簡易檢索 / 詳目顯示

研究生: 潘宗育
Pan, Zong-Yu
論文名稱: 無碳燃料燃燒與氮氧化物排放特性研究
A Study on Combustion and NOx Emission Characteristics of Zero-Carbon Fuels
指導教授: 林大惠
Lin, Ta-Hui
共同指導教授: 陳冠邦
Chen, Guan-Bang
伍芳嫺
Wu, Fang-Hsien
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 133
中文關鍵詞: 無碳燃料燃燒氨氣氫氣甲烷氮氧化物
外文關鍵詞: Carbon-free fuel combustion, Ammonia, Hydrogen, Methane, Nitrogen Oxide
相關次數: 點閱:74下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 面對化石燃料短缺和氣候變遷的挑戰,實現碳中和的永續燃料已成為當前的重要 議題。氨因其碳中和的特性而受到關注,被認為是可整合於工業設備如燃氣渦輪機和 鍋爐等的可行選擇。然而,氨的燃燒特性,包括其緩慢的燃燒速度和難以點燃的特性, 帶來了複雜的挑戰。混合氨和碳氫化合物被視為潛在的解決方案,但這也增加了燃燒 動力學和氮氧化物排放的複雜性。儘管已有些許文獻提到了添加少量氨的相關研究, 但要更深入地了解高氨比例的影響,仍需要進一步的分析。
    為此,本研究的主要目標在於分析氫氣(H2)、甲烷(CH4)、焦爐氣(COG)與 氨混合燃料的燃燒複雜性。通過嚴格的一維模擬和適當的反應機制,進行基礎特性分 析。研究考察了不同當量比和氨比例下各種燃料混合物的層流燃燒速度、絕熱火焰溫 度和氮氧化物排放等關鍵參數。結果顯示不同燃料具有顯著的差異,氫氣表現出優異 的燃燒速度和絕熱火焰溫度,但添加氨後表現有所下降。相反,COG 燃燒表現出氫氣 和甲烷特性的組合,添加氨後的變化程度也有所不同。重要的是,氮氧化物排放量在 特定的氨含量閾值處達到峰值,然後下降,主要貢獻途徑是 HNO 途徑。此外,本研究 還發現不同燃料在個別基礎參數上有獨特的擬合特性,提出了一種新的快速找到不同 氫與甲烷混氨特性的方法,適用於層流燃燒速度、絕熱火焰溫度和一氧化氮排放特性。 隨後,使用經驗公式針對實際燃燒爐進行三維模擬,以更貼近實際應用情況。三維模 擬顯示經驗公式在甲烷與氨的混合燃料排放預測中極具準確度,且所有混合燃料的一 氧化氮排放與一維模擬趨勢相符。總體而言,本研究對永續燃燒方法的進步做出了重 要貢獻,有助於積極應對氣候變遷挑戰。

    Confronting fossil fuel depletion and climate change challenges, achieving carbon neutrality with sustainable fuels has become crucial. Ammonia, due to its carbon-neutral properties, has attracted attention as a viable option for integration into industrial equipment such as gas turbines and boilers. However, the combustion characteristics of ammonia, including its slow burning rate and difficulty in ignition, pose complex challenges. Mixing ammonia with hydrocarbons has been proposed as a potential solution, although it introduces complexities in combustion kinetics and nitrogen oxide emissions. While some literature exists on the addition of small amounts of ammonia, further analysis is required to understand the implications of higher ammonia proportions.
    This study aims to elucidate the combustion complexities of hydrogen (H2), methane (CH4), COG and ammonia mixtures. Through rigorous one-dimensional simulations and appropriate reaction mechanisms, fundamental characteristics are analyzed. Various key parameters such as laminar burning velocity, adiabatic flame temperature, and nitrogen oxide emissions of different fuel mixtures are examined at different equivalence ratios and ammonia levels. Results indicate significant variations in combustion behavior among different fuels, with hydrogen exhibiting superior burning velocity and adiabatic flame temperature, albeit showing a decrease upon ammonia addition. Conversely, COG combustion demonstrates a combination of hydrogen and methane characteristics, with varying degrees of change upon ammonia addition. Importantly, nitrogen oxide emissions peak at specific ammonia content thresholds before decreasing, primarily through the HNO pathway. Furthermore, unique fitting properties are observed for different fuels on individual basis parameters, proposing a novel method for rapidly assessing the characteristics of methane and ammonia mixtures with ammonia, applicable to laminar burning velocity, adiabatic flame temperature, and nitrogen oxide emission characteristics. Subsequently, three-dimensional simulations of actual combustion furnaces are conducted using empirical formulas to better approximate real-world application scenarios. Three-dimensional simulations show that empirical formulas are highly accurate in predicting emissions for methane and hydrogen mixtures, with nitrogen oxide emissions of all mixtures aligning with one-dimensional simulation trends. Overall, this study makes significant contributions to advancing sustainable combustion methods, aiding proactive responses to the challenges of climate change.

    Abstract i 中文摘要 iii 誌謝 iv Table of Contents v List of Tables viii List of Figures ix Nomenclatures xiv CHAPTER 1. INTRODUCTION 15 1-1. Background 15 1-2. Motivation and Target 17 CHAPTER 2. LITERATURE REVIEW 20 2-1. Combustion Characteristics of Pure Coke Oven Gas 20 2-2. Combustion Characteristics of Pure Ammonia 22 2-3. Feasibility of Enhancing Ammonia Combustion Through Fuel Mixing 24 2-4. Selection of Relevant Combustion Reaction Mechanism 25 2-5. Structure of Manuscripts 28 CHAPTER 3. METHODOLOGY 29 3-1. A One-Dimensional Simulation Approach 29 3-1-1. Basic Theory of One-dimensional Simulation 29 3-1-2. Simulation Method and Input Conditions 30 3-2. Three-Dimensional Simulation Approach 31 3-2-1. Three-Dimensional CFD Simulation Tools 31 3-2-2. Computation Domain 32 3-2-3. Governing Equations 33 3-2-4. Selection of Physical Models 35 3-2-5. Model for Nitrogen Oxide Formation 41 3-2-5. Mesh Generation 48 3-2-6. Boundary Conditions and Initial Setup 50 3-2-7. Grid Independence 52 3-2-8. Numerical Methods 55 CHAPTER 4. ONE DIMENSIONAL BURNING FLOW 57 4-1. Laminar Burning Velocity 57 4-2. Adiabatic Flame Temperature 63 4-3. Flame Structure 65 4-4. Emission Characteristic 71 4-4-1. Carbon Monoxide and Carbon Dioxide 71 4-4-2. Nitrogen oxides 75 4-5. Nitrogen oxide reaction pathway 76 4-6. Mixed fuel fitting characteristics 84 CHAPTER 5. THREE DIMENSIONAL COMBUSTION FURNACE 87 5-1. Combustion Characteristics of Methane Blended with Hydrogen 88 5-1-1. Central Sectional Distribution 88 5-1-2. Vertical Sectional Distribution 101 5-1-3. Centerline Distribution 109 5-2. Combustion Characteristics of H2/NH3/air and CH4/NH3/air 112 5-2-1. Central Sectional Distribution of Temperature 112 5-2-2. Central Sectional Distribution of Nitric Oxide Generation Rate 116 5-2-3. Nitric Oxide Emission Quantitative Analysis 122 CHAPTER 6. CONCLUSION and FUTURE WORK 125 6-1. Conclusion 125 6-2. Future work 127 CHAPTER 7. REFERENCE 128

    [1] I. Tiseo, Global historical CO₂ emissions from fossil fuels and industry 1750-2021. https://www.statista.com/statistics/264699/worldwide-co2-emissions/ (accessed Jun 2 2022).
    [2] O.W.i. Data, A Global Breakdown of Greenhouse Gas Emissions by Sector. https://www.visualcapitalist.com/cp/a-global-breakdown-of-greenhouse-gas-emissions-by-sector/ 2021).
    [3] P. Wang, M. Ryberg, Y. Yang, K. Feng, S. Kara, M. Hauschild, W.Q. Chen, Efficiency stagnation in global steel production urges joint supply- and demand-side mitigation efforts, Nat Commun 12 (2021) 2066.
    [4] R. Razzaq, C. Li, S. Zhang, Coke oven gas: Availability, properties, purification, and utilization in China, Fuel 113 (2013) 287-299.
    [5] H. Kobayashi, A. Hayakawa, K.D.Kunkuma A. Somarathne, Ekenechukwu C. Okafor, Science and technology of ammonia combustion, Proceedings of the Combustion Institute 37 (2019) 109-133.
    [6] IEA, Ammonia Technology Roadmap. https://www.iea.org/reports/ammonia-technology-roadmap 2023).
    [7] E.C. Okafor, Y. Naito, S. Colson, A. Ichikawa, T. Kudo, A. Hayakawa, H. Kobayashi, Measurement and modelling of the laminar burning velocity of methane-ammonia-air flames at high pressures using a reduced reaction mechanism, Combustion and Flame 204 (2019) 162-175.
    [8] W. Han, P. Dai, X. Gou, Z. Chen, A review of laminar flame speeds of hydrogen and syngas measured from propagating spherical flames, Applications in Energy and Combustion Science 1-4 (2020).
    [9] R.M. Hartmann, Experimental Study of the Ignition, Flammability and Flame Propagation of Jet Fuels under Laminar and Turbulent Conditions, 2016.
    [10] D.J. Mariños Rosado, S.B. Rojas Chávez, J. Amaro Gutierrez, F.H. Mayworm de Araújo, J.A. de Carvalho, A.Z. Mendiburu, Energetic analysis of reheating furnaces in the combustion of coke oven gas, Linz-Donawitz gas and blast furnace gas in the steel industry, Applied Thermal Engineering 169 (2020).
    [11] A. Hayakawa, T. Goto, R. Mimoto, T. Kudo, H. Kobayashi, NO formation/reduction mechanisms of ammonia/air premixed flames at various equivalence ratios and pressures, Mechanical Engineering Journal 2 (2015) 14-00402-00414-00402.
    [12] J.B. J. VANDOOREN, P.J.V. TIGGELEN, Comparison of Experimental and Calculated Structures of an Ammonia-Nitric Oxide Flame. Importance of the NH 2 + NO Reaction, COMBUSTION AND FLAME 98 ( 1994) 402-410.
    [13] J. Jójka, R. Ślefarski, Dimensionally reduced modeling of nitric oxide formation for premixed methane-air flames with ammonia content, Fuel 217 (2018) 98-105.
    [14] S. Arunthanayothin, A. Stagni, Y. Song, O. Herbinet, T. Faravelli, F. Battin-Leclerc, Ammonia–methane interaction in jet-stirred and flow reactors: An experimental and kinetic modeling study, Proceedings of the Combustion Institute 38 (2021) 345-353.
    [15] X. Han, Z. Wang, M. Costa, Z. Sun, Y. He, K. Cen, Experimental and kinetic modeling study of laminar burning velocities of NH3/air, NH3/H2/air, NH3/CO/air and NH3/CH4/air premixed flames, Combustion and Flame 206 (2019) 214-226.
    [16] Z. Tian, Y. Li, L. Zhang, P. Glarborg, F. Qi, An experimental and kinetic modeling study of premixed NH3/CH4/O2/Ar flames at low pressure, Combustion and Flame 156 (2009) 1413-1426.
    [17] S. Zhou, B. Cui, W. Yang, H. Tan, J. Wang, H. Dai, L. Li, Z.u. Rahman, X. Wang, S. Deng, X. Wang, An experimental and kinetic modeling study on NH3/air, NH3/H2/air, NH3/CO/air, and NH3/CH4/air premixed laminar flames at elevated temperature, Combustion and Flame 248 (2023).
    [18] E.C. Okafor, Y. Naito, S. Colson, A. Ichikawa, T. Kudo, A. Hayakawa, H. Kobayashi, Experimental and numerical study of the laminar burning velocity of CH4–NH3–air premixed flames, Combustion and Flame 187 (2018) 185-198.
    [19] T. Shu, Y. Xue, Z. Zhou, Z. Ren, An experimental study of laminar ammonia/methane/air premixed flames using expanding spherical flames, Fuel 290 (2021).
    [20] A. Yasiry, J. Wang, L. Zhang, H. Dai, A.A.A. Abdulraheem, H.A.K. Shahad, Z. Huang, Experimental Study on the Effect of Hydrogen Addition on the Laminar Burning Velocity of Methane/Ammonia–Air Flames, Applied Sciences 13 (2023).
    [21] A. Goldmann, F. Dinkelacker, Approximation of laminar flame characteristics on premixed ammonia/hydrogen/nitrogen/air mixtures at elevated temperatures and pressures, Fuel 224 (2018) 366-378.
    [22] R. Li, A.A. Konnov, G. He, F. Qin, D. Zhang, Chemical mechanism development and reduction for combustion of NH3/H2/CH4 mixtures, Fuel 257 (2019).
    [23] K.P. Shrestha, C. Lhuillier, A.A. Barbosa, P. Brequigny, F. Contino, C. Mounaïm-Rousselle, L. Seidel, F. Mauss, An experimental and modeling study of ammonia with enriched oxygen content and ammonia/hydrogen laminar flame speed at elevated pressure and temperature, Proceedings of the Combustion Institute 38 (2021) 2163-2174.
    [24] P. Kumar, T.R. Meyer, Experimental and modeling study of chemical-kinetics mechanisms for H2–NH3–air mixtures in laminar premixed jet flames, Fuel 108 (2013) 166-176.
    [25] C. Lhuillier, P. Brequigny, N. Lamoureux, F. Contino, C. Mounaïm-Rousselle, Experimental investigation on laminar burning velocities of ammonia/hydrogen/air mixtures at elevated temperatures, Fuel 263 (2020).
    [26] S. Wang, Z. Wang, A.M. Elbaz, X. Han, Y. He, M. Costa, A.A. Konnov, W.L. Roberts, Experimental study and kinetic analysis of the laminar burning velocity of NH3/syngas/air, NH3/CO/air and NH3/H2/air premixed flames at elevated pressures, Combustion and Flame 221 (2020) 270-287.
    [27] N. Wang, S. Huang, Z. Zhang, T. Li, P. Yi, D. Wu, G. Chen, Laminar burning characteristics of ammonia/hydrogen/air mixtures with laser ignition, International Journal of Hydrogen Energy 46 (2021) 31879-31893.
    [28] A. Ichikawa, A. Hayakawa, Y. Kitagawa, K.D. Kunkuma Amila Somarathne, T. Kudo, H. Kobayashi, Laminar burning velocity and Markstein length of ammonia/hydrogen/air premixed flames at elevated pressures, International Journal of Hydrogen Energy 40 (2015) 9570-9578.
    [29] M. Mayrhofer, M. Koller, P. Seemann, R. Prieler, C. Hochenauer, Assessment of natural gas/hydrogen blends as an alternative fuel for industrial heat treatment furnaces, International Journal of Hydrogen Energy 46 (2021) 21672-21686.
    [30] M.L. Wright, A.C. Lewis, Emissions of NOx from blending of hydrogen and natural gas in space heating boilers, Elementa: Science of the Anthropocene 10 (2022).
    [31] W. Du, S. Zhou, H. Qiu, J. Zhao, Y. Fan, Experiment and numerical study of the combustion behavior of hydrogen-blended natural gas in swirl burners, Case Studies in Thermal Engineering 39 (2022).
    [32] H. Pan, S. Geng, H. Yang, G. Zhang, H. Bian, Y. Liu, Influence of H2 blending on NOx production in natural gas combustion: Mechanism comparison and reaction routes, International Journal of Hydrogen Energy 48 (2023) 784-797.
    [33] M.S. Cellek, A. Pınarbaşı, Investigations on performance and emission characteristics of an industrial low swirl burner while burning natural gas, methane, hydrogen-enriched natural gas and hydrogen as fuels, International Journal of Hydrogen Energy 43 (2018) 1194-1207.
    [34] J.H. Lee, J.H. Kim, J.H. Park, O.C. Kwon, Studies on properties of laminar premixed hydrogen-added ammonia/air flames for hydrogen production, International Journal of Hydrogen Energy 35 (2010) 1054-1064.
    [35] M. Aziz, F.B. Juangsa, A.R. Irhamna, A.R. Irsyad, H. Hariana, A. Darmawan, Ammonia utilization technology for thermal power generation: A review, Journal of the Energy Institute 111 (2023).
    [36] Y. Zhang, D. Zhao, Q. Li, M. Huang, Q. Hao, J. Du, Y. Song, Z. Ming, J. Wang, Premixed combustion and emission characteristics of methane diluted with ammonia under F-class gas turbine relevant operating condition, Frontiers in Energy Research 11 (2023).
    [37] R. Mével, S. Javoy, F. Lafosse, N. Chaumeix, G. Dupré, C.E. Paillard, Hydrogen–nitrous oxide delay times: Shock tube experimental study and kinetic modelling, Proceedings of the Combustion Institute 32 (2009) 359-366.
    [38] S.J. Klippenstein, L.B. Harding, P. Glarborg, J.A. Miller, The role of NNH in NO formation and control, Combustion and Flame 158 (2011) 774-789.
    [39] C. Duynslaegher, F. Contino, J. Vandooren, H. Jeanmart, Modeling of ammonia combustion at low pressure, Combustion and Flame 159 (2012) 2799-2805.
    [40] H. Nozari, A. Karabeyoğlu, Numerical study of combustion characteristics of ammonia as a renewable fuel and establishment of reduced reaction mechanisms, Fuel 159 (2015) 223-233.
    [41] Y. Song, H. Hashemi, J.M. Christensen, C. Zou, P. Marshall, P. Glarborg, Ammonia oxidation at high pressure and intermediate temperatures, Fuel 181 (2016) 358-365.
    [42] A.A. Konnov, Implementation of the NCN pathway of prompt-NO formation in the detailed reaction mechanism, Combustion and Flame 156 (2009) 2093-2105.
    [43] H. Nakamura, S. Hasegawa, T. Tezuka, Kinetic modeling of ammonia/air weak flames in a micro flow reactor with a controlled temperature profile, Combustion and Flame 185 (2017) 16-27.
    [44] J. Otomo, M. Koshi, T. Mitsumori, H. Iwasaki, K. Yamada, Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion, International Journal of Hydrogen Energy 43 (2018) 3004-3014.
    [45] A. Stagni, C. Cavallotti, S. Arunthanayothin, Y. Song, O. Herbinet, F. Battin-Leclerc, T. Faravelli, An experimental, theoretical and kinetic-modeling study of the gas-phase oxidation of ammonia, Reaction Chemistry & Engineering 5 (2020) 696-711.
    [46] A. Bertolino, M. Fürst, A. Stagni, A. Frassoldati, M. Pelucchi, C. Cavallotti, T. Faravelli, A. Parente, An evolutionary, data-driven approach for mechanism optimization: theory and application to ammonia combustion, Combustion and Flame 229 (2021).
    [47] M.-H. Wu, F.-H. Wu, G.-B. Chen, Final Report on Simulation Analysis of Hydrogen-Mixed Combustion Characteristics and Actual Combustion Furnace Testing(EEA1118005), National Cheng Kung University Department of Mechanical Engineering Reacting Flow Laboratory, 2024, (In Chinese).
    [48] Stephen R.Turns, An Introduce to Combustion Concepts and Applicantions, 2000.
    [49] I.A. Zeldovich, G.I. Barenblatt, V.B. Librovich, G.M. Makhviladze, Mathematical theory of combustion and explosions., (1985).
    [50] J. B. HOMER, M. M. SUlTON, Nitric Oxide Formation and Radical Overshoot in Premixed Hydrogen Flames, COMBUSTION AND FLAME 20 (1973) 77-76.
    [51] J. Warnatz, NOx Formation in High Temperature Processes.
    [52] C. Westbrook, F. Dryer, Chemical Kinetic Modelling of Hydrocarbon Combustion, Energy Comb, (1984) 1.
    [53] G.G.D. Soete., Overall Reaction Rates of NO and N2 Formation from Fuel Nitrogen., In 15th Symp. (Int'l.) on Combustion, (The Combustion Institute, 1975) 1093-1102.
    [54] G. Shi, P. Li, F. Hu, Z. Liu, NO mechanisms of syngas MILD combustion diluted with N2, CO2, and H2O, International Journal of Hydrogen Energy 47 (2022) 16649-16664.
    [55] W. P. JONES, R.P. LINDSTEDT, Global Reaction Schemes for Hydrocarbon Combustion, COMBUSTION AND FLAME 73 (1988) 233-249
    [56] H. Xiao, A. Valera-Medina, P.J. Bowen, Study on premixed combustion characteristics of co-firing ammonia/methane fuels, Energy 140 (2017) 125-135.

    無法下載圖示 校內:2029-07-22公開
    校外:2029-07-22公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE