簡易檢索 / 詳目顯示

研究生: 蘇彥如
Su, Yen-Ju
論文名稱: 利用微乳液法製備二氧化矽塗覆之銅奈米粒子
Synthesis of Silica-Coated Copper Nanoparticles with Microemulsion Method
指導教授: 陳巧貞
Chen, Chiao-Chen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 114
中文關鍵詞: 銅奈米立方體二氧化矽塗覆反相微乳液
外文關鍵詞: copper nanocubes, silica coating, reverse microemulsion
相關次數: 點閱:41下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金屬奈米粒子因具有獨特的光學、電化學、催化及導熱性質而廣泛地應用於許多科研領域,其中銅奈米粒子因為具有低成本及自然儲存量大的優點是替代貴金屬的理想材料。然而,銅奈米粒子與其他貴金屬奈米粒子相比,因活性大而易氧化,造成銅奈米粒子儲存不易而影響其光學、催化性質的穩定性,大幅度限縮其使用層面。因此,如何在保有其光學性質與反應活性的前提下,提昇所製備具有高純度以及特定尺寸與形貌之銅奈米粒子長期保存之穩定性是很重要的議題。選用二氧化矽殼層包覆銅奈米粒子能夠有效避免其氧化,也能夠提昇銅奈米粒子於水溶液之分散性,有利於奈米銅於生醫顯影與綠色催化反應的應用。
    於本研究中,我們使用歧化反應將溴化亞銅還原成銅奈米立方體,藉由調控反應升溫速率及反應溫度得到均一性高的不同尺寸大小之銅奈米立方體,並使用反相微乳液系統進行二氧化矽殼層的塗覆,並探討不同銅奈米濃度、超音波震碎時間與添加不同濃度的鹼等反應參數對於所合成之二氧化矽殼層塗覆銅奈米立方體之影響,以期得到二氧化矽空殼比例低之單核心二氧化矽塗覆銅奈米粒子。經過各合成參數系統性的調整,所製備出來之Cu@SiO2粒子單核心包覆之比例可達70.1 %,僅有25.3 %為二氧化矽空球,以及4.6 %之多核心包覆銅奈米。經過UV-vis及XRD檢測,經二氧化矽包覆之銅奈米可表現穩定之光學性質,且能於乙醇這類吸濕性(hygroscopic)溶劑中保存長達5個月以上。

    Nanomaterial is one of the most interesting research areas because of its potential to be applied in diverse fields. Copper nanoparticles (Cu NPs), which are prepared from earth-aboundent and inexpensive copper metal, are considered to be promising alternatives to nanomaterials made from rare and expensive noble metals, such as silver (Ag) and gold (Au) nanoparticles. However, the inherent instability and high chemical activity of copper makes copper nanoparticles easily oxidized into cuprous oxide or copper oxide under atomspheric conditions. Consequently, the unique properties of Cu NPs, including their catalytic and optical properties are greatly distorted, significantly restricting their applications. Therefore, how to improve the long-term preservation stability of Cu NPs prepared with high purity and specific size and morphology while maintaining its optical properties and reactivity is an important issue. Coating the Cu NPs with SiO2 shell layer not only effectively avoids oxidation but also improves the dispersibility of copper nanoparticles in aqueous solutions, which is beneficial to the application of nano-copper in biomedical development and green catalytic reaction.
    In our study, we used disproportionation reaction to synthesized copper nanocube (Cu NCs). By adjusting the reaction heating rate and reaction temperature, we can obtain different sizes of copper nanocubes with high uniformity. In addition, the synthesized Cu NCs were coted with SiO2 shell with modified reverse microemulsion method to obtain highly uniform copper-silica core-shell structure, which contains single-core Cu@SiO2 nanoparticles up to 70.1 %, no more than 25.3 % core-free silica and less than 4.6 % of multi-core Cu@SiO2 nanoparticles. According to examinations of UV-vis spectra and XRD, the composition, morophology and optical properties of synthesized silica-coated copper nanoparticles can be preserved in ethonal (a tylical hygroscopic solvent) for at least 5 months.

    中文摘要 I Extended Abstracts II 致謝 XIV 目錄 XV 圖目錄 XVII 表目錄 XXI 第1章 緒論與動機 1 第2章 文獻回顧 2 2.1 二氧化矽包覆不同金屬之應用 2 2.1.1 二氧化矽包覆金奈米 2 2.1.2 二氧化矽包覆四氧化三鐵奈米 3 2.1.3 二氧化矽包覆銅奈米 3 2.2 二氧化矽塗層方式簡介 4 2.2.1 史托伯法(Stöber method) 6 2.2.2 微乳液法(microemulsion method) 7 第3章 實驗步驟與檢測方法 14 3.1 藥品清單 14 3.2 銅奈米合成 15 3.2.1 合成60奈米之銅奈米 15 3.2.2 合成小於40奈米之銅奈米 15 3.3 二氧化矽塗佈銅奈米 16 3.3.1 正相微乳液法塗層二氧化矽 16 3.3.2 反相微乳液法塗佈二氧化矽 17 3.4 檢驗儀器 18 3.4.1 電子顯微鏡 18 3.4.2 X射線光電子能譜儀(X-ray photoelectron spectroscopy) 19 3.4.3 歐傑電子能譜儀(Auger electron spectroscopy) 20 3.4.4 動態光散射(Dynamic Light Scattering) 21 第4章 實驗結果與討論 23 4.1 銅奈米合成 23 4.1.1 60奈米大小之銅奈米合成 23 4.1.2 小於40奈米大小之銅奈米合成 35 4.1.3 合成奈米銅之形貌鑑定 38 4.2 正相微乳液法進行銅奈米塗佈二氧化矽 45 4.2.1 改變不同反應體積之影響 45 4.2.2 不同震碎條件之影響 47 4.2.3 不同反應溫度之影響 51 4.2.4 不同反應時間對二氧化矽殼層厚度之影響 52 4.3 反相微乳液法進行銅奈米塗佈二氧化矽 55 4.3.1 製備二氧化矽奈米球 55 4.3.1.1 反應時間影響 55 4.3.1.2 TEOS與鹼比例之影響 57 4.3.1.3 磁石攪拌器轉速及攪拌時間產生之影響 59 4.3.1.4 油相組成之影響 62 4.3.1.5 水量多寡之影響 64 4.3.1.6 鹼催化劑組成之影響 66 4.3.1.7 鹼催化劑濃度之影響 71 4.3.2 反相微乳液法包覆銅奈米粒子 73 4.3.2.1 銅奈米濃度之影響 73 4.3.2.2 震盪時間之影響 74 4.3.2.3 改變鹼濃度對二氧化矽球殼厚度之影響 75 4.4 二氧化矽包覆之銅奈米之性質 78 4.4.1 二氧化矽包覆銅奈米過程機制之探討 78 4.4.2 分析合成之二氧化矽包覆銅奈米 79 4.4.3 二氧化矽包覆之銅奈米的光學穩定性 80 4.4.4 二氧化矽包覆前後之銅奈米穩定性 84 第5章 結論與未來方向 87 第6章 附錄 88 第7章 參考文獻 102

    1. Skarlinski, M. D.; Quesnel, D. J., Effect of native oxide layers on copper thin-film tensile properties: A reactive molecular dynamics study. J. Appl. Phys. 2015, 118 (23), 235306.
    2. GAO, Q.; KAN, C.-X.; LI, J.-L.; LOU, Y.-K.; WEI, J.-J., Research Progress on the Liquid-Phase Preparation and Surface Modification of Copper Nanowires. Acta Phys. Chim. Sin. 2016, 32 (7), 1604-1622.
    3. Jiang, J.; Kim, S.-H.; Piao, L., The facile synthesis of Cu@SiO2 yolk-shell nanoparticles via a disproportionation reaction of silica-encapsulated Cu2O nanoparticle aggregates. Nanoscale 2015, 7 (18), 8299-8303.
    4. Bae, D.-S.; Han, K.-S.; Adair, J., Synthesis of Cu/SiO 2 nanosize particles by a reverse micelle and sol-gel processing. J. Mater. Sci. Lett. 2002, 21 (1), 53-54.
    5. JináHah, H.; InáUm, J.; HoonáHan, S.; ManáKoo, S., New synthetic route for preparing rattle-type silica particles with metal cores. Chem. Commun. 2004, (8), 1012-1013.
    6. Ghosh, S. K.; Pal, T., Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles:  From Theory to Applications. Chemical Reviews 2007, 107 (11), 4797-4862.
    7. Kuhl, K. P.; Hatsukade, T.; Cave, E. R.; Abram, D. N.; Kibsgaard, J.; Jaramillo, T. F., Electrocatalytic Conversion of Carbon Dioxide to Methane and Methanol on Transition Metal Surfaces. J. Am. Chem. Soc. 2014, 136 (40), 14107-14113.
    8. Hori, Y.; Kikuchi, K.; Suzuki, S., Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution. 1985; Vol. 14, p 1695-1698.
    9. Daniel, M.-C.; Astruc, D., Gold Nanoparticles:  Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chemical Reviews 2004, 104 (1), 293-346.
    10. Luo, X.; Morrin, A.; Killard, A. J.; Smyth, M., Application of Nanoparticles in Electrochemical Sensors and Biosensors. 2006; Vol. 18, p 319-326.
    11. Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S. E., Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics? Angewandte Chemie (International ed. in English) 2009, 48 (1), 60-103.
    12. McFarland, A. D.; Van Duyne, R. P., Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity. Nano Lett. 2003, 3 (8), 1057-1062.
    13. Liz-Marzán, L. M., Tailoring Surface Plasmons through the Morphology and Assembly of Metal Nanoparticles. Langmuir 2006, 22 (1), 32-41.
    14. Li, Y.; Wu, Y.; Ong, B. S., Facile Synthesis of Silver Nanoparticles Useful for Fabrication of High-Conductivity Elements for Printed Electronics. J. Am. Chem. Soc. 2005, 127 (10), 3266-3267.
    15. Hu, A.; Guo, J. Y.; Alarifi, H.; Patane, G.; Zhou, Y.; Compagnini, G.; Xu, C. X., Low temperature sintering of Ag nanoparticles for flexible electronics packaging. Applied Physics Letters 2010, 97 (15), 153117.
    16. Carotenuto, G.; Pepe, G. P.; Nicolais, L., Preparation and characterization of nano-sized Ag/PVP composites for optical applications. The European Physical Journal B - Condensed Matter and Complex Systems 2000, 16 (1), 11-17.
    17. Mayya, K. S.; Gittins, D. I.; Caruso, F., Gold−Titania Core−Shell Nanoparticles by Polyelectrolyte Complexation with a Titania Precursor. Chem. Mater. 2001, 13 (11), 3833-3836.
    18. Ung, T.; Liz-Marzán, L. M.; Mulvaney, P., Controlled Method for Silica Coating of Silver Colloids. Influence of Coating on the Rate of Chemical Reactions. Langmuir 1998, 14 (14), 3740-3748.
    19. Avnir, D.; Coradin, T.; Lev, O.; Livage, J., Recent bio-applications of sol-gel materials. J. Mater. Chem. 2006, 16 (11), 1013-1030.
    20. Katz, E.; Willner, I., Integrated Nanoparticle–Biomolecule Hybrid Systems: Synthesis, Properties, and Applications. Angewandte Chemie International Edition 2004, 43 (45), 6042-6108.
    21. Patra, C. R.; Bhattacharya, R.; Mukhopadhyay, D.; Mukherjee, P., Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer. Advanced Drug Delivery Reviews 2010, 62 (3), 346-361.
    22. Huang, X.; Jain, P. K.; El-Sayed, I. H.; El-Sayed, M. A., Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers in Medical Science 2007, 23 (3), 217.
    23. Larsson, E. M.; Alegret, J.; Käll, M.; Sutherland, D. S., Sensing Characteristics of NIR Localized Surface Plasmon Resonances in Gold Nanorings for Application as Ultrasensitive Biosensors. Nano Lett. 2007, 7 (5), 1256-1263.
    24. Mine, E.; Yamada, A.; Kobayashi, Y.; Konno, M.; Liz-Marzán, L. M., Direct coating of gold nanoparticles with silica by a seeded polymerization technique. J. Colloid Interface Sci. 2003, 264 (2), 385-390.
    25. Liu, S. H.; Han, M. Y., Synthesis, Functionalization, and Bioconjugation of Monodisperse, Silica‐Coated Gold Nanoparticles: Robust Bioprobes. Advanced Functional Materials 2005, 15 (6), 961-967.
    26. Wang, H.; Levin, C. S.; Halas, N. J., Nanosphere Arrays with Controlled Sub-10-nm Gaps as Surface-Enhanced Raman Spectroscopy Substrates. J. Am. Chem. Soc. 2005, 127 (43), 14992-14993.
    27. Aillon, K. L.; Xie, Y.; El-Gendy, N.; Berkland, C. J.; Forrest, M. L., Effects of nanomaterial physicochemical properties on in vivo toxicity. Advanced Drug Delivery Reviews 2009, 61 (6), 457-466.
    28. Pernodet, N.; Fang, X.; Sun, Y.; Bakhtina, A.; Ramakrishnan, A.; Sokolov, J.; Ulman, A.; Rafailovich, M., Adverse Effects of Citrate/Gold Nanoparticles on Human Dermal Fibroblasts. Small 2006, 2 (6), 766-773.
    29. Jordan, A.; Wust, P.; Fähling, H.; John, W.; Hinz, A.; Felix, R., Inductive heating of ferrimagnetic particles and magnetic fluids: Physical evaluation of their potential for hyperthermia. Int. J. Hyperther 2009, 25 (7), 499-511.
    30. Gupta, P. K.; Hung, C. T.; Lam, F. C.; Perrier, D. G., Albumin microspheres. III. Synthesis and characterization of microspheres containing adriamycin and magnetite. Int. J. Pharm 1988, 43 (1), 167-177.
    31. Neuberger, T.; Schöpf, B.; Hofmann, H.; Hofmann, M.; von Rechenberg, B., Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system. J. Magn. Magn. Mater. 2005, 293 (1), 483-496.
    32. Liu, Y.; Jiang, Q.-Y.; Lu, S.-Y.; Zhang, Y.; Gu, H.-Y., Immobilization of Hemoglobin on the Gold Colloid Modified Pretreated Glassy Carbon Electrode for Preparing a Novel Hydrogen Peroxide Biosensor. Appl. Biochem. Biotechnol. 2009, 152 (3), 418-427.
    33. Yang, H.-J.; He, S.-Y.; Chen, H.-L.; Tuan, H.-Y., Monodisperse Copper Nanocubes: Synthesis, Self-Assembly, and Large-Area Dense-Packed Films. Chem. Mater. 2014, 26 (5), 1785-1793.
    34. Wen, T.; Tian, J.; Lu, T. J.; Queheillalt, D. T.; Wadley, H. N. G., Forced convection in metallic honeycomb structures. Int. J. Heat Mass Transfer 2006, 49 (19), 3313-3324.
    35. Yue, H.; Zhao, Y.; Zhao, S.; Wang, B.; Ma, X.; Gong, J., A copper-phyllosilicate core-sheath nanoreactor for carbon–oxygen hydrogenolysis reactions. Nat. Commun. 2013, 4, 2339.
    36. Manthiram, K.; Beberwyck, B. J.; Alivisatos, A. P., Enhanced Electrochemical Methanation of Carbon Dioxide with a Dispersible Nanoscale Copper Catalyst. J. Am. Chem. Soc. 2014, 136 (38), 13319-13325.
    37. Hirai, H.; Wakabayashi, H.; Komiyama, M., Catalytic Hydration of Unsaturated Nitriles to Unsaturated Amides Using Colloidal Copper Dispersions. Bull. Chem. Soc. Jpn. 1986, 59 (2), 545-550.
    38. Zhang, X.; Ptasinska, S., High‐Pressure‐Induced Pseudo‐oxidation of Copper Surfaces by Carbon Monoxide. ChemCatChem 2016, 8 (9), 1632-1635.
    39. Uchida, K.; Kaneko, S.; Omi, S.; Hata, C.; Tanji, H.; Asahara, Y.; Ikushima, A. J.; Tokizaki, T.; Nakamura, A., Optical nonlinearities of a high concentration of small metal particles dispersed in glass: copper and silver particles. J. Opt. Soc. Am. B 1994, 11 (7), 1236-1243.
    40. Angel, S. M.; Katz, L. F.; Archibald, D. D.; Honigs, D. E., Near-Infrared Surface-Enhanced Raman Spectroscopy. Part II: Copper and Gold Colloids. Appl. Spectrosc. 1989, 43 (3), 367-372.
    41. Shao, M.-W.; Lu, L.; Wang, H.; Wang, S.; Zhang, M.-L.; Ma, D.-D.-D.; Lee, S.-T., An ultrasensitive method: surface-enhanced Raman scattering of Ag nanoparticles from [small beta]-silver vanadate and copper. Chem. Commun. 2008, (20), 2310-2312.
    42. Park, B. K.; Jeong, S.; Kim, D.; Moon, J.; Lim, S.; Kim, J. S., Synthesis and size control of monodisperse copper nanoparticles by polyol method. J. Colloid Interface Sci. 2007, 311 (2), 417-424.
    43. Wu, S.-H.; Chen, D.-H., Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions. J. Colloid Interface Sci. 2004, 273 (1), 165-169.
    44. Malyszko, J.; Kaczor, M., Reproportionation of Copper(I). J. Chem. Educ. 2003, 80 (9), 1048.
    45. Zhang, Q.; Wilson, P.; Li, Z.; McHale, R.; Godfrey, J.; Anastasaki, A.; Waldron, C.; Haddleton, D. M., Aqueous Copper-Mediated Living Polymerization: Exploiting Rapid Disproportionation of CuBr with Me6TREN. J. Am. Chem. Soc. 2013, 135 (19), 7355-7363.
    46. Jones, R. W.; Institute of, M., Fundamental principles of sol-gel technology. London, 1989.
    47. Attia, Y. A., Sol-Gel Processing and Applications. 3Island Press: 1995.
    48. Shiomi, S.; Kawamori, M.; Yagi, S.; Matsubara, E., One-pot synthesis of silica-coated copper nanoparticles with high chemical and thermal stability. J. Colloid Interface Sci. 2015, 460, 47-54.
    49. Stöber, W.; Fink, A.; Bohn, E., Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26 (1), 62-69.
    50. Bogush, G. H.; Zukoski, C. F., Studies of the kinetics of the precipitation of uniform silica particles through the hydrolysis and condensation of silicon alkoxides. J. Colloid Interface Sci. 1991, 142 (1), 1-18.
    51. Han, Y.; Lu, Z.; Teng, Z.; Liang, J.; Guo, Z.; Wang, D.; Han, M.-Y.; Yang, W., Unraveling the Growth Mechanism of Silica Particles in the Stöber Method: In Situ Seeded Growth Model. Langmuir 2017, 33 (23), 5879-5890.
    52. Shinoda, K.; Kunieda, H., Microemulsions, theory and practice. Acad. Pr 1977, 57.
    53. Schott, H., Saturation adsorption at interfaces of surfactant solutions. J. Pharm. Sci. 1980, 69 (7), 852-854.
    54. Migahed, M. A.; Attya, M. M.; Rashwan, S. M.; Abd El-Raouf, M.; Al-Sabagh, A. M., Synthesis of some novel non ionic surfactants based on tolyltriazole and evaluation their performance as corrosion inhibitors for carbon steel. Egypt. J. Pet. 2013, 22 (1), 149-160.
    55. Muzaffar, F.; K Singh, U.; Chauhan, L., Review on microemulsion as futuristic drug delivery. 2014; Vol. 5.
    56. Garti, N.; Aserin, A.; Ezrahi, S.; Wachtel, E., Water Solubilization and Chain Length Compatibility in Nonionic Microemulsions. J. Colloid Interface Sci. 1995, 169 (2), 428-436.
    57. Murrell, J. N., Michael James Steuart Dewar. 24 September 1918–11 October 1997. Biogr Mems Fell R Soc 1998, 44, 129.
    58. Malik, M. A.; Wani, M. Y.; Hashim, M. A., Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials: 1st Nano Update. Arabian J. Chem. 2012, 5 (4), 397-417.
    59. Lang, J.; Lalem, N.; Zana, R., Quaternary water in oil microemulsions. 1. Effect of alcohol chain length and concentration on droplet size and exchange of material between droplets. J. Phys. Chem. 1991, 95 (23), 9533-9541.
    60. Yang, H.-H.; Zhang, S.-Q.; Chen, X.-L.; Zhuang, Z.-X.; Xu, J.-G.; Wang, X.-R., Magnetite-Containing Spherical Silica Nanoparticles for Biocatalysis and Bioseparations. Anal. Chem. 2004, 76 (5), 1316-1321.
    61. Ding, H. L.; Zhang, Y. X.; Wang, S.; Xu, J. M.; Xu, S. C.; Li, G. H., Fe3O4@SiO2 Core/Shell Nanoparticles: The Silica Coating Regulations with a Single Core for Different Core Sizes and Shell Thicknesses. Chem. Mater. 2012, 24 (23), 4572-4580.
    62. Vieu, C.; Carcenac, F.; Pépin, A.; Chen, Y.; Mejias, M.; Lebib, A.; Manin-Ferlazzo, L.; Couraud, L.; Launois, H., Electron beam lithography: resolution limits and applications. Appl. Surf. Sci. 2000, 164 (1), 111-117.
    63. Haider, M.; Rose, H.; Uhlemann, S.; Kabius, B.; Urban, K., Towards 0.1 nm resolution with the first spherically corrected transmission electron microscope. Microscopy 1998, 47 (5), 395-405.
    64. Rutherford, E., LVII. The structure of the atom. Lond. Edinb. Dubl. Phil. Mag. 1914, 27 (159), 488-498.
    65. Hollander, J. M.; Jolly, W. L., X-ray photoelectron spectroscopy. Acc. Chem. Res. 1970, 3 (6), 193-200.
    66. Morabito, J. M.; Rand, M. J., Composition profiles of CVD platinum and platinum silicide by Auger electron spectroscopy and secondary ion mass spectrometry. Thin Solid Films 1974, 22 (3), 293-303.
    67. Chang, C. C., Auger electron spectroscopy. Surf. Sci. 1971, 25 (1), 53-79.
    68. Brown, W.; Schillen, K.; Almgren, M.; Hvidt, S.; Bahadur, P., Micelle and gel formation in a poly(ethylene oxide)/poly(propylene oxide)/poly(ethylene oxide) triblock copolymer in water solution: dynamic and static light scattering and oscillatory shear measurements. J. Phys. Chem. 1991, 95 (4), 1850-1858.
    69. Huaman, J. L. C.; Sato, K.; Kurita, S.; Matsumoto, T.; Jeyadevan, B., Copper nanoparticles synthesized by hydroxyl ion assisted alcohol reduction for conducting ink. J. Mater. Chem. 2011, 21 (20), 7062-7069.
    70. Tee, S. Y.; Ye, E.; Pan, P. H.; Lee, C. J. J.; Hui, H. K.; Zhang, S.-Y.; Koh, L. D.; Dong, Z.; Han, M.-Y., Fabrication of bimetallic Cu/Au nanotubes and their sensitive, selective, reproducible and reusable electrochemical sensing of glucose. Nanoscale 2015, 7 (25), 11190-11198.
    71. Ye, E.; Zhang, S. Y.; Liu, S.; Han, M. Y., Disproportionation for Growing Copper Nanowires and their Controlled Self‐Assembly Facilitated by Ligand Exchange. Chem. Eur. J. 2011, 17 (11), 3074-3077.
    72. Yang, H.-J.; He, S.-Y.; Tuan, H.-Y., Self-Seeded Growth of Five-Fold Twinned Copper Nanowires: Mechanistic Study, Characterization, and SERS Applications. Langmuir 2014, 30 (2), 602-610.
    73. Guo, H.; Chen, Y.; Ping, H.; Jin, J.; Peng, D.-L., Facile synthesis of Cu and Cu@Cu-Ni nanocubes and nanowires in hydrophobic solution in the presence of nickel and chloride ions. Nanoscale 2013, 5 (6), 2394-2402.
    74. Chu, C. R.; Lee, C.; Koo, J.; Lee, H. M., Fabrication of sintering-free flexible copper nanowire/polymer composite transparent electrodes with enhanced chemical and mechanical stability. Nano Res. 2016, 9 (7), 2162-2173.
    75. Guo, H.; Chen, Y.; Cortie, M. B.; Liu, X.; Xie, Q.; Wang, X.; Peng, D.-L., Shape-Selective Formation of Monodisperse Copper Nanospheres and Nanocubes via Disproportionation Reaction Route and Their Optical Properties. J. Phys. Chem. C 2014, 118 (18), 9801-9808.
    76. Ye, E.; Regulacio, M. D.; Bharathi, M. S.; Pan, H.; Lin, M.; Bosman, M.; Win, K. Y.; Ramanarayan, H.; Zhang, S.-Y.; Loh, X. J.; Zhang, Y.-W.; Han, M.-Y., An experimental and theoretical investigation of the anisotropic branching in gold nanocrosses. Nanoscale 2016, 8 (1), 543-552.
    77. 余志明; 尹登峰, 一種晶體表面自由能的計算方法. 物理學報 2005, 54 (8), 3822.
    78. Zhang, J.-M.; Ma, F.; Xu, K.-W., Calculation of the surface energy of FCC metals with modified embedded-atom method. Appl. Surf. Sci. 2004, 229 (1), 34-42.
    79. Wulff, G., XXV. Zur Frage der Geschwindigkeit des Wachsthums und der Auflösung der Krystallflächen. In Zeitschrift für Kristallographie - Crystalline Materials, 1901; Vol. 34, p 449.
    80. D Marks, L., Marks, L. D. Experimental studies of small particle structures. Rep. Prog. Phys. 57, 603-649. 1999; Vol. 57, p 603.
    81. Pimpinelli, A.; Villain, J., Physics of crystal growth. Cambridge university press Cambridge: 1998; Vol. 19.
    82. Xiong, Y.; Chen, J.; Wiley, B.; Xia, Y.; Aloni, S.; Yin, Y., Understanding the role of oxidative etching in the polyol synthesis of Pd nanoparticles with uniform shape and size. J. Am. Chem. Soc. 2005, 127 (20), 7332-7333.
    83. Wu, J.; Yang, H., Synthesis and electrocatalytic oxygen reduction properties of truncated octahedral Pt 3 Ni nanoparticles. Nano Res. 2011, 4 (1), 72-82.
    84. Wu, H.; Chen, W., Copper nitride nanocubes: size-controlled synthesis and application as cathode catalyst in alkaline fuel cells. J. Am. Chem. Soc. 2011, 133 (39), 15236-15239.
    85. Singh, C. U., Solid nanoparticle formulation of water insoluble pharmaceutical substances with reduced Ostwald ripening. Google Patents: 2014.
    86. Chen, J.; McLellan, J. M.; Siekkinen, A.; Xiong, Y.; Li, Z.-Y.; Xia, Y., Facile synthesis of gold− silver nanocages with controllable pores on the surface. J. Am. Chem. Soc. 2006, 128 (46), 14776-14777.
    87. Baldan, A., Review progress in Ostwald ripening theories and their applications to nickel-base superalloys Part I: Ostwald ripening theories. J. Mater. Sci. 2002, 37 (11), 2171-2202.
    88. Bastús, N. G.; Comenge, J.; Puntes, V., Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening. Langmuir 2011, 27 (17), 11098-11105.
    89. Madras, G.; McCoy, B. J., Continuous distribution theory for Ostwald ripening: comparison with the LSW approach. Chem. Eng. Sci. 2003, 58 (13), 2903-2909.
    90. Sahu, P.; Prasad, B. L., Time and temperature effects on the digestive ripening of gold nanoparticles: is there a crossover from digestive ripening to Ostwald ripening? Langmuir 2014, 30 (34), 10143-10150.
    91. Wiscombe, W. J., Improved Mie scattering algorithms. Appl. Opt. 1980, 19 (9), 1505-1509.
    92. Crane, C. C.; Wang, F.; Li, J.; Tao, J.; Zhu, Y.; Chen, J., Synthesis of Copper–Silica Core–Shell Nanostructures with Sharp and Stable Localized Surface Plasmon Resonance. J. Phys. Chem. C 2017, 121 (10), 5684-5692.
    93. Abeywickrama, T.; Sreeramulu, N. N.; Xu, L.; Rathnayake, H., A versatile method to prepare size-and shape-controlled copper nanocubes using an aqueous phase green synthesis. RSC Adv. 2016, 6 (94), 91949-91955.
    94. Khanna, P. K.; Kale, T. S.; Shaikh, M.; Rao, N. K.; Satyanarayana, C. V. V., Synthesis of oleic acid capped copper nano-particles via reduction of copper salt by SFS. Mater. Chem. Phys. 2008, 110 (1), 21-25.
    95. Göeken, K. L.; Subramaniam, V.; Gill, R., Enhancing spectral shifts of plasmon-coupled noble metal nanoparticles for sensing applications. Phys. Chem. Chem. Phys. 2015, 17 (1), 422-427.
    96. Huang, X.; El-Sayed, M. A., Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res. 2010, 1 (1), 13-28.
    97. Ohko, Y.; Tatsuma, T.; Fujii, T.; Naoi, K.; Niwa, C.; Kubota, Y.; Fujishima, A., Multicolour photochromism of TiO 2 films loaded with silver nanoparticles. Nat. Mater. 2003, 2 (1), 29.
    98. Yi-Ying Sung, C.-C. C., Synthesis of 3D Graphene Using Silica-Coated Metal Nanoparticle as a Reliable Growth Template. 2017.
    99. Zhu, D.; Feng, K.; Schelly, Z., Reverse micelles of Triton X-100 in cyclohexane: effects of temperature, water content, and salinity on the aggregation behavior. J. Phys. Chem. 1992, 96 (5), 2382-2385.
    100. Andrade, S. M.; Costa, S. M.; Pansu, R., Structural changes in W/O Triton X-100/cyclohexane-hexanol/water microemulsions probed by a fluorescent drug Piroxicam. J. Colloid Interface Sci. 2000, 226 (2), 260-268.
    101. Zhu, D.; Wu, X.; Schelly, Z., Investigation of the micropolarities in reverse micelles of Triton X-100 in mixed solvents of benzene and n-hexane. J. Phys. Chem. 1992, 96 (17), 7121-7126.
    102. Milano-Brusco, J. S.; Schwarze, M.; Djennad, M. h.; Nowothnick, H.; Schomäcker, R., Catalytic Hydrogenation of Dimethyl Itaconate in a Water− Cyclohexane− Triton X-100 Microemulsion in Comparison to a Biphasic System. Ind. Eng. Chem. Res. 2008, 47 (20), 7586-7592.
    103. Sun, J.; Liu, H.; Chen, X.; Evans, D. G.; Yang, W., An oil droplet template method for the synthesis of hierarchical structured Co 3 O 4/C anodes for Li-ion batteries. Nanoscale 2013, 5 (16), 7564-7571.
    104. Khosravani, S.; Alaei, M.; Rashidi, A.; Ramazani, A.; Ershadi, M., O/W emulsions stabilized with γ-alumina nanostructures for chemical enhanced oil recovery. Mater. Res. Bull. 2013, 48 (6), 2186-2190.
    105. Li, G.; Mu, J.; Li, X.; Lu, T.; Sun, W., A CIDEP study of photolyzed anthraquinone radicals in aqueous micellar solutions and microemulsions. Colloids Surf., A 2001, 182 (1-3), 269-274.
    106. Chou, K.-S.; Chen, C.-C., The critical conditions for secondary nucleation of silica colloids in a batch Stöber growth process. Ceram. Int. 2008, 34 (7), 1623-1627.
    107. Lin, C.-H.; Chang, J.-H.; Yeh, Y.-Q.; Wu, S.-H.; Liu, Y.-H.; Mou, C.-Y., Formation of hollow silica nanospheres by reverse microemulsion. Nanoscale 2015, 7 (21), 9614-9626.
    108. Pal, S.; Balasubramanian, S.; Bagchi, B., Dynamics of bound and free water in an aqueous micellar solution: Analysis of the lifetime and vibrational frequencies of hydrogen bonds at a complex interface. Phys. Rev. E 2003, 67 (6), 061502.
    109. Osseo-Asare, K.; Arriagada, F., Growth kinetics of nanosize silica in a nonionic water-in-oil microemulsion: a reverse micellar pseudophase reaction model. J. Colloid Interface Sci. 1999, 218 (1), 68-76.
    110. Arriagada, F.; Osseo-Asare, K., Controlled hydrolysis of tetraethoxysilane in a nonionic water-in-oil microemulsion: a statistical model of silica nucleation. Colloids Surf., A 1999, 154 (3), 311-326.
    111. Chang, C.-L.; Fogler, H. S., Controlled formation of silica particles from tetraethyl orthosilicate in nonionic water-in-oil microemulsions. Langmuir 1997, 13 (13), 3295-3307.
    112. Bagwe, R. P.; Yang, C.; Hilliard, L. R.; Tan, W., Optimization of dye-doped silica nanoparticles prepared using a reverse microemulsion method. Langmuir 2004, 20 (19), 8336-8342.
    113. Arriagada, F.; Osseo-Asare, K., Synthesis of nanosize silica in a nonionic water-in-oil microemulsion: effects of the water/surfactant molar ratio and ammonia concentration. J. Colloid Interface Sci. 1999, 211 (2), 210-220.
    114. Matsoukas, T.; Gulari, E., Dynamics of growth of silica particles from ammonia-catalyzed hydrolysis of tetra-ethyl-orthosilicate. J. Colloid Interface Sci. 1988, 124 (1), 252-261.
    115. Bogush, G.; Tracy, M.; Zukoski Iv, C., Preparation of monodisperse silica particles: control of size and mass fraction. J. Non-Cryst. Solids 1988, 104 (1), 95-106.

    無法下載圖示 校內:2023-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE