009.
    [24]H. S. Kim, C. H. Jin, S. Y. An, and C. M. Lee, “Fabrication and CO gassensing properties of Pt-functionalized Ga2O3 nanowires,” Ceramic Int., vol. 38, pp. 3563-3567, 2012.
    [25]L. Mazeina, V. M. Bermudez, F. K. Perkins, S. P. Arnold, and S. M. Prokes, “Interaction of functionalized Ga2O3 NW-based room temperature gas sensors with different hydrocarbons,” Sens. Actuators B, Chem., vol. 151, pp. 114-120, 2010.
    [26]M. F. Yu, M. Z. Atashbar, and X. L. Chen, “Mechanical and electrical characterization of β-Ga2O3 nanostructures for sensing applications,” IEEE Sensors J., vol. 5, pp. 20-25, 2005.
    [27]L. Li, E. Auer, M. Y. Liao, X. S. Fang, T. Y. Zhai, U. K. Gautam, et al., “Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts,” Nanoscale, vol. 3, pp. 1120-1126, 2011.
    [28]G. Sinha, A. Datta, S. K. Panda, P. G. Chavan, M. A. More, D. S. Joag, et al., “Self-catalytic growth and field-emission properties of Ga2O3 nanowires,” J. Phys. D, Appl. Phys., vol. 42, pp. 185409-1–185409-6, 2009.
    [29]H. T. Hsueh, S. J. Chang, F. Y. Hung, W. Y. Weng, S. P. Chang, T. J. Hsueh, et al., “Isopropyl alcohol sensors of CuO nanotubes by thermal oxidation of copper films on glass,” IEEE Sensors J., vol. 11, pp. 3276-3282, 2011.
    [30]K. D. Schierbaum, U. Weimar, W. Gopel, and R. Kowalkowski, “Conductance, work function and catalytic activity of SnO2-based gas sensors,” Sens. Actuators B, Chem., vol. 3, pp. 205-214, 1991.
    [31]Z. Liu, T. Yamazaki, Y. Shen, T. Kikuta, N. Nakatani, and Y. Li, “Hydrogen chemisorption on gallium oxide polymorphs,” Sens. Actuators B, Chem., vol. 129, pp. 666-670, 2008.
    [32]T. W. G. Solomons and C. Fryhle, Organic Chemistry. New York, NY, USA: Wiley, 2008.
    Chapter6
    [1]J. A. Turner, “A realizable renewable energy future,” Science, vol. 285, pp. 687-689, 1999.
    [2]N. S. Lewis and D. G. Nocera, “Powering the planet: Chemical challenges in solar energy utilization,” Proc Natl Acad Sci U S A., vol. 103, pp. 15729, 2006.
    [3]M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, and E. A. Santori, “Solar water splitting cells,” Chemical reviews, vol. 110, pp. 6446-6473, 2010.
    [4]T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, “Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects,” Int. J. Hydrogen Energy, vol. 27, pp. 991-1022, 2002.
    [5]M. Ni, M. K. Leung, D. Y. Leung, and K. Sumathy, “A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production,” Renew. Sust. Energ. Rev., vol. 11, pp. 401-425, 2007.
    [6]A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature, vol. 238, pp. 37-38, 1972.
    [7]A. Kay, I. Cesar, and M. Gratzel, “New benchmark for water photooxidation by nanostructured alpha-Fe2O3 films,” J. Am. Chem. Soc., vol.128, pp. 15714-15721, 2006.
    [8]Y. Sun, C. J. Murphy, K. R. Reyes-Gil., E. A. Reyes-Garcia, J. P. Lilly, and D. Raftery, “Carbon-doped In2O3 films for photoelectrochemical hydrogen production,” Int. J. Hydrogen Energy, vol.33, pp. 5967-5974, 2008.
    [9]Q. X. Jia, K. Iwashina, and A. Kudo, “Facile fabrication of an efficient BiVO4 thin film electrode for water splitting under visible light irradiation,” Proc Natl Acad Sci U S A., vol. 109, pp. 11564-11569, 2012.
    [10]K. Kakiuchi, E. Hosono, and S. Fujihara “Enhanced photoelectrochemical performance of ZnO electrodes sensitized with N-719,” J. Photochem. Photobiology A: Chemistry, vol. 179, pp. 81-86, 2006.
