| 研究生: |
林育鋒 Lin, Yu-Feng |
|---|---|
| 論文名稱: |
利用傅式轉換紅外光譜儀研究ㄧ甲基甲醯胺和二甲基甲醯胺在二氧化鈦粉末表面上的吸附與光化學反應 FTIR Study of the Adsorption and Photochemistry of N-methylformamide and N, N-dimethylformamide on Powdered TiO2 |
| 指導教授: |
林榮良
Lin, Jong-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | ㄧ甲基甲醯胺 、傅式轉換紅外光譜儀 、二氧化鈦 、二甲基甲醯胺 |
| 外文關鍵詞: | TiO2, FTIR, N-methylformamide, dimethylformamide |
| 相關次數: | 點閱:61 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在真空系統下,利用傅氏轉換紅外光譜儀(FTIR)研究一甲基甲醯胺(NMF)和二甲基甲醯胺(DMF)在二氧化鈦表面上的吸附及光化學反應。
於35 oC時,一甲基甲醯胺會以分子性吸附(HCONHCH3(a))以及斷N-H鍵而分解性吸附(η2(N,O)-HCONCH3) 在表面上。吸附相的NMF在密閉系統中200 oC定溫加熱及無氧照光下皆會斷HCO-N而產生CO(a);在有氧存在下的照光反應,其產物如下:HCOO(a)、NCO(a)、CO2(a)、η2(N,O)-HCONCH3和H2O(a)。
二甲基甲醯胺在35 oC時,會以分子性吸附(HCON(CH3)2(a))於TiO2表面上,在真空下加熱至100 oC會使得光譜發生變化,推測分子有部份分解而形成含有-OCO-或-OCN-的表面物種,DMF(a)在密閉系統中加熱至150 oC會令HCO-N鍵斷裂而得到CO(a),在有氧下於密閉系統中進行DMF(a)照光反應,可得到CO2(g)、NCO(a)、HCOO(a)為光產物,而無氧存在光反應幾乎是不進行的,而無氧熱反應中,DMF(g)經加熱至400 oC會分解得到NHx (x=2, 3)、CH4(g)、N(CH3)3(g)。
Fourier-transformed infrared spectroscopy has been employed to study the adsorption and photoreactions of N-methylformamide (NMF) and N, N-dimethylformamide (DMF) on powdered TiO2. NMF is adsorbed with intact molecular form (HCONHCH3(a)) and dissociative form (η2(N,O)-HCONCH3) on the surface at 35 oC. For a NMF-adsorbed TiO2 surface, adsorbed CO is formed both in the photoirradiation in the absence of O2 and in the heating treatment at 200 oC for 60 min in a closed cell. In the case of NMF(a) photodecomposition in the presence of O2, adsorbed isocyanate (NCO), formate (HCOO), CO2, H2O and η2(N,O)-HCONCH3 are formed.
DMF is molecularly adsorbed on the surface at 35 oC, but after heating the sample under vacuum, the change in the IR absorption feature suggests that species containing –OCO– or –OCN– are generated by decomposing the DMF(a). Adsorbed CO is formed by holding the DMF-adsorbed TiO2 at 150 oC for 60 min in a closed cell. In the case of DMF(a) photodecomposition in the presence of O2, adsorbed NCO and HCOO and gaseous CO2 are formed. But DMF(a) photoreaction is almost terminated in the absence of O2. As TiO2 in contact with gaseous DMF is heated up to 400 oC in a closed cell, NHx (x=2, 3), CH4(g), and N(CH3)3(g) are detected.
1.S. J. Gregg and K. S. Sing, Adsorption, Surface area and Porosity. Academic Press, New York, 1967.
2.G. A. Somorjai, Introduction to surface chemistry and catalysis, Wiley & Sons, New York, p1, 1994.
3.J. C. Vickerman, Surface Analysis, Wiley & Sons, New York, p2, 1997.
4.P. W. Atkins, Physical Chemistry, Oxford University, p997, 1994.
5.G. A. Somorjai, Introduction to surface chemistry and catalysis, Wiley & Sons, New Youk, p443, 1994.
6.卓靜哲,何瑞文,黃守仁,施良垣,蘇世剛,物理化學,三民書局,台南市,第507-508頁,1994年。
7.A. Fujishima and K. Honda, Nature, 37, 238, 1972.
8.A. J. Bard, J. Phys. Chem. 86, 172, 1982.
9.A. J. Bard, Science 207, 139, 1980.
10.W. Wu, J. M. Herrman, and P. Pichat, Catal. 3, 73, 1989.
11.S. N. Franks and A. J. Bard, J. Phys. Chem. 81, 1484, 1977.
12.J. K. Leland and A. J. Bard, J. Phys. Chem. 91, 5076, 1987.
13.Q. S. Li, Chem. Lett. 135, 321, 1983.
14.A. L. Linsebigler, G. Lu, and J. T. Yates, Jr., Chem. Rev. 95, 735, 1995.
15.J. Fan and J. T. Yates, Jr., J. Am. Chem. Soc. 118, 4686, 1996.
16.M. A. Fox and M. T. Dulay, Chem. Rev. 93, 341, 1993.
17.J. K. Burdett, T. Hughbands, J. M. Gordon, J. W. Richardson, Jr., and J. V. Smith, J. Am. Chem. Soc. 109, 3639, 1987.
18.J. Augustynski, Electrochim. Acta 38, 43, 1993.
19.L. Cao, F.–J. Spiess, A. Huang, and S. L. Suib, J. Phys. Chem. B 103, 2912, 1999.
20.D. F. Ollis, E. Pelizzetti, and N. Serpone, Environ. Sci. Technol. 25, 1522, 1991.
21.O. Legrini, E. Oliveros, and A. M. Braun, Chem. Rev. 93, 671, 1993.
22.K.–C. G. Low, S. R. McEvoy, and R. W. Matthews, Environ. Sci. Technol. 25, 460, 1991.
23.A. Wold, Chem. Mater. 5, 280, 1993.
24.M. Scgiavello, Ed. Photocatalysis and Environment, Kluwer Academic Publishers, Dordrecht, 1988.
25.C. Breen, F. Clegg, T. L. Hughes, and J. Yarwood, Langmuir 16, 6648, 2000.
26.H. Liu, Y. Hu, and S. Yang, J. Phys. Chem. A 107, 10026, 2003.
27.H. Volman, J. Am. Chem. Soc. 63, 2000, 1941.
28.R. Livingston and H. Zeldes, J. Chem. Phys. 47, 4137, 1967.
29.S. R. Bosco, A. Cisillo, and R. B. Timmons, J. Am. Chem. Soc. 91, 3140, 1969.
30.Q. Ann and J. Adams, Int. J. Mass Spectrom. 107, R1, 1991.
31.D. Liu, W. H. Fang, Z. Y. Lin, and X. Y. Fu, J. Chem. Phys. 117, 9241, 2002.
32.J. Fan and J. T. Yates, Jr., J. Phys. Chem. 98, 10621, 1994.
33.J. C. S. Wong, A. Linsebigler, G. Lu, J. Fan, and J. T. Yates, Jr., J. Phys. Chem. 99, 335, 1995.
34.P. Bou , C. N. Tam, J. Sopková, and F. R. Trouw, J. Chem. Phys. 108(1), 351, 1998.
35.T. Miyazawa, T. Shimanouchi, and S.-I. Mizushima, J. Chem. Phys. 21, 1621, 1955.
36.W.-C. Wu, L.-F. Liao, C.-C. Chuang, and J.-L. Lin, J. Catal. 195, 416, 2000.
37.L.-F. Liao, W.-C. Wu, C.-Y. Chen, and J.-L. Lin, J Phys. Chem. B 105, 7678, 2001.
38.J. E. Parmeter, U. Schwalke, and W. H. Weinbergr, J. Am. Chem. Soc. 109, 5083, 1987.
39.D. K. Paul, and S. D. Worley, J. Phys. Chem. 94(26), 8956, 1990.
40.G. Lu, A. Linsebigler, and J. T. Yates, Jr., J. Phys. Chem. 98(45), 11733, 1994.
41.D. Qin, W. Chen, Y. Chen, J. Zhou, Y. Chen, and M. Gong, J. Catal. 142, 719, 1993.
42.J.-M. Pan, B. L. Maschhoff, U. Diebold, and T. E. Madey, J. Vac. Sci. Technol. A 10, 2470, 1992.
43.E. Guglielminotti, Langmuir 6, 1455, 1990.
44.H. Celio, K. Mudaligek, P. Millis, and M. Trenary, Surf. Sci. 394, L168, 1997.
45.F. Solymosi, and T. Bansagl, J. Am. Chem. Soc. 83, 552, 1979.
46.B. A. Morrow, W. N. Sont, and A. S. Onge, J. Catal. 62, 304, 1980.
47.F. Solymosi, L. Vo¨lygesi, and J. Sa´rka´ny, J. Catal. 54, 336, 1978.
48.S. Kameoka, T. Chafik, Y. Ukisu, and T. Miyadera, Catal. Lett. 51, 11, 1998.
49.S. Kameoka, T. Chafik, Y. Ukisu, and T. Miyadera, Catal. Lett. 55, 211, 1998.
50.C. Johnston, N. Jorgensen, and C. H. Rochester, J. Chem. Soc., Faraday Trans. 1 85, 1111, 1989.
51.D. K. Paul and S. D. Worley, J. Phys. Chem. 94, 8956, 1990.
52.F. Solymosi, J. Sa´rka´ny, and A. Schauer, J. Catal. 46, 297, 1977.
53.J. Zhuang, C. N. Rusu, and J. T., Yates, Jr., J. Phys. Chem. B 103, 6957, 1999.
54.C.-C. Chuang, W.-C. Wu, M.-X. Lee, and J.-L. Lin, Phys. Chem. Chem. Phys. 2, 3877, 2000.
55.L.-F. Liao, W.-C. Wu, C.-C. Chuang, and J.-L. Lin, J. Phys. Chem. B 105, 5928, 2001.
56.L.-F. Liao, C.-F. Lien, D.-L. Shieh, M.-T. Chen, and J.-L. Lin, J. Phys. Chem. B 106, 11240, 2002.
57.G. Busca, J. Lamotte, J.-C. Lavalley, and V. Lorenzelli, J. Am. Chem. Soc. 109, 5197, 1987.
58.W.-C. Wu, C.-C. Chuang, and J.-L Lin, J. Phys. Chem. B 104, 8719, 2000.
59.N. B. Colthup, L. H. Daly, and S. E. Wiberley, Introduction to Infrared and Raman Spectroscopy, Academic Press Inc., CA, 1990.
60.K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, John Wiley and Sons, New York, 1986.
61.The Aldrich Library of FTIR Spectra; 1st ed., Aldrich Chemical Co.: Milwaukee, 1985.
62.E. Spinner, and J. E. Rowe, Aust. J. Chem. 32, 481, 1979.
63.H. Courbon, M. Formenti, and P. Pichat, J. Phys. Chem. 81, 550, 1977.
64.O. I. Micic, Y. Zhang, K. R. Cromack, A. D. Trifunac, and M. C. Thurnauer, J. Phys. Chem. 97, 13284, 1993.
65.C. Lassigne and P. Baine, J. Phys. Chem. 75, 3188, 1971.
66.V. T. Yilmaz and Y. Topcu, Thermochimica 307, 143, 1997.
67.Y. J. Kim and C. R. Park, Inorg. Chem. 41, 6211, 2002.
68.H. Borrmann, I. Persson, M. Sandström and C. M. V. Stålhandske, J. Chem. Soc., Perkin Trans. 2, 393, 2000.
69.P. Meriaudeau and J. C. Vedrine, J. Chem. Soc., Faraday Trans. 2 72, 472, 1976.
70.C.-F. Lien, Y.-F. Lin, Y.-S. Lin, M.-T. Chen, and J.-L. Lin, Applied Catalysis B: Environmental submitted.
71.C.-C. Chuang, W.-C. Wu, M.-C. Huang, I.-C. Huang, and J.-L. Lin, J. Catal. 185, 423, 1999.
72.C. Su, J.-C. Yeh, C.-C. Chen, J.-C. Lin, and J.-L. Lin, J. Catal. 194, 45, 2000.
73.C.-C. Chuang, J.-S. Shiu, and J.-L. Lin, Phys. Chem. Chem. Phys. 2, 2629, 2000.