簡易檢索 / 詳目顯示

研究生: 劉家宏
Liou, Jia-Hong
論文名稱: 探討三顆/四顆垂直軸風機之排列及計算三顆風機陣列之功率
Investigation of Three/Four Vertical Axis Wind Turbines Arrangement and Computation of the Power for Three Wind Turbines Array
指導教授: 黃啟鐘
Hwang, Chii-Jong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 80
中文關鍵詞: 田口方法功率係數垂直軸風機
外文關鍵詞: SB-VAWTs, Taguchi method, Average power coefficient
相關次數: 點閱:83下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    題目:探討三顆/四顆垂直軸風機之排列及計算三顆風機陣列之功率
    研究生:劉家宏
    指導教授:黃啟鐘

    人類消耗石化能源的同時,也將大量二氧化碳自地底釋放於空氣之中,導致溫室效應加重,造成極端氣候。石化能源的另一隱憂為全球石油儲藏量,研究指出,全球石油蘊藏量僅能再供應人類大約50至100年左右,故再生能源的發展刻不容緩。
    本文使用之垂直軸風機類型為直立葉片垂直軸風機 (SB-VAWT),包含三片NACA0015翼型之葉片,弦長為0.4公尺,風機旋轉半徑為1.25公尺,利用GAMBIT所建立之風機幾何外型,以商業軟體ANSYS 16.0進行流場計算。
    本研究共分為兩階段進行,第一階段以田口法探討三顆/四顆風機系統之配置,選用之的參數如下:第二顆風機與第三顆風機間間距 (B)、第三顆風機與水平軸之間距 (H) ,並且考量是否放置第四顆風機,經由分析後得出結果如下,(一)三個因子對於輸出功率之影響力由大至小:第三顆風機與X軸之間距 > 第二顆風機與第三顆風機間間距 > 放置第四顆風機,(二)最佳之組合為B = 4.5d、H = 2.165d,未放置第四顆風機,(三)優化後之風機系統的平均功率係數相較於雙顆風機系統提升2.65%;相對於單顆風機則提升12.88%;第二階段,吾人變動三顆風機陣列之B值(第二顆風機與第三顆風機間間距),經由計算結果得出,(一)當B值為6倍風機直徑距離時,平均功率係數相較於田口法所預測之風機系統提升2.86%,(二)在特定B值範圍下(4.5 < B < 7.5),因風機間良好之交互作用,可獲得較高之功率係數,本研究更進一步將此配置下之第三顆風機的旋轉方向變更為順時針旋轉,得出之結果顯示第三顆風機之功率係數遠低於相同配置下逆時針旋轉之第三顆風機。接著,根據田口法所得之因子影響力,將間距B固定且維持三顆風機配置,探討第三顆風機與水平軸之間距對風機系統之影響。

    The power output of three/ four SB-VAWTs is simulated numerically. Each turbine consists of three vertically aligned NACA0015 turbine blades separated apart by an angle of 120º. Each 2.5m diameter VAWT has a chord length of 0.4 m. The freestream velocity is 8 m/sec and tip speed ratio (TSR) is 2. In the 1st stage, three operating factors including: the distance between the 3rd turbine and x axis (H) ; the distance between the 2nd turbine and the 3rd turbine (B) and placing the 4th turbine, along with two levels are taken into consideration to account for their influences on the performance of the turbine system with Taguchi method. An orthogonal array of L4(23) is designed. The influence strength order of each factor is featured by H > B > placing the 4th turbine, indicating that the factors H play a crucial role in determining power output. Moreover, the analysis of the signal-to-noise suggests that the combination of the three factors for optimum operation conditions is located at B=4.5, H=2.165, w/o placing the 4th turbine.
    In the second part of the research, we adjust the value of B based on Taguchi-optimized three VAWTs array. The result shows that the averaged power coefficient reaches peak when B=6. Comparing with the single wind turbine, the mean power output of the three turbines system is enlarged by 16.11%. Compared to the dual wind turbine system, the mean power output of the three turbine system is enlarged by 5.59%. Besides, in the specific range between B=4.5 and B=7.5, three turbine array gain extra power from positive interaction. Then, we fixed the value B and H at 6 and 2.165, respectively, and changing the rotating direction of the 3rd turbine from counterclockwise (CCW) to clockwise (CW). The result showed that Cp3 in CCW rotating direction is much higher than that in CW rotating direction, meant to that the CCW 3rd VAWT leads to better performance.

    目錄 國 立 成 功 大 學 I 摘要 I 致謝 XII 目錄 XIII 表目錄 XVII 圖目錄 XIX 符號說明 XXII 第一章 緒論 1 1-1 前言 1 1-2 動機與目的 2 1-3 文獻回顧 3 1-4 基礎理論 8 1-4-1 Betz極限 8 1-4-2 座標系統 9 1-5 研究內容 11 1-6 論文架構 11 第二章 研究方法 12 2-1 數值方法 12 2-1-2 統御方程式 13 2-1-3 SIMPLEC演算法 14 2-1-4 QUICK法 17 2-2 DES模型 18 2-3 田口方法 20 2-3-1 因子 (Factor) 及水準 (Level) 22 2-3-2 直交表 22 2-4 物理模型 23 2-5 邊界條件與流場設定 24 2-5-1 邊界條件 24 2-5-2 流場設定 24 第三章 網格建立與網格驗證 25 3-1 網格生成 25 3-2 網格驗證 25 3-2-1 單顆驗證 25 3-2-2 雙顆驗證 26 3-3 Run 2之網格獨立性 27 第四章 結果與討論 29 4-1 田口方法之分析及優化 29 4-1-1 田口方法分析平均功率係數 29 4-1-2 因子分析 29 4-1-3 水準之最佳組合 30 4-2 Run 1在不同B之結果 31 4-3 Run 2於B = 4.5 / B = 6之結果 32 4-4 Run 1於B = 6且第三顆風機為順時針旋轉之結果 33 4-5 Run 1於B = 6、僅變更H之結果 34 第五章 結論與建議 35 5-1 結論 35 5-1-1 最佳化之三顆風機系統 35 5-2 建議 36 參考文獻 38

    參考文獻
    Ahmadi-Baloutaki M, Carriveau R, and Ting D S K. A wind tunnel study on the aerodynamic interaction of vertical axis wind turbines in array configurations. Renewable Energy 96: 904-913, 2016.
    Almohammadi K, Ingham D, Ma L, and Pourkashan M. Computational fluid dynamics (CFD) mesh independency techniques for a straight blade vertical axis wind turbine. Energy 58: 483-493, 2013.
    Battisti L, Zanne L, Dell’Anna S, Dossena V, Persico G, and Paradiso B. Aerodynamic measurements on a vertical axis wind turbine in a large scale wind tunnel. Journal of energy resources technology 133: 031201, 2011.
    Beri H and Yao Y. Effect of camber airfoil on self starting of vertical axis wind turbine. J. Environ. Sci. Technol 4: 302-312, 2011.
    Chen C-C and Kuo C-H. Effects of pitch angle and blade camber on flow characteristics and performance of small-size Darrieus VAWT. Journal of Visualization 16: 65-74, 2013.
    Chen W-H, Chen C-Y, Huang C-Y, and Hwang C-J. Power output analysis and optimization of two straight-bladed vertical-axis wind turbines. Applied Energy 185: 223-232, 2017.
    Chen W-H, Peng J, and Bi X T. A state-of-the-art review of biomass torrefaction, densification and applications. Renewable and Sustainable Energy Reviews 44: 847-866, 2015.
    Dabiri J O. Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays. Journal of Renewable and Sustainable Energy 3: 043104, 2011.

    Durrani N, Qin N, Hameed H, and Khushnood S. 2-D Numerical Analysis of a VAWT Wind Farm for Different Configurations. 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2011.
    Eriksson S, Bernhoff H, and Leijon M. Evaluation of different turbine concepts for wind power. Renewable and Sustainable Energy Reviews 12: 1419-1434, 2008.
    Ferreira C S, Bijl H, Van Bussel G, and Van Kuik G. Simulating dynamic stall in a 2D VAWT: modeling strategy, verification and validation with particle image velocimetry data. Journal of physics: conference series, 2007.
    Grady S, Hussaini M, and Abdullah M M. Placement of wind turbines using genetic algorithms. Renewable energy 30: 259-270, 2005.
    Iida A, Mizuno A, and Fukudome K. Numerical simulation of aerodynamic noise radiated form vertical axis wind turbines. Proceedings of the 18 International Congress on Acoustics, 2004.
    Islam M, Fartaj A, and Carriveau R. Analysis of the design parameters related to a fixed-pitch straight-bladed vertical axis wind turbine. Wind Engineering 32: 491-507, 2008.
    Islam M, Mekhilef S, and Saidur R. Progress and recent trends of wind energy technology. Renewable and Sustainable Energy Reviews 21: 456-468, 2013.
    Kim D and Gharib M. Efficiency improvement of straight-bladed vertical-axis wind turbines with an upstream deflector. Journal of Wind Engineering and Industrial Aerodynamics 115: 48-52, 2013.
    Kinzel M, Mulligan Q, and Dabiri J O. Energy exchange in an array of vertical-axis wind turbines. Journal of Turbulence 13: N38, 2012.

    Li Q, Maeda T, Kamada Y, Murata J, Kawabata T, Furukawa K, et al. Effect of blade number on flow around straight-bladed vertical axis wind turbine. Jpn Soc Mech Eng 80: 35-46, 2014.
    Li S and Li Y. Numerical study on the performance effect of solidity on the straight-bladed vertical axis wind turbine. 2010 Asia-Pacific power and energy engineering conference, 2010.
    Mohamed M. Performance investigation of H-rotor Darrieus turbine with new airfoil shapes. Energy 47: 522-530, 2012.
    Mohamed M, Janiga G, Pap E, and Thévenin D. Optimization of Savonius turbines using an obstacle shielding the returning blade. Renewable Energy 35: 2618-2626, 2010.
    Peng H, Lam H, and Lee C. Investigation into the wake aerodynamics of a five-straight-bladed vertical axis wind turbine by wind tunnel tests. Journal of Wind Engineering and Industrial Aerodynamics 155: 23-35, 2016.
    Riegler H. HAWT versus VAWT: small VAWTs find a clear niche. Refocus 4: 44-46, 2003.
    Shaheen M, El-Sayed M, and Abdallah S. Numerical study of two-bucket Savonius wind turbine cluster. Journal of Wind Engineering and Industrial Aerodynamics 137: 78-89, 2015.
    Shamsoddin S and Porté-Agel F. A large-eddy simulation study of vertical axis wind turbine wakes in the atmospheric boundary layer. Energies 9: 366, 2016.
    Shigetomi A, Murai Y, Tasaka Y, and Takeda Y. Interactive flow field around two Savonius turbines. Renewable Energy 36: 536-545, 2011.
    South P, Mitchell R, and Jacobs E. Strategies for the evaluation of advanced wind energy concepts. Solar Energy Research Institute. Golden: sn 1983.
    Sun X, Luo D, Huang D, and Wu G. Numerical study on coupling effects among multiple Savonius turbines. Journal of Renewable and Sustainable Energy 4: 053107, 2012.
    Vandenberghe D and Dick E. A free vortex simulation method for the straight bladed vertical axis wind turbine. Journal of Wind Engineering and Industrial Aerodynamics 26: 307-324, 1987.
    Wang S, Ma L, Ingham D B, Pourkashanian M, and Tao Z. Turbulence modelling of deep dynamic stall at low Reynolds number. Lecture Notes in Engineering and Computer Science 2184: 2010.
    Whittlesey R W, Liska S, and Dabiri J O. Fish schooling as a basis for vertical axis wind turbine farm design. Bioinspir Biomim 5: 035005, 2010.
    Zamani M, Maghrebi M J, and Varedi S R. Starting torque improvement using J-shaped straight-bladed Darrieus vertical axis wind turbine by means of numerical simulation. Renewable Energy 95: 109-126, 2016.
    Zhao L-H and Liu M. Aerodynamic Characteristics of Asymmetric Airfoils Blade Small Vertical Axis Wind Turbines. Open Mechanical Engineering Journal 8: 750-753, 2014.
    謝承翰. 垂直軸風力機扭力與功率的檢測與模擬. 成功大學碩士論文 2011.
    陳慶穎. 優化垂直軸風機及探討四顆風機陣列之功率與噪音. 成功大學碩士論文 2016.
    游佳穎. 以有限元素分析與最佳化設計提升面板外引腳黏合設備之工作精度. 交通大學碩士論文 2014.
    李輝煌. 田口方法­品質設計的原理與實務Taguchi Methods第四版. 高麗書有限公司出版 2013.
    台灣電力公司. 國家再生能源未來展望. 2015.

    無法下載圖示 校內:2022-06-15公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE