| 研究生: |
蘇佑翔 Su, Yo-hsiang |
|---|---|
| 論文名稱: |
直管火焰傳遞特性分析 Charactristic analysis of flame propagation in tube |
| 指導教授: |
袁曉峰
yuan, Tony |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 直管火焰 、火焰傳遞速度 、層流火焰速度 、火焰速度 |
| 外文關鍵詞: | flame speed, laminar flame speed, flame propagation speed, flame tube |
| 相關次數: | 點閱:92 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
火焰速度是燃料的燃燒特性,火焰速度在應用上主要為燃燒室設計、紊流火焰之模擬參數、燃燒反應特性分析、防火研究等。本文利用實驗設計一封閉式之等壓直管火焰量測系統,量測甲烷/空氣混合氣體在不同壓力及不同燃料/空氣混合比下的火焰傳遞速度及焰面面積變化,並探討火焰在直管中的傳遞特性、拉伸速率及層流火焰速度。
實驗設備由擴散槽、蓄壓閥、氣動閘閥、內徑40cm 長150cm直管所組成的可在封閉系統下進行高壓環境的等壓量測;火焰通過直管同時以10組光電二極體,紀錄火焰訊號,並配合計時器計算火焰傳遞速度,再經由修正求得燃料之層流火焰速度。實驗觀察火焰傳遞速度受到管壁的熱傳效應、面積效應、熱幅射效應與點火能量影響,造成火焰在直管前端加速,在管中段時,則因面積效應與熱傳效應使得火焰減速,且因管壁熱散失使焰面呈拋物面狀。本實驗觀測之層流火焰速度是以拉伸速率近約零之火焰面積與傳遞速度計算得之。
在1大氣壓的環境下,甲烷的層流火焰速度隨當量比之變化趨勢和文獻相符合,但明顯較低。且甲烷火焰速度隨壓力提昇而明顯降低,分析顯示甲烷燃燒之反應階層(reaction orders)隨當量比提昇而漸驅於1,其火焰速度對壓力變化之敏感度較高。
Abstract
Laminar flame speed is a combustion property of fuel. Laminar flame speed was used in combustor design, parameter of turbulence simulation, analysis of chemical reaction of combustion, fire suppressants research. This thesis designed an open-open tube which can maintain constant pressure and close system to measure flame speed of CH4/air mixtures with different equilibrium rations (0.8-1.2) and different pressure (1,2,3,5,atm)at initial temperature 300k.and discuss about flame propagation speed and flame stretch rate in tube.
To reduce error of measuring laminar flame speed, we developed an open-open tube system to measure laminar flame speed. This system included pressure wave damper, pressure absorber, gate valve which were used to maintain system in constant pressure during flame propagating .and photodiode, data acquisition sub system, counter, which were used to calculate flame propagation speed By analyzing photodiode signal, we can assume flame surface in tube is concave, then estimated flame area and laminar flame speed.
Flame propagation speed would change by influence of heat conduction, thermal radiation, buoyancy effect .The experimental data showed the flame propagation speed was very fast in front of observed point. It because of ignition energy is too high so increased flame propagation speed. Flame in tube would be stretched and flame surface became concave because of Thermal effect and buoyancy effect. In order to accurately measure laminar flame speed.We chose observed point which flame stretch rate was zero to estimate flame area and laminar flame speed.
At 1atm the resulting laminar flame speed meet laminar flame speed presented in literatures. We could estimate reaction order by experiments data, compared with reaction order estimate by simulation data. Result showed practicability of experiment system.
【1】 K.K. Kuo, PRINCIPLES OF COMBUSTION, Chaper5, Wiley-Interscience, 1986
【2】 Yu-Hsuan Lai Reacting Flow Modeling on the Study of Hydrogen-Oxygen-Platinum Catalytic Combustion. Ph.D Thesis The Nation Cheng Kung Universty,Taiwan,2007
【3】 Chn-Ming Chang Quantitative measurement of OH concentration wth laser-induced predissaciative fluorescence in high pressure propane flames. Ph.D Thesis The Nation Cheng Kung Universty,Taiwan,2006
【4】 K.K. Kuo, PRINCIPLES OF COMBUSTION,SECOND EDITION Chaper1, Wiley-Interscience, 2005
【5】 J. Thomas McKinnon et.al. Water Mist Fire-Suppression Experiment (Mist)Studying Fire in the Sky. National Aeronautics and Space Administration,2005
【6】 Al-Dabbagh, N. A., and Andrews, G. E., Combusi. And Flame 55:31, 1984
【7】 DEREK BRADLEY P. H. GASKELL, and X. J. GU COMBUSTION AND FLAME 104:176-198 (1996)
【8】 Wu, C. K., and Law, C. K., Twentieth Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, 1985, p. 1941
【9】 F.N. Egolfopoulos, P. CHO and C.K. LAW, COMBUSTION AND FLAME, 76:375-391, 1989
【10】 Chung K Law COMBUSTION PHYSICS CHAPTER 7 CAMNRIDGE UNIVERSITY PRESS 2006
【11】 Derek Bradley, P. H. Gaskell, and X. J. Gu, Combustion and Flame, 104: 176-198, 1996
【12】 U.J. Pfahl, M.C. Ross, J.E. Shepherd, K.O. Pasamehmetoglu and C. Unal., COMBUSTION AND FLAME, 123:140-158, 2000
【13】 X. J. Gu, M. Z. Haq, M. Lawes and R. Woolley, COMBUSTION AND FLAME, 121:41-58, 2000
【14】 B. H. Chao, F. N. Egolfopoulos and C. K. Law Combustion and Flame, Volume 109, Issue 4, June 1997, Pages 620-638
【15】 Kee, R.J., Grcar, J.F., Smooke, M.D., and Miller, J.A., Sandia Report SAND85-8240, 1985
【16】 Warnatz, J., Combustion Chemistry (W.C. Gardiner, Jr., Ed.), Springer-Verlag, New York, 1984, p.197
【17】 C. M. Vagelopoulos and F. N. Egolfopoulos, 27th International Symposium on Combustion, P513-519, 1998
【18】 J.C. Leylegian , H.Y. Sun, C.K. Law Combustion and Flame 143 (2005) 199–210
【19】 Egolfopoulos, F.N., Zhang, H., and Zhang, Z., Combust. Flame 109:237-252, 1997
【20】 R. Starke and P. Roth, COMBUSTION AND FLAME, 66:249-259, 1986
【21】 Kjetil Kristoffersen, Knut Vaagsaether, Dag Bjerketvedt and Geraint O. Thomas Experimental Thermal and Fluid Science, Volume 28, Issue 7, September 2004, Pages 723-728
【22】 V. K. Kurdyumov and E. Fernandez-Tarrazo, Combustion and Flame, 128:382-394, 2002
【23】 羅文斌 直管層流火焰速度之量測觀察與修正 碩士論文 成功大學2003
【24】 B.LEWIS “DISCUSSION” Selected Combustion Problems AGARD p177 Butterworths. LONDON,1954
【25】 T.W. Reynolds and M. Gerstein, “Influence of Molecular Structure of Hydrocarbons on Rate of Flames Propagation,” Third Symposium (International) on Combustion, p.190-194.
【26】 H. F. Coward and F. J. Hartwell, J. Chem. Soc. Pt2, 2676-2684, 1932
【27】 Frank Ayres, JR, Schaum’s outline series: Theory and Problems of Differential and Integral Calculus, P319, 1964
【28】 Hong G. Im and Jacqueline H. Chen Combustion and Flame, Volume 126, Issues 1-2, July 2001, Pages 1384-1392