    [11] Y. L. Wu, S. J. Chang, W. Y. Weng, C. H. Liu, T. Y. Tsai, C. L. Hsu, K. C. Chen, “Highly Sensitive β-Ga2O3 Nanowire Nanowires Isopropyl Alcohol Sensor,” IEEE Sens. J., vol. 13, pp. 401-405, 2014.
    [12]Y. L. Wu, S. J. Chang, W. Y. Weng, C. H. Liu, T. Y. Tsai, C. L. Hsu, K. C. Chen, “Ga2O3 Nanowire Photodetector Prepared on SiO2/Si Template,” IEEE Sens. J., vol. 14, pp.2368-2373, 2013.
    [13]C. H. Ho, C. Y. Tseng, and L. C. Tien, “Thermoreflectance characterization of β-Ga2O3 thin-film nanostrips,” Optics Express, vol. 18, pp. 16360-16369, 2010.
    [14] X. Zhou, F. Heigl, J. Ko, M. Murphy, J. Zhou, T. Regier, R. I. R. Blyth, and T. K. Sham, “Origin of luminescence from Ga2O3 nanostructures studied using x-ray absorption and luminescence spectroscopy,” Phys. Review B, vol. 75, pp. 125303, 2007.
    [15]L. Qiao, F. Su, H. Bi, H. H. Girault, and B. Liu, “Ga2O3 photocatalyzed on-line tagging of cysteine to facilitate peptide mass fingerprinting,” Proteomics, vol. 11, pp.3501-3509, 2011.
    [16]A. Kudo, “Photocatalysis and solar hydrogen production,” Pure and Appl. Chem., vol. 79, pp.1917-1927, 2007.
    [17]A. Kudo and Y. Miseki “Heterogeneous photocatalyst materials for water
    splitting,” Chem. Soc. Reviews, vol. 38, pp.253-78, 2009.
    [18]N. K. Shrestha, K. Lee, R. Kirchgeorg, R. Hahn, and P. Schmuki,“Self organization and zinc doping of Ga2O3 nanoporous architecture: A potential nano-photogenerator for hydrogen electrochemistry,” Communications, vol. 35, pp.112-115, 2013.
    [19]Y. Sakata, Y. Matsuda, T. Yanagida, K. Hirata, H. Imamura, and K. Teramura, “Effect of metal ion addition in a Ni supported Ga2O3 photocatalyst on the photocatalytic overall splitting of H2O,” Catalysis Lett., vol.125, pp.22-26, 2008.
    [20]I. Lauks, P. Chan, and D. Babic, “The extended gate chemically sensitive field effect transistor as multi-species microprobe,” Sens. Actuator.B, vol.4, pp. 291-298, 1983.
    [21]N. H. Chou, J. C. Chou, T. P. Sun, and S. K. Hsiung, “Differential type solid-state urea biosensors based on ion-selective electrodes,” Sens. Actuator B-Chem., vol.130, pp. 359-366, 2008.
    [22]L. T. Yin, Y. T. Lin, Y. C. Leu, and C. Y. Hu, “Enzyme immobilization on nitrocellulose film for pH-EGFET type biosensors,” Sens. Actuator B-Chem., vol.130, pp. 207-213, 2010.
    [23]X. P. A. Gao, G. Zheng, and C.M. Lieber, “Frequency domain detection of biomolecules using silicon nanowire biosensors,” Nano Lett., vol.8, pp. 3179-3183, 2010.
    [24]A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature, vol. 238, pp. 37-38, 1972.
    [25]S. Y. Liu, J. K. Sheu, M. L. Lee, Y. C. Lin, S. J. Tu, F. W. Huang, and W. C. Lai, “Immersed finger-type indium tin oxide ohmic contacts on p-GaN photoelectrodes for photoelectrochemical hydrogen generation,” Optics Express, vol. 20, pp. A190-A196, 2012.
    [26]J. Shi, Y. Hara, C. Sun, M. A. Anderson, and X. Wang, “Three-dimensional high-density hierarchical nanowire architecture for high-performance photoelectrochemical electrodes,” Nano Lett., vol. 11, pp. 3413-3419, 2011.
    [27]K. Shankar, J. I. Basham, N. K. Allam, O. K. Varghese, G. K. Mor, X. Feng, et al., “Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry,” J. Phys. Chem. C, vol. 113, pp. 6327-6359, 2009.
    [28]J. S. Hwang, T. Y. Liu, S. Chattopadhyay, G. M. Hsu, A. M. Basilio, H. W. Chen, Y. K. Hsu, W. H. Tu, Y. G. Lin, K. H. Chen, C. C. Li, S. B. Wang, H. Y. Chen, and L. C. Chen, “Growth of β-Ga2O3 and GaN nanowires on GaN for photoelectrochemical hydrogen generation,” Nanotechnol., vol. 5, pp. 055401, 2013.
    [29]S. U. Khan, M. Al-Shahry, and W. B. Ingler, “Efficient photochemical water splitting by a chemically modified n-TiO2,” Science, vol. 297, pp. 2243-2245, 2002.
    [30]L. Bousse, N. De Rooij, and P. Bergveld, “Operation of chemically sensitive field-effect sensors as a function of the insulator-electrolyte interface,” IEEE Trans. Electron Devices, vol. 30, pp.1263-1270, 1983.
    [31]D. E. Yates, S. Levine, and T. W. Healy, “Site-binding model of the electrical double layer at the oxide/water interface,” J. Chem. Soc., Faraday Trans., vol. 70, pp. 1807-1818, 1974.
    [32]H. K. Liao, L. L. Chi, J. C. Chou, W. Y. Chung, T. P. Sun, and S. K. Hsiung, “Study on pH pzc and surface potential of tin oxide gate ISFET.,” Mater. Chem. Phys, vol. 1, pp.6-11, 1999.
    [33]L. Bousse, “The chemical sensitivity of electrolyte/interface/silicon structures,” Dissertation of Ph.D., Twente University of Technology, Enschede, 1982.
    [34]K. B. Oldham, “A Gouy–Chapman–Stern model of the double layer at a (metal)/ (ionic liquid) interface.” J. Electroanal. Chem. vol.613, pp. 131-138, 2008.
    [35]S. M. Sze, and K. K. Ng. Physics of semiconductor devices. John wiley & sons, 2006.
    [36]J. Y. Oh, H. J. Jang, W. J Cho, and M. S. Islam, “Highly sensitive electrolyte-insulator-semiconductor pH sensors enabled by silicon nanowires with Al2O3/SiO2 sensing membrane.,” Sens. Actuators, B vol.171, pp. 238-243, 2012.
    Chapter7
    [1]L. K. Randeniya, A. B. Murphy and I. C. Plumb, J. Mater. "A study of S-doped TiO2 for photoelectrochemical hydrogen generation from water." J. Mater. Sci. Lett., vol.4, pp. 1389-1399, 2008
    [2]G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang and Y. Li, “Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting,” Nano Lett., vol.7, pp.3026-3033, 2011.
    [3]W. Guo, Y. Guo, H. Dong, and X. Zhou, “Tailoring the electronic structure of b-Ga2O3 bynon-metal doping from hybrid density functional theory calculations.” Phys. Chem. Chem. Phys, vol.17, pp.5817-5825, 2015.
    [4]H. Wang and J. Lewis, “Second-generation photocatalytic materials: anion-doped TiO2,” J. Phys.: Condens. Matter, vol. 18, p. 421, 2006.
    [5]C. Xu and S. U. Khan, “Photoresponse of visible light active carbon-modified-n-TiO2 thin films,” Electrochem. Solid-State Lett., vol. 10, pp. B56-B59, 2007.
    [6]F. Gracia, J. Holgado, A. Caballero, and A. Gonzalez-Elipe, “Structural, Optical, and Photoelectrochemical Properties of Mn+-TiO2 Model Thin Film Photocatalysts,” J. Phys. Chem. B, vol. 108, pp. 17466-17476, 2004.
    [7]S. Klosek and D. Raftery, “Visible light driven V-doped TiO2 photocatalyst and its photooxidation of ethanol,” J. Phys. Chem. B, vol. 105, pp. 2815-2819, 2001.
    [8]K. Madhusudan Reddy, B. Baruwati, M. Jayalakshmi, M. Mohan Rao, and S. V. Manorama, “S-, N-and C-doped titanium dioxide nanoparticles: synthesis, characterization and redox charge transfer study,” J. Solid State Chem., vol. 178, pp. 3352-3358, 2005.
    [9]W. Ren, Z. Ai, F. Jia, L. Zhang, X. Fan, and Z. Zou, "Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2," Appl. Catal., B: Environmental, vol. 69, pp. 138-144, 2007.

    無法下載圖示 校內:2022-06-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE