簡易檢索 / 詳目顯示

研究生: 林育正
Lin, Yu-Cheng
論文名稱: 點雲建築資訊模型倒塌模式生成與預測
Collapse Mode Generation and Prediction for Point Cloud BIM
指導教授: 侯琮欽
Hou, Tsung-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 82
中文關鍵詞: 相似度人工神經網路建築資訊模型搜索與救援
外文關鍵詞: search and rescue, artificial neural network, building information modeling, search and rescue
相關次數: 點閱:111下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣位於環太平洋地震帶上,近年來頻繁的發生規模龐大的自然災害,更有地震的重大災情傳出。地震災害影響之範圍巨大且環境十分艱困危險,且震後救災人員須針對已損害的結構物在短時間內進行搜索與救援(search and rescue, SAR)。隨著電腦科技的進步和建築資訊數位化的相關研究,吾人發想一套結合建築資訊模型(building information modeling, BIM)與動態模擬(dynamic simulation)的系統,規劃一套分析倒塌結構物的流程。本研究將提出一套依據倒塌結構物外部資訊預測內部構件分布的流程。主要內容為利用點雲資料(point cloud data, PCD)配合物件識別(Object Identifier, OID),依據尺寸大小、相對位置以及梁柱分類標籤化各構件,並依外觀資訊(facade information)建立BIM模型,最後匯入倒塌模擬引擎建立倒塌模擬資料庫。本研究核心步驟為利用歐氏距離和夾角餘弦進行相似度運算與以人工神經網路(Artificial Neural Network,ANN)建立數學模型,兩套方法比對倒塌案例與倒塌模型資料庫。
    本研究成果為利用離散元素法建置BIM模型,並且產生大量人工地震進行建築物的倒塌模擬,模擬結果可集合為倒塌模擬資料庫,資料庫可經由兩種方式進行檢驗,一為利用歐氏距離相似度與夾角餘弦相似度進行自我檢驗,利用外部構件相似度與內部構件相似度之相關係數,依據不同的分布狀況,可推論資料庫之優劣與判斷資料庫可能之缺失;一為利用人工神經網路建置數學模型,藉以數學化資料庫,利用倒塌模擬資料進行訓練人工神經網路,再分別依據位移或旋轉進行歐氏距離或夾角餘弦的檢驗,此法可加速輔助SAR行動,且本研究認為此法可藉由增加數學模型複雜度或增加倒塌模擬資料進行優化。

    Taiwan is located in the Ring of Fire. In recent years, serious natural disasters have occurred frequently, especially earthquake. The seismic disasters result in structural failures and collapses, and the disaster relief personnel must search and rescue (SAR) for survivors in damaged structures in a short time. This study sets up a system to support SAR action that combines building information modeling (BIM) and dynamic simulation for building a database of the collapse structural model and presents a set of procedures for predicting the internal information based on external information in collapsed structures. This study is divided into three major topics, namely “Building information modeling”, “Similarity algorithms” and “The Mathematization of database”. The first theme uses the 3D computer graphics software, Blender, to make the building information model and simulates with discrete element method (DEM) then collect the results of different seismic periods to database. The second theme applies Euclidean distance and cosine similarity to measure similarity then compare each results of similarities to find the most suitable BIM model for analysis. The last theme applies artificial neural network (ANN) to mathematize the database of the collapse structural model then determine the feasibility of mathematizing with ANN. The results showed the system can predict the internal information based on external information in collapsed BIM model and how to self-test the database and the ANN is useful to mathematize the database. This study obtains good performance with reliability and efficiency because of great resolution capability and simple algorithms and processes.

    摘要 ..........................................................................................................................III 目錄 ..........................................................................................................................XI 表目錄...................................................................................................................XIV 圖目錄.................................................................................................................... XV 第一章緒論 ............................................................................................................. 1 1.1 研究動機與目的......................................................................................... 1 1.2 研究內容 ..................................................................................................... 2 1.3 研究流程 ..................................................................................................... 2 第二章文獻回顧..................................................................................................... 4 2.1 結構物模型建立......................................................................................... 4 2.1.1 結構物件辨識.......................................................................................... 5 2.1.2 建築資訊模型.......................................................................................... 6 2.2 離散元素法................................................................................................. 7 2.3 候選解 ......................................................................................................... 8 2.3.1 局部搜索.................................................................................................. 9 2.4 相似度計算(Similarity Measurement)........................................................ 9 2.4.1 歐氏距離法............................................................................................ 10 2.4.2 曼哈頓距離............................................................................................ 10 2.4.3 切比雪夫距離........................................................................................ 11 2.4.4 夾角餘弦................................................................................................ 11 2.4.5 漢明距離................................................................................................ 12 2.5 數值標準化............................................................................................... 12 2.5.1 min-max標準化(Min-max normalization) ........................................... 13 2.5.2 對數標準化............................................................................................ 13 2.5.3 反正切標準化........................................................................................ 13 2.5.4 z-score標準化....................................................................................... 14 2.5.5 邏輯函數標準化.................................................................................... 14 2.6 數學模型 ................................................................................................... 14 2.6.1 人工神經網路........................................................................................ 14 2.6.2 交叉驗證................................................................................................ 17 第三章模型建立流程與數據演算方法............................................................... 21 3.1 研究流程概述........................................................................................... 21 3.2 建築資訊模型建立................................................................................... 25 3.2.1 建模工具-Blender 2.79.......................................................................... 25 3.2.2 模型設計................................................................................................ 25 3.2.3 構件斷面尺寸與材料參數說明............................................................ 27 3.2.4 人工地震與倒塌模擬資料庫................................................................ 29 3.3 相似度演算法........................................................................................... 30 3.3.1 歐氏距離法............................................................................................ 30 3.3.2 夾角餘弦................................................................................................ 30 3.3.3 min-max標準化(Min-max normalization) ........................................... 31 3.3.4 z-score標準化....................................................................................... 31 3.3.5 相似度.................................................................................................... 31 3.3.6 皮爾遜相關係數.................................................................................... 32 3.3.7 Leave-one-out CV.................................................................................. 33 3.4 數學模型 ................................................................................................... 33 3.4.1 建立人工神經網路................................................................................ 33 3.4.2 10-fold CV ............................................................................................. 33 第四章成果與分析............................................................................................... 34 4.1 第1輪模擬(騎樓模型1、參數設定1)................................................... 34 4.1.1 相似度演算法........................................................................................ 34 4.1.2 數學模型................................................................................................ 39 4.2 第2輪模擬(騎樓模型1、參數設定2)................................................... 42 4.2.1 相似度演算法........................................................................................ 42 4.2.2 數學模型................................................................................................ 47 4.3 第3-1輪模擬(騎樓模型1、參數設定3) ............................................... 49 4.3.1 相似度演算法........................................................................................ 49 4.3.2 數學模型................................................................................................ 54 4.4 第3-2輪模擬(騎樓模型2、參數設定3) ............................................... 56 4.4.1 相似度演算法........................................................................................ 56 4.4.2 數學模型................................................................................................ 61 4.5 第3-3輪模擬(騎樓模型3、參數設定3) ............................................... 63 4.5.1 相似度演算法........................................................................................ 63 4.5.2 數學模型................................................................................................ 64 4.6 模擬成果比較........................................................................................... 65 4.6.1 相似度演算法........................................................................................ 65 4.6.2 數學模型................................................................................................ 65 第五章結論與建議............................................................................................... 66 5.1 結論 ........................................................................................................... 66 5.2 建議 ........................................................................................................... 68 參考文獻.................................................................................................................. 69 附錄一...................................................................................................................... 76 騎樓模型1構件清單.......................................................................................... 76 騎樓模型2構件清單.......................................................................................... 78 騎樓模型3構件清單.......................................................................................... 81

    [1]. 王鵬圖、「以空間點雲進行鋼筋混凝土梁構件之一維擬合」、國立成功大學土木工程研究所碩士論文、2016。
    [2]. 吳天佑、「以空間點雲進行鋼筋混凝土版結構之二維擬合」、國立成功大學土木工程研究所碩士論文、2016。
    [3]. 吳承晏、「由散亂點雲自動辨識結構基本物件–辨識率與精確度」、國立成功大學土木工程研究所碩士論文、2018。
    [4]. 林耿帆與徐百輝、「以物件為基礎之光達點雲分類」、國立臺灣大學土木工程學研究所碩士論文、2015。
    [5]. 侯琮欽、蔡家修與劉任偉、「地面雷射掃描於震後災損勘查之應用初探」、地工技術、148、p.81-90、2016。
    [6]. 侯琮欽、「軌道線形變化與沉陷檢測」、中聯資源計畫編號104S193結案報告、2016。
    [7]. 劉任偉、「點雲分群與邊界提取辨識建物損傷及變形」、國立成功大學土木工程研究所碩士論文、2015。
    [8]. 劉昱緯、「地面雷射掃描於結構幾何辨識與損傷檢測之應用」、國立成功大學土木工程研究所碩士論文、2015。
    [9]. 蔡家修、「點雲分析應用於物件辨識與地震災後勘查」、國立成功大學土木工程研究所碩士論文、2016。
    [10]. 羅仕東、「整合八分樹結構與適應性網格於光達資料重建室內建物三維模型之研究」、國立中央大學土木工程研究所碩士論文、2011。
    [11]. Al-Kheder S. , Al-Shawabkeh Y. , Haala N. , Developing a documentation system for desert palaces in Jordan using 3D laser scanning and digital photogrammetry. , Journal of Archaeological Science , 36(2) , pp. 537-546. , 2009 .
    [12]. Armesto-González J. , Riveiro-Rodríguez B. , González-Aguilera D. , Rivas-Brea M. T. , Terrestrial laser scanning intensity data applied to damage detection for historical buildings. , Journal of Archaeological Science , 37(12) , pp. 3037-3047. , 2010 .
    [13]. Ariyasu E. , Koizumi M. , Ikubo M. , Hatake S. , Application of Mobile LIDAR Mapping for Damage Survey after Great East Japan Earthquake. ISPRS-International Archives of the Photogrammetry , Remote Sensing and Spatial Information Sciences , pp. 573-576. , 2012 .
    [14]. A. Pesci G. Teza , E. Bonali , G. Casula , E. Boschi , A laser scanning-based method for fast estimation of seismic-induced building deformations. , ISPRS J. Photogrammetry Remote Sensing , 79 , pp. 185-198. , 2013 .
    [15]. A. Baik , From point cloud to jeddah heritage BIM nasif historical house–case study. , Digital Applications in Archaeology and Cultural Heritage4 , pp. 1-18. , 2017 .
    [16]. Bentley J. L. Multidimensional binary search trees used for associative searching. , Communications of the ACM , 18(9) , pp. 509-517. , 1975 .
    [17]. Beckmann N. , Kriegel H. P. , Schneider R. , Seeger B. , The R*-tree an efficient and robust access method for points and rectangles. , In Acm Sigmod Record , Vol. 19 , No. 2 , pp. 322-331. , 1990 .
    [18]. Biosca J. M. , Lerma J. L. , Unsupervised robust planar segmentation of terrestrial laser scanner point clouds based on fuzzy clustering methods. , ISPRS Journal of Photogrammetry and Remote Sensing , 63(1) , pp. 84-98. , 2008 .
    [19]. Barazzetti L. , et al. Cloud-to-BIM-to-FEM Structural simulation with accurate historic BIM from laser scans. , Simulation Modelling Practice and Theory , 57 , pp. 71-87. , 2015 .
    [20]. Bazazian D. , Casas J. R. , & Ruiz-Hidalgo J. Fast and robust edge extraction in unorganized point clouds. , 2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA) , pp. 1-8 , 2015 .
    [21]. Bizjak M , 3D Reconstruction of Buildings from LiDAR Data. , In The 19th Central European Seminar on Computer Graphics. , 2015 .
    [22]. Barazzetti L , Parametric as-built model generation of complex shapes from point clouds. , Advanced Engineering Informatics , 30(3) , pp. 298-311. , 2016 .
    [23]. Bloch T. , Sacks R. , Rabinovitch O. , Interior models of earthquake damaged buildings for search and rescue. , Advanced Engineering Informatics , 30(1) , pp. 65-76. , 2016 .
    [24]. Cundall P. A. and O. D. L. Strack , A discrete numerical model for granular assemblies. , Geotechnique , 29(1) , pp. 47-65. , 1979 .
    [25]. Crespo C. , Armesto J. , González-Aguilera D. , Arias P. , Damage detection on historical buildings using unsupervised classification techniques. , Internation Archives of Photogrammetry. , Vol. XXXVIII , 2010 .
    [26]. Chen J. , Fang Y. , & Cho Y. K. , Unsupervised Recognition of Volumetric Structural Components from Building Point Clouds. , In Computing in Civil Engineering 2017 , pp. 34-42. , 2017 .
    [27]. Dehestani M. , et al. On discrete element method for rebar-concrete interaction. , Construction and Building Materials , 151 , pp. 220-227. , 2017 .
    [28]. Ester M. , Kriegel H. P. , Sander J. , Xu X. , A density-based algorithm for discovering clusters in large spatial databases with noise. , Kdd. , 1996 .
    [29]. Fang T. P. , Piegl L. A. , Delaunay triangulation in three dimensions. , IEEE Computer Graphics and Applications , 15(5) , pp. 62-69. , 1995 .
    [30]. Farid R. , Sammut C. , A relational approach to plane-based object categorization. , In Robotics Science and Systems Workshop on RGB-D Cameras. , July , 2012 .
    [31]. González-Aguilera D. , Gómez-Lahoz J. , Sánchez J. , A new approach for structural monitoring of large dams with a three-dimensional laser scanner. , Sensors , 8(9) , pp. 5866-5883. , 2008 .
    [32]. Gonzalez-Aguilera D. , Gomez-Lahoz J. , Munoz-Nieto A. , Herrero-Pascual J. , Monitoring the health of an emblematic monument from terrestrial laser scanner. , Nondestructive Testing and Evaluation , 23(4) , pp. 301-315. , 2008 .
    [33]. González-Jorge H. , Gonzalez-Aguilera D. , Rodriguez-Gonzalvez P. , Arias P. , Monitoring biological crusts in civil engineering structures using intensity data from terrestrial laser scanners. , Construction and Building Materials , 31 , pp. 119-128. , 2012 .
    [34]. H.S. Park H.M. Lee , H. Adeli I. Lee , A new approach for health monitoring of structures terrestrial laser scanning. , Computer-Aided Civil and Infrastructure Engineering , 22 , 1 , pp. 19-30. , 2007 .
    [35]. Jennifer W. , Using LiDAR to Assess Storm Damage Caused by Hurricane Sandy. , LiDAR Magazine , 3(2) , 2013 .
    [36]. Ke Y. L. , Shan D. R. , Edge-based segmentation of point cloud data. , Zhejiang Daxue Xuebao(Gongxue Ban Journal of Zhejiang University(Engineering Science) , 9(3) , pp. 377-380. , 2005 .
    [37]. Kim J. B. , et al. , Developing a physical BIM library for building thermal energy simulation. , Automation in Construction , 50 , pp. 16-28. , 2015 .
    [38]. Lambers K. , Eisenbeiss H. , Sauerbier M. , Kupferschmidt D. , Gaisecker T. , Sotoodeh S. , Hanusch T. , Combining photogrammetry and laser scanning for the recording and modelling of the Late Intermediate Period site of Pinchango Alto Palpa Peru. , Journal of archaeological science , 34(10) , pp. 1702-1712. , 2007 .
    [39]. Li J. X. , A Method for Extract Boundary of Complex Surface in Reverse Engineering. , Machine Design and Manufacturing Engineering , 2 , 2000 .
    [40]. Lin J. B. , Zhou M. Q. , Wu Z. K. , Smooth edge feature lines extraction from point clouds of eroded fractured fragments. In Advanced Materials Research. , Trans Tech Publications. , Vol. 756 , pp. 4026-4030 , 2013 .
    [41]. Li W. , et al. , Fretting damage modeling of liner-bearing interaction by combined finite element - Discrete element method. , Tribology International , 61 , pp. 19-31. , 2013 .
    [42]. McClelland J. and D. E. Rumelhart , Distributed Memory and the Representation of General and Specific Information. , , 1985 .
    [43]. Moertini V , Introduction to five data clustering algorithm. , Integral , 7(2) , pp. 87-96. , 2002 .
    [44]. Mills J. , & Barber D. , Geomatics techniques for structural surveying. , Journal of Surveying Engineering , 130(2) , pp. 56-64. , 2004 .
    [45]. Moser G. , et al. , . Leak Detection of Water Supply Networks Using Error-Domain Model Falsification. , Journal of Computing in Civil Engineering , 32(2) , 2018 .
    [46]. Okada, S. and N. Takai , Classifications of structural types and damage patterns of buildings for earthquake field investigation. ,1999
    [47]. Pearson K. , Principal components analysis. , The London Edinburgh and Dublin Philosophical Magazine and Journal of Science , 6(2) , pp. 559. , 1901 .
    [48]. Rusu R. B. , Marton Z. C. , Blodow N. , Dolha M. , Beetz M , Towards 3D point cloud based object maps for household environments. , Robotics and Autonomous Systems , 56(11) , pp. 927-941. , 2008 .
    [49]. Sun D. Z. , Zhu C. Z. , Li Y. R. , An improved extraction of boundary characteristic from scattered data. , Journal of Shandong University Engineering Science , 1 , pp. 14 , 2009 .
    [50]. Sacks R. and R. Barak , Teaching Building Information Modeling as an Integral Part of Freshman Year Civil Engineering Education. , Journal of Professional Issues in Engineering Education and Practice , 136(1) , 2010 .
    [51]. Tang P. , Huber D. , Akinci B. , Lipman R. , Lytle A. , Automatic reconstruction of as-built building information models from laser-scanned point clouds A review of related techniques. , Automation in construction , 19(7) , pp. 829-843. , 2010 .
    [52]. Theiler M. and K. Smarsly , IFC Monitor – An IFC schema extension for modeling structural health monitoring systems. , Advanced Engineering Informatics , 37 , pp. 54-65. , 2018 .
    [53]. Wehr A Lohr U , Airborne laser scanning–an introduction and overview. , ISPRS J Photogrammetry and Remote Sensing , 54 , pp. 68-82 , 1999 .
    [54]. Weber C. , Hahmann S. , Hagen H. , Sharp feature detection in point clouds. In Shape Modeling International Conference SMI , IEEE. , , pp. 175-186 , 2010 .
    [55]. Walsh S. B. , Borello D. J. , Guldur B. , Hajjar J. F. , Data processing of point clouds for object detection for structural engineering applications. , Computer‐Aided Civil and Infrastructure Engineering , 28(7) , pp. 495-508. , 2013 .
    [56]. Wu Z. , Heikkinen V. , Hauta-Kasari M. , Parkkinen J. , Tokola T. , ALS data based forest stand delineation with a coarse-to-fine segmentation approach. , In IEEE International Congress on Image and Signal Processing CISP , pp. 547-552. , 2014 .
    [57]. Wang C. , Cho Y. K. Kim C. , Automatic BIM component extraction from point clouds of existing buildings for sustainability applications. , Automation in Construction , 56 , pp. 1-13. , 2015 .
    [58]. Yu Y. X. and Y. Zhang , The application of discrete element method in the analysis of stone arch bridge. , Applied Mechanics and Materials. , pp. 361-363 1255-1258. , 2013 .
    [59]. Zhang X. Y. , Zhou M. Q. , Geng G. H. , A Method of Detecting the Edge of Triangular Mesh Surface. , Journal of Image and Graphics , 10 , pp. 022. , 2003 .
    [60]. Zhou T. , et al. , Discrete element method simulation of railway ballast compactness during tamping process. , Open Electrical and Electronic Engineering Journal , 7(1) , pp. 103-109. , 2013 .
    [61]. Zeibak-Shini R. , Sacks R. , Ma L. , Filin S. , Towards generation of as-damaged BIM models using laser-scanning and as-built BIM First estimate of as-damaged locations of reinforced concrete frame members in masonry infill structures. Engineering Informatics , Advanced , pp. 312-326. , 2016 .

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE