簡易檢索 / 詳目顯示

研究生: 李柏寬
Lee, Bo-Kuam
論文名稱: 六軸工業機器人軌跡定位誤差補償與驗證
Trajectory Positioning Error Compensation and Verification for Six-Axis Industrial Robot
指導教授: 劉建聖
Liu, Chien-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 133
中文關鍵詞: 六軸工業機器人角定位誤差雷射追蹤儀修正後DH法關節角誤差
外文關鍵詞: Industrial robot, Laser Tracker, Angular positioning errors, Modified Denavit-Hartenberg method, Joint error
相關次數: 點閱:38下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文將針對六軸機械手臂的移動路徑點之角定位誤差開發一種量測系統,此系統以FANUC的M710-ic作為實驗載體,其為常見的六旋轉軸工業型機器人,並使用Laser Tracker以及一高精度球型反射器對其量測,並以改進的DH法(Denavit–Hartenberg Method)為基礎,建立一運動學校準模型對其誤差參數進行補償。
    在此之中,我們將會透過機器人之正向運動學計算機器人在空間中姿態之末端位置,將量測到之值與其相減,即可得到機器人的位置誤差,並利用偽逆矩陣法識別運動學參數,接著,將識別的誤差參數補入再對機器人重新建模,並利用逆向運動學計算將誤差參數等效轉換為各點的關節角誤差,並將其數值補償回控制器中,此目的是為了不想直接更改FANUC控制器的內部參數,從而造成安全保固問題,進而將其補入可隨時更改的各關節角值內。在求解誤差前,會先對整個數學算法進行模擬,以確保計算過程的準確性,並證實其可行性。
    最後,將透過夾取工作空間內的鋁塊以驗證補償後的值,將反射球放置於欲夾取之鋁塊的位置,並將其相對於機器人座標系的位置資訊輸入於先前的逆向運動學中,即可轉換為角度,以便輸入於控制器內。此方法可以模擬應用於自動化產線之實際情況,若可得知料盤相對於機器人的真實位置,便可運用此方法,而不是手動示教規劃機器人路徑,預期未來能在自動化產線上下料過程中節省其時間,且精度能得到改善。

    This paper develops a measurement system for evaluating the angular positioning errors of the moving path points of a six-axis industrial robot. The system utilizes the FANUC M710-ic as the experimental platform, which is a common six-rotating-axis industrial robot. Measurement is performed using a Laser Tracker and a high-precision spherical reflector called SMR. Based on the modified Denavit-Hartenberg Method, a kinematic calibration model is established to compensate for error parameters.
    In this process, the end-effector position of the robot in space is calculated using forward kinematics. By subtracting the measured values from the calculated ones, the robot's position error is obtained. Kinematic parameters are then identified using the pseudoinverse matrix method. Subsequently, we can remodel the robot with the identified error parameters, and the error parameters are equivalently transformed into joint angle errors using inverse kinematics. This approach aims to avoid direct modification of the internal parameters of the FANUC controller, thus preventing potential safety and warranty issues. Before error resolution, the entire mathematical algorithm is simulated to ensure computational accuracy and feasibility.
    Finally, validation of the compensated values is conducted by clamping and placing aluminum blocks within the workspace. Reflective spheres are placed at the positions of the aluminum blocks, and their position information relative to the robot coordinate system is input into the previously derived inverse kinematics model to obtain angles for input into the controller. This method simulates the applications in automated production lines. By knowing the precise position of the workpiece relative to the robot, this method can be applied instead of manual teaching to plan robot paths, aiming to save time and improve accuracy in the material handling process of automated production lines in the future.

    摘要 I ABSTRACT II 誌謝 X 目錄 XI 圖目錄 XIII 表目錄 XVI 第1章 緒論 1 1-1 研究背景 1 1-2 研究動機與目的 3 1-3 論文架構 4 第2章 文獻回顧 5 2-1機台種類介紹 5 2-2誤差種類介紹 9 2-3機械手臂數學模型建立方式 18 2-4量測方法 22 2-5小結 36 第3章 基礎理論 38 3-1 機器人正向運動學 38 3-2 機器人逆向運動學 46 3-3 校準流程 50 第4章 系統架構與量測方法 53 4-1 實驗載體介紹 53 4-2 量測設備介紹 55 4-2-1 量測設備 55 4-2-2 量測原理 59 4-3 量測系統建構 61 第5章 實驗結果與討論 65 5-1 實驗設置 65 5-1-1 第二軸與第三軸的交互作用 65 5-1-2 實驗流程 66 5-2 誤差計算與量測結果 69 5-2-1 誤差參數計算 69 5-2-2 量測結果 72 5-3 驗證 98 5-4 小結 99 第6章 結論與未來規劃 101 6-1 結論 101 6-2 未來規劃 101 參考文獻 103

    [1] T. Al Khawli, M. Anwar, A. Sunda-Meya et al., “A Calibration Method for Laser Guided Robotic Manipulation for Industrial Automation,” pp. 2489-2495.
    [2] Z. Xu, Y. Xiao, L. Zhou et al., “Accuracy and Efficiency of Robotic Dental Implant Surgery with Different Human-Robot Interactions: An in Vitro Study,” Journal of Dentistry, vol. 137, p. 104642, 2023.
    [3] T. Guan, “Research on the Application of Robot Welding Technology in Modern Architecture,” International Journal of System Assurance Engineering and Management, vol. 14, no. 2, pp. 681-690, 2023.
    [4] L. Liu, F. Guo, Z. Zou et al., “Application, Development and Future Opportunities of Collaborative Robots (Cobots) in Manufacturing: A Literature Review,” International Journal of Human–Computer Interaction, vol. 40, no. 4, pp. 915-932, 2024.
    [5] D. Zhu, X. Feng, X. Xu et al., “Robotic Grinding of Complex Components: A Step Towards Efficient and Intelligent Machining–Challenges, Solutions, and Applications,” Robotics and Computer-Integrated Manufacturing, vol. 65, p. 101908, 2020.
    [6] “Faro Focus Laser Scanners”, https://www.faro.com/en/Products/Hardware/Focus-Laser-Scanners (accessed 0531, 2024).
    [7] “Etalon Lasertracer-Ng”, https://hexagon.com/products/etalon-lasertracer-ng (accessed 0531, 2024).
    [8] “適用於工具機驗證的 Qc20 循圓測試儀”, https://www.renishaw.com/tw/qc20-ballbar-for-machine-tool-verification--11075 (accessed 0605, 2024).
    [9] “小型複合加工機之首選標準精度測頭”, https://www.renishaw.com/tw/--48443 (accessed 0531, 2024).
    [10] “Leica Nova Ts60 - World's Most Accurate Total Station”, https://leica-geosystems.com/products/total-stations/robotic-total-stations/leica-nova-ts60 (accessed 0531, 2024).
    [11] “Keyence Vision System”, https://www.keyence.com.tw/products/vision/vision-sys/cv-x100/models/ca-hf6400c/ (accessed 0531, 2024).
    [12] “Ati Mini45”, https://www.ati-ia.com/products/ft/ft_models.aspx?id=mini45 (accessed 0531, 2024).
    [13] B. Vaisi, “A Review of Optimization Models and Applications in Robotic Manufacturing Systems: Industry 4.0 and Beyond,” Decision analytics journal, vol. 2, p. 100031, 2022.
    [14] S. Deng, Z. Cai, D. Fang et al., “Application of Robot Offline Programming in Thermal Spraying,” Surface and Coatings Technology, vol. 206, no. 19-20, pp. 3875-3882, 2012.
    [15] M. F. Zaeh, F. Schnoes, B. Obst et al., “Combined Offline Simulation and Online Adaptation Approach for the Accuracy Improvement of Milling Robots,” CIRP annals, vol. 69, no. 1, pp. 337-340, 2020.
    [16] M. Shariatee, A. Akbarzadeh, A. Mousavi et al., “Design of an Economical Scara Robot for Industrial Applications,” pp. 534-539.
    [17] A. Gasparetto and G. Rosati, “Design and Implementation of a Cartesian Robot,” pp. 539-544.
    [18] J. Iqbal, Z. H. Khan, and A. Khalid, “Prospects of Robotics in Food Industry,” Food Science and Technology, vol. 37, pp. 159-165, 2017.
    [19] K. Lau and R. J. Hocken, “A Survey of Current Robot Metrology Methods,” CIRP annals, vol. 33, no. 2, pp. 485-488, 1984.
    [20] Iso 9283:1998 - Manipulating Industrial Robots, ISO Geneva,Switzerland, pp. 1-66, 1998.
    [21] J. V. Poncelet, Traité Des Propriétés Projectives Des Figures: Ouvrage Utile ð Ceux Qui S' Occupent Des Applications De La Géométrie Descriptive Et D'opérations Géométriques Sur Le Terrain, Gauthier-Villars, 1866.
    [22] V. D. Scheinman, “Design of a Computer Controlled Manipulator,” 1969.
    [23] J. Denavit and R. S. Hartenberg, “A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices,” 1955.
    [24] J. J. Craig, Introduction to Robotics, Pearson Educacion, 2006.
    [25] S. Hayati and M. Mirmirani, “Improving the Absolute Positioning Accuracy of Robot Manipulators,” Journal of robotic systems, vol. 2, no. 4, pp. 397-413, 1985.
    [26] W. Zhenhua, X. Hui, C. Guodong et al., “A Distance Error Based Industrial Robot Kinematic Calibration Method,” Industrial Robot: An International Journal, vol. 41, no. 5, pp. 439-446, 2014.
    [27] Q. Dong, Z.-H. Jiang, and Q. Huang, “Study on Singularity Analysis with Differential Transform Method for 3-Rrur Parallel Robot Based on Jacobian Matrix,” Journal of Beijing Institute of Technology, vol. 20, no. 3, pp. 372-378, 2011.
    [28] P. Huang, Y. Gu, H. Li et al., “An Optimal Tolerance Design Approach of Robot Manipulators for Positioning Accuracy Reliability,” Reliability Engineering & System Safety, vol. 237, p. 109347, 2023.
    [29] H. Wang, S. Shen, and X. Lu, “A Screw Axis Identification Method for Serial Robot Calibration Based on the Poe Model,” Industrial Robot: An International Journal, vol. 39, no. 2, pp. 146-153, 2012.
    [30] F. C. Park, “Computational Aspects of the Product-of-Exponentials Formula for Robot Kinematics,” IEEE transactions on automatic control, vol. 39, no. 3, pp. 643-647, 1994.
    [31] R. He, Y. Zhao, S. Yang et al., “Kinematic-Parameter Identification for Serial-Robot Calibration Based on Poe Formula,” IEEE Transactions on Robotics, vol. 26, no. 3, pp. 411-423, 2010.
    [32] T. Sun, B. Lian, S. Yang et al., “Kinematic Calibration of Serial and Parallel Robots Based on Finite and Instantaneous Screw Theory,” IEEE Transactions on Robotics, vol. 36, no. 3, pp. 816-834, 2020.
    [33] T. Sun, C. Liu, B. Lian et al., “Calibration for Precision Kinematic Control of an Articulated Serial Robot,” IEEE Transactions on Industrial Electronics, vol. 68, no. 7, pp. 6000-6009, 2020.
    [34] R. Zhao, Z. Shi, Y. Guan et al., “Inverse Kinematic Solution of 6r Robot Manipulators Based on Screw Theory and the Paden–Kahan Subproblem,” International Journal of Advanced Robotic Systems, vol. 15, no. 6, p. 1729881418818297, 2018.
    [35] Y. Xiang, X. Deng, Y. Chen et al., “Trajectory Control and Simulation of 6-Dof Robotic System Based on Screw Theory,” pp. 1-4.
    [36] Q. Cheng, Q. Feng, Z. Liu et al., “Sensitivity Analysis of Machining Accuracy of Multi-Axis Machine Tool Based on Poe Screw Theory and Morris Method,” The International Journal of Advanced Manufacturing Technology, vol. 84, pp. 2301-2318, 2016.
    [37] S. D’Avella, C. A. Avizzano, and P. Tripicchio, “Ros-Industrial Based Robotic Cell for Industry 4.0: Eye-in-Hand Stereo Camera and Visual Servoing for Flexible, Fast, and Accurate Picking and Hooking in the Production Line,” Robotics and Computer-Integrated Manufacturing, vol. 80, p. 102453, 2023.
    [38] D. Ruan, W. Zhang, and D. Qian, “Feature-Based Autonomous Target Recognition and Grasping of Industrial Robots,” Personal and Ubiquitous Computing, vol. 27, no. 3, pp. 1355-1367, 2023.
    [39] Y. Sun, L. Lu, F. Wu et al., “Error Analysis of a Coordinate Measuring Machine with a 6-Dof Industrial Robot Holding the Probe,” vol. 12, p. 173.
    [40] J. Zhang, Z. Lou, and K.-C. Fan, “Accuracy Improvement of a 3d Passive Laser Tracker for the Calibration of Industrial Robots,” Robotics and Computer-Integrated Manufacturing, vol. 81, p. 102487, 2023.
    [41] M. A. Khanesar, M. Yan, M. Isa et al., “Precision Denavit–Hartenberg Parameter Calibration for Industrial Robots Using a Laser Tracker System and Intelligent Optimization Approaches,” Sensors, vol. 23, no. 12, p. 5368, 2023.
    [42] P. Yang, Z. Guo, and Y. Kong, “Plane Kinematic Calibration Method for Industrial Robot Based on Dynamic Measurement of Double Ball Bar,” Precision Engineering, vol. 62, pp. 265-272, 2020.
    [43] I. Kuric, V. Tlach, M. Císar et al., “Examination of Industrial Robot Performance Parameters Utilizing Machine Tool Diagnostic Methods,” International Journal of Advanced Robotic Systems, vol. 17, no. 1, p. 1729881420905723, 2020.
    [44] A. D. D. R. Carvalho and A. Vijaya, “Automated Industrial Robot Arm for Three-Dimensional Measurement and Reverse Engineering.”
    [45] I. Iglesias, A. Sanchez, and F. J. G. Silva, “Robotic Path Compensation Training Method for Optimizing Face Milling Operations Based on Non-Contact Cmm Techniques,” Robotics and Computer-Integrated Manufacturing, vol. 85, p. 102623, 2024.
    [46] A. Nubiola and I. A. Bonev, “Absolute Robot Calibration with a Single Telescoping Ballbar,” Precision Engineering, vol. 38, no. 3, pp. 472-480, 2014.
    [47] B. Kauschinger, C. Friedrich, R. Zhou et al., “Fast Evaluation of the Volumetric Motion Accuracy of Multi-Axis Machine Tools Using a Double-Ballbar,” Journal of Machine Engineering, vol. 20, no. 3, pp. 44-62, 2020.
    [48] N. Srinivasa, J. C. Ziegert, and C. D. Mize, “Spindle Thermal Drift Measurement Using the Laser Ball Bar,” Precision Engineering, vol. 18, no. 2-3, pp. 118-128, 1996.
    [49] S. Collin, “Kinematic Robot Calibration Using a Double Ball-Bar,” MSc Theses, 2016.
    [50] A. Archenti, “A Computational Framework for Control of Machining System Capability: From Formulation to Implementation,” 2011.
    [51] J. A. Marwitz, N. A. Theissen, M. K. Gonzalez et al., “Accuracy Assessment of Articulated Industrial Robots Using the Extended-and the Loaded-Double-Ball-Bar,” Journal of Machine Engineering, vol. 22, 2022.
    [52] M. Tomita and S. Ibaraki, “Measurement of 2d Positioning “Error Map” of a Scara-Type Robot over the Entire Workspace by Using a Laser Interferometer and a Psd Sensor,” vol. 83617, p. V001T05A004.
    [53] J. H. Gilby and G. A. Parker, “Robot Arm Position Measurement Using Laser Tracking Techniques,” pp. 85-94.
    [54] P. L. Teoh, B. Shirinzadeh, C. W. Foong et al., “The Measurement Uncertainties in the Laser Interferometry-Based Sensing and Tracking Technique,” Measurement, vol. 32, no. 2, pp. 135-150, 2002.
    [55] B. Shirinzadeh, “Laser‐Interferometry‐Based Tracking for Dynamic Measurements,” Industrial Robot: An International Journal, vol. 25, no. 1, pp. 35-41, 1998.
    [56] G. Alici and B. Shirinzadeh, “Enhanced Stiffness Modeling, Identification and Characterization for Robot Manipulators,” IEEE Transactions on Robotics, vol. 21, no. 4, pp. 554-564, 2005.
    [57] B. Shirinzadeh, P. L. Teoh, Y. Tian et al., “Laser Interferometry-Based Guidance Methodology for High Precision Positioning of Mechanisms and Robots,” Robotics and Computer-Integrated Manufacturing, vol. 26, no. 1, pp. 74-82, 2010.
    [58] R. Y. Tsai and R. K. Lenz, “A New Technique for Fully Autonomous and Efficient 3 D Robotics Hand/Eye Calibration,” IEEE Transactions on robotics and automation, vol. 5, no. 3, pp. 345-358, 1989.
    [59] Z. Zhang, “A Flexible New Technique for Camera Calibration,” IEEE Transactions on pattern analysis and machine intelligence, vol. 22, no. 11, pp. 1330-1334, 2000.
    [60] H. Zhuang, Z. S. Roth, and R. Sudhakar, “Simultaneous Robot/World and Tool/Flange Calibration by Solving Homogeneous Transformation Equations of the Form Ax= Yb,” IEEE Transactions on robotics and automation, vol. 10, no. 4, pp. 549-554, 1994.
    [61] L. Wu and H. Ren, “Finding the Kinematic Base Frame of a Robot by Hand-Eye Calibration Using 3d Position Data,” IEEE Transactions on Automation Science and Engineering, vol. 14, no. 1, pp. 314-324, 2016.
    [62] T. S. Lembono, F. Suárez-Ruiz, and Q.-C. Pham, “Scalar: Simultaneous Calibration of 2-D Laser and Robot Kinematic Parameters Using Planarity and Distance Constraints,” IEEE Transactions on Automation Science and Engineering, vol. 16, no. 4, pp. 1971-1979, 2019.
    [63] Z. Liu, X. Liu, Z. Cao et al., “High Precision Calibration for Three-Dimensional Vision-Guided Robot System,” IEEE Transactions on Industrial Electronics, vol. 70, no. 1, pp. 624-634, 2022.
    [64] M. K. Ackerman, A. Cheng, and G. Chirikjian, “An Information-Theoretic Approach to the Correspondence-Free Ax= Xb Sensor Calibration Problem,” pp. 4893-4899.
    [65] J. Ha, D. Kang, and F. C. Park, “A Stochastic Global Optimization Algorithm for the Two-Frame Sensor Calibration Problem,” IEEE Transactions on Industrial Electronics, vol. 63, no. 4, pp. 2434-2446, 2015.
    [66] Y. Motai and A. Kosaka, “Hand–Eye Calibration Applied to Viewpoint Selection for Robotic Vision,” IEEE Transactions on Industrial Electronics, vol. 55, no. 10, pp. 3731-3741, 2008.
    [67] S. Ren, X. Yang, Y. Song et al., “A Simultaneous Hand-Eye Calibration Method for Hybrid Eye-in-Hand/Eye-to-Hand System,” pp. 568-573.
    [68] J. Heller, D. Henrion, and T. Pajdla, “Hand-Eye and Robot-World Calibration by Global Polynomial Optimization,” pp. 3157-3164.
    [69] Y. Qiao, B. Tang, Y. Wang et al., “A New Approach to Self-Calibration of Hand-Eye Vision Systems,” pp. 253-256.
    [70] Z. H. Xiong and Z. X. Li, “Error Compensation of Workpiece Localization,” vol. 3, pp. 2249-2254.
    [71] T. Messay-Kebede, G. Sutton, and O. Djaneye-Boundjou, “Geometry Based Self Kinematic Calibration Method for Industrial Robots,” pp. 4921-4926.
    [72] X. Li, T. A. Fuhlbrigge, S. Choi et al., “Automatic Offline Program Calibration in Robotic Cells,” pp. 585-590.
    [73] F. Leali, A. Vergnano, F. Pini et al., “A Workcell Calibration Method for Enhancing Accuracy in Robot Machining of Aerospace Parts,” The International Journal of Advanced Manufacturing Technology, vol. 85, pp. 47-55, 2016.
    [74] M. Maeda and D. Kajita, “Rapid Adjustment of Position and Orientation Errors for Industrial Robots Using Touch Probe,” pp. 1-6.
    [75] S. Ibaraki and Y. Ota, “Error Calibration for Five-Axis Machine Tools by on-the-Machine Measurement Using a Touch-Trigger Probe,” International Journal of Automation Technology, vol. 8, no. 1, pp. 20-27, 2014.
    [76] W. C. Hoppe, "Method and System to Provide Improved Accuracies in Multi-Jointed Robots through Kinematic Robot Model Parameters Determination," ed: Google Patents, 2011.
    [77] A. Joubair and I. A. Bonev, “Kinematic Calibration of a Six-Axis Serial Robot Using Distance and Sphere Constraints,” The International Journal of Advanced Manufacturing Technology, vol. 77, pp. 515-523, 2015.
    [78] K. Dai, “Industrial Robotics Object Calibration System,” 2017.
    [79] P. Yang, K. Luo, and R. Wu, “A Calibration Method for Spatial Error of Industrial Robot under Variable Load Conditions Based on Double-Ball Rotary Structure and Three Contact Displacement Sensors,” Precision Engineering, vol. 85, pp. 291-303, 2024.
    [80] Y. Gan, J. Duan, and X. Dai, “A Calibration Method of Robot Kinematic Parameters by Drawstring Displacement Sensor,” International Journal of Advanced Robotic Systems, vol. 16, no. 5, p. 1729881419883072, 2019.
    [81] G. Bergström, “Method for Calibrating of Off-Line Generated Robot Program,” 2011.
    [82] Y. Zou and X. Chen, “Hand–Eye Calibration of Arc Welding Robot and Laser Vision Sensor through Semidefinite Programming,” Industrial Robot: An International Journal, vol. 45, no. 5, pp. 597-610, 2018.
    [83] “Tcp機械手臂校正系統”, https://www.dsa-auto.com.tw/tc/p3_manipulator.php (accessed 0605, 2024).
    [84] J.-Q. Xuan and S.-H. Xu, “Review on Kinematics Calibration Technology of Serial Robots,” International journal of precision engineering and manufacturing, vol. 15, pp. 1759-1774, 2014.
    [85] A. Nubiola and I. A. Bonev, “Absolute Calibration of an Abb Irb 1600 Robot Using a Laser Tracker,” Robotics and Computer-Integrated Manufacturing, vol. 29, no. 1, pp. 236-245, 2013.
    [86] P. Hörler, L. Kronig, J.-P. Kneib et al., “High Density Fiber Postitioner System for Massive Spectroscopic Surveys,” Monthly Notices of the Royal Astronomical Society, vol. 481, no. 3, pp. 3070-3082, 2018.
    [87] L. Ma, P. Bazzoli, P. M. Sammons et al., “Modeling and Calibration of High-Order Joint-Dependent Kinematic Errors for Industrial Robots,” Robotics and Computer-Integrated Manufacturing, vol. 50, pp. 153-167, 2018.
    [88] W. Khalil and E. Dombre, “Geometric Calibration of Robots,” Modeling, Identification and Control of Robots, pp. 257-289, 2002.
    [89] M. M. Alam, S. Ibaraki, and K. Fukuda, “Kinematic Modeling of Six-Axis Industrial Robot and Its Parameter Identification: A Tutorial,” International journal of automation technology, vol. 15, no. 5, pp. 599-610, 2021.
    [90] S. Ibaraki and R. Usui, “A Novel Error Mapping of Bi-Directional Angular Positioning Deviation of Rotary Axes in a Scara-Type Robot by “Open-Loop” Tracking Interferometer Measurement,” Precision Engineering, vol. 74, pp. 60-68, 2022.
    [91] H. W. Stone, Kinematic Modeling, Identification, and Control of Robotic Manipulators, Springer Science & Business Media, 2012.
    [92] J. Wu, J. Wang, and Z. You, “An Overview of Dynamic Parameter Identification of Robots,” Robotics and Computer-Integrated Manufacturing, vol. 26, no. 5, pp. 414-419, 2010.
    [93] N. Zhao and S. Ibaraki, “Novel Kinematic Model of a Scara-Type Robot with Bi-Directional Angular Positioning Deviation of Rotary Axes,” The International Journal of Advanced Manufacturing Technology, vol. 120, no. 7, pp. 4901-4915, 2022.
    [94] M. M. Alam, S. Ibaraki, K. Fukuda et al., “Inclusion of Bidirectional Angular Positioning Deviations in the Kinematic Model of a Six-Dof Articulated Robot for Static Volumetric Error Compensation,” IEEE/ASME Transactions on Mechatronics, vol. 27, no. 6, pp. 4339-4349, 2022.
    [95] S. Ibaraki and K. Kawano, “On Thermal Positioning Error of a Planar Robot Arm over Entire Workspace,” International Journal of Automation Technology, vol. 17, no. 5, pp. 504-511, 2023.
    [96] “M-710ic/70 Datasheet”, https://www.fanuc.eu/bg/en/robots/robot-filter-page/m-710-series/m-710ic-70 (accessed 0513, 2024).
    [97] “Держатели 1.5thcp”, https://gfk-hexagon.ru/products/br_15thcp (accessed 0513, 2024).
    [98] “機械手末端工具”, https://www.mindman.com.tw/proimages/pdf/C_EOAT.pdf (accessed 0522, 2024).
    [99] C. Mao, Z. Chen, S. Li et al., “Separable Nonlinear Least Squares Algorithm for Robust Kinematic Calibration of Serial Robots,” Journal of Intelligent & Robotic Systems, vol. 101, pp. 1-12, 2021.
    [100] M. Bai, M. Zhang, H. Zhang et al., “Calibration Method Based on Models and Least-Squares Support Vector Regression Enhancing Robot Position Accuracy,” IEEE Access, vol. 9, pp. 136060-136070, 2021.
    [101] G. Luo, L. Zou, Z. Wang et al., “A Novel Kinematic Parameters Calibration Method for Industrial Robot Based on Levenberg-Marquardt and Differential Evolution Hybrid Algorithm,” Robotics and Computer-Integrated Manufacturing, vol. 71, p. 102165, 2021.
    [102] G. Hu, Z. Zhou, J. Cao et al., “Non‐Linear Calibration Optimisation Based on the Levenberg–Marquardt Algorithm,” IET Image Processing, vol. 14, no. 7, pp. 1402-1414, 2020.
    [103] X. Chen and Q. Zhan, “The Kinematic Calibration of a Drilling Robot with Optimal Measurement Configurations Based on an Improved Multi-Objective Pso Algorithm,” International journal of precision engineering and manufacturing, vol. 22, no. 9, pp. 1537-1549, 2021.
    [104] N. Pitchandi and S. P. Subramanian, “Ga‐Based Camera Calibration for Vision‐Assisted Robotic Assembly System,” IET Computer Vision, vol. 11, no. 1, pp. 50-59, 2017.
    [105] K. Deng, D. Gao, S. Ma et al., “Elasto-Geometrical Error and Gravity Model Calibration of an Industrial Robot Using the Same Optimized Configuration Set,” Robotics and Computer-Integrated Manufacturing, vol. 83, p. 102558, 2023.
    [106] “Laser Tracker Targets”, https://www.faro.com/en/Resource-Library/Tech-Sheet/techsheet-faro-laser-tracker-targets (accessed 0518, 2024).
    [107] “六軸機械手臂有哪些奇異點?”, https://ppfocus.com/0/aue018c87.html (accessed 0522, 2024).
    [108] E. Madsen, S. A. Timm, N. A. Ujfalusi et al., “Dynamics Parametrization and Calibration of Flexible‐Joint Collaborative Industrial Robot Manipulators,” Mathematical Problems in Engineering, vol. 2020, no. 1, p. 8709870, 2020.
    [109] D. Szybicki, P. Obal, K. Kurc et al., “Programming of Industrial Robots Using a Laser Tracker,” Sensors, vol. 22, no. 17, p. 6464, 2022.
    [110] P. Novák, Š. Stoszek, and J. Vyskočil, “Calibrating Industrial Robots with Absolute Position Tracking System,” vol. 1, pp. 1187-1190.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE