簡易檢索 / 詳目顯示

研究生: 鍾宜珊
Chung, Yi-Shan
論文名稱: 利用原子力顯微鏡細胞探針技術量測上皮細胞及其經上皮間質轉換之細胞的貼附力量
The Adhesion Forces of Normal Epithelial Cells and Epithelial-to-Mesenchymal Transition Cells by Cell Probe of Atomic Force Microscopy
指導教授: 葉明龍
Yeh, Ming-Long
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 60
中文關鍵詞: 上皮間質轉換過程轉化生長因子原子力顯微鏡細胞探針細胞貼附力量細胞貼附作功
外文關鍵詞: Epithelial to mesenchymal transitions (EMT), transforming growth factor-β1 (TGF-β1), cell probe, atomic force microscopy (AFM), cell detachment force, cell detachment work
相關次數: 點閱:176下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 上皮間質轉換過程在許多生理及病理過程中扮演非常重要的角色,例如癌症與疾病演進、體內平衡及胚胎發育。上皮間質轉換過程透過改變細胞本身塑性及貼附行為以賦予細胞具有侵襲及遷移特性。文獻證實轉化生長因子可誘發及維持上皮間質轉換過程,使上皮細胞失去其極性及細胞與細胞之間連接,進而使細胞骨架進行重組及重建細胞與基質間之貼附狀況。
    本研究為使用原子力顯微鏡之細胞探針技術以探討正常乳腺上皮細胞及其經轉化生長因子誘發上皮間質轉換後與第一型膠原蛋白基質間的貼附力量變化。上皮間質轉換之細胞表型則使用免疫螢光染色進行確認。
    結果顯示,正常乳腺上皮細胞於轉化生長因子誘發48小時後生長較分散且細胞型態趨向纖維母細胞,其纖維型肌動蛋白分佈由表層網絡結構形成具整齊性排列束狀結構,而間質細胞之α平滑肌肌動蛋白的螢光表現較上皮細胞強。於力學量測方面,間質細胞呈現較高的貼附力量及作功,推測為上皮細胞經轉化生長因子刺激後,增加細胞與基質間的單一鍵結強度及數目所致。此外,增加細胞與基質接觸時間(30秒、60 秒及300 秒)會量測到較大的貼附力量及作功。期望此上皮細胞與間質細胞之力學行為能進一步提供闡釋上皮間質轉換特性,並對疾病診斷與治療上有所幫助。

    The epithelial to mesenchymal transitions (EMT) plays crucial roles in many physiological and pathological processes such as carcinoma and disease progression, homeostasis, and embryonic development. EMT endows cells with invasive and migratory properties through complex changes in cell plasticity and adhesion behavior. Transforming growth factor-β (TGF-β) is well-documented to initiate and maintain EMT that causes loss of cell-cell junction and epithelial polarity, reorganization of cytoskeleton, and remodeling of cell-matrix adhesion.
    The purpose of present study was to compare the detachment forces between the cells and collagen type I substrate using cell probe approach of atomic force microscopy (AFM). Two kinds of cells, normal murine mammary gland (NMuMG) cells and NMuMG cells after EMT with TGF-β1 induction, were used in this study. The cell-substrate contact duration was set at 30 sec, 60 sec and 300 sec, respectively. The phenotype of EMT cells were confirmed and investigated by immunofluoresent stain.
    The morphology of NMuMG cells grew into separately and fibroblast-like shape after 48-hour TGF-β1 induction, and F-actin exhibited from cortical actin network to linear and more organized bundles of actin filaments. Mesenchymal cells presented extensive alpha-smooth muscle actin (α-SMA). Nevertheless, TGF-β1 induction led the transition of epithelial cells to higher detachment force and work, which might be contributed by the strength and number of adhesive units. The increasing cell-substrate contact duration (30 sec, 60 sec and 300 sec) resulted in higher cell detachment force and work for both the epithelial cells and the mesenchymal cells. In accordance with cell appearances and mechanical properties proven, TGF-β1 plays a promising inducer for EMT. Furthermore, the mechanical behavior related to epithelial cells and mesenchymal cells could provide better elucidation for the advanced characteristics of EMT and contribute to disease diagnosis and relevant treatment in clinical applications.

    摘要 I Abstract II 誌謝 IV Contents V Figure and table contents VII Chapter 1 INTRODUCTION 1 1.1 Epithelial to mesenchymal transitions (EMT) 1 1.1.1 The importance of EMT 1 1.1.2 The important hallmarks of EMT 2 1.1.3 Thansforming growth factor-β (TGF-β) as inducer of EMT 4 1.2 Epithelial cell-matrix adhesion 5 1.3 Classic molecular- and cell-biology approaches to EMT study 6 1.4 Mechanical approaches to EMT study 8 1.4.1 Atomic force microscopy (AFM) 9 1.5 Purpose and specific aims 11 Chapter 2 MATERIALS AND METHODS 12 2.1 Cell culture 13 2.2 TGF-β1 induced EMT model 13 2.3 Immunofluorescent stain and observation 13 2.4 Substrate fabrication 14 2.5 AFM cantilever functionalization 16 2.7 Cell probe 18 2.8 AFM force measurements 19 2.9 Data processing 20 Chapter 3 RESULTS 24 3.1 The effect of TGF-β1-treated NMuMG cells 24 3.2 Using AFM-based SCFS to measure cell adhesion of cultured NMuMG cells before and after TGF-β1 induction 28 3.3 Influence of TGF-β1 on cell detachment force of NMuMG cells from collagen type I 30 3.4 Influence of TGF-β1 on cell detachment work of NMuMG cells from collagen type I 32 3.5 The correlation between detachment force and detachment work 34 3.6 Influence of TGF-β1 on contact stiffness of NMuMG cells onto collagen type I 35 3.7 Influence of TGF-β1 on single rupture force of NMuMG cells from collagen type I 39 Chapter 4 DISCUSSION 43 4.1 Transforming growth factor-β induces epithelial to mesenchymal transitions 43 4.2 Thansforming growth factor-β and overall cell-matrix adhesion 46 4.3 Cell-matrix contact time and overall cell-matrix adhesion 50 4.4 Cell contact stiffness and overall cell-matrix adhesion 52 4.5 Experimental limitations 53 4.5.1 TGFβ1-induced EMT model 53 4.5.2 The cell probe 53 4.6 Future prospection 54 Chapter 5 CONCLUSION 55 REFERENCES 56 自述 60

    1. Birchmeier, W., Cell adhesion and signal transduction in cancer. Conference on cadherins, catenins and cancer. EMBO Rep, 2005. 6(5): p. 413-7.
    2. Thiery, J.P., et al., Epithelial-mesenchymal transitions in development and disease. Cell, 2009. 139(5): p. 871-90.
    3. Stevens, M.V., et al., MEKK4 regulates developmental EMT in the embryonic heart. Dev Dyn, 2006. 235(10): p. 2761-70.
    4. Kalluri, R. and E.G. Neilson, Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest, 2003. 112(12): p. 1776-84.
    5. Mani, S.A., et al., The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 2008. 133(4): p. 704-15.
    6. Lee, J.M., et al., The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol, 2006. 172(7): p. 973-81.
    7. Thiery, J.P. and J.P. Sleeman, Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol, 2006. 7(2): p. 131-42.
    8. Zavadil, J. and E.P. Bottinger, TGF-beta and epithelial-to-mesenchymal transitions. Oncogene, 2005. 24(37): p. 5764-5774.
    9. Greenburg, G. and E.D. Hay, Epithelia Suspended in Collagen Gels Can Lose Polarity and Express Characteristics of Migrating Mesenchymal Cells. Journal of Cell Biology, 1982. 95(1): p. 333-339.
    10. Stoker, M. and M. Perryman, An Epithelial Scatter Factor Released by Embryo Fibroblasts. Journal of Cell Science, 1985. 77(Aug): p. 209-223.
    11. Miettinen PJ, E.R., Lopez AR, Derynck R., TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol. , 1994. 127(6 Pt 2): p. 2021-2036.
    12. Stahl, P.J. and D. Felsen, Transforming growth factor-beta, basement membrane, and epithelial-mesenchymal transdifferentiation - Implications for fibrosis in kidney disease. American Journal of Pathology, 2001. 159(4): p. 1187-1192.
    13. Mori, M., et al., Zyxin mediates actin fiber reorganization in epithelial-mesenchymal transition and contributes to endocardial morphogenesis. Molecular Biology of the Cell, 2009. 20(13): p. 3115-24.
    14. Humphries, J.D., A. Byron, and M.J. Humphries, Integrin ligands at a glance. Journal of Cell Science, 2006. 119(Pt 19): p. 3901-3.
    15. Hynes, R.O., Integrins: versatility, modulation, and signaling in cell adhesion. Cell, 1992. 69(1): p. 11-25.
    16. NILSSON, S., Structural and Functional Aspects of β1 Integrin Signalling. 2006.
    17. Carman, C.V. and T.A. Springer, Integrin avidity regulation: are changes in affinity and conformation underemphasized? Current Opinion in Cell Biology, 2003. 15(5): p. 547-56.
    18. Laevsky, G. and D.A. Knecht, Cross-linking of actin filaments by myosin II is a major contributor to cortical integrity and cell motility in restrictive environments. Journal of Cell Science, 2003. 116(Pt 18): p. 3761-70.
    19. Bates, R.C., et al., Transcriptional activation of integrin beta 6 during the epithelial-mesenchymal transition defines a novel prognostic indicator of aggressive colon carcinoma. Journal of Clinical Investigation, 2005. 115(2): p. 339-347.
    20. Corry, W.D. and V. Defendi, Centrifugal assessment of cell adhesion. J Biochem Biophys Methods, 1981. 4(1): p. 29-38.
    21. Sato, M., N. Ohshima, and R.M. Nerem, Viscoelastic properties of cultured porcine aortic endothelial cells exposed to shear stress. J Biomech, 1996. 29(4): p. 461-7.
    22. Horbett, T.A., et al., Cell adhesion to a series of hydrophilic-hydrophobic copolymers studied with a spinning disc apparatus. J Biomed Mater Res, 1988. 22(5): p. 383-404.
    23. Chu, Y.S., et al., Force measurements in E-cadherin-mediated cell doublets reveal rapid adhesion strengthened by actin cytoskeleton remodeling through Rac and Cdc42. J Cell Biol, 2004. 167(6): p. 1183-94.
    24. Taubenberger, A., et al., Revealing early steps of alpha2beta1 integrin-mediated adhesion to collagen type I by using single-cell force spectroscopy. Mol Biol Cell, 2007. 18(5): p. 1634-44.
    25. Yilmaz, M. and G. Christofori, EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev, 2009. 28(1-2): p. 15-33.
    26. Chen, A. and V.T. Moy, Cross-linking of cell surface receptors enhances cooperativity of molecular adhesion. Biophysical Journal, 2000. 78(6): p. 2814-20.
    27. Helenius, J., et al., Single-cell force spectroscopy. J Cell Sci, 2008. 121(Pt 11): p. 1785-91.
    28. Yeung, T., et al., Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton, 2005. 60(1): p. 24-34.
    29. Casey E. Kandow, P.C.G., Paul A. Janmey, and a.K.A. Beningo, Polyacrylamide Hydrogels for Cell Mechanics: Steps Toward Optimization and Alternative Uses. 2007.
    30. Morita, T., T. Mayanagi, and K. Sobue, Dual roles of myocardin-related transcription factors in epithelial mesenchymal transition via slug induction and actin remodeling. J Cell Biol, 2007. 179(5): p. 1027-42.
    31. Savagner, P., K.M. Yamada, and J.P. Thiery, The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition. J Cell Biol, 1997. 137(6): p. 1403-19.
    32. Zheng, Q., A. Safina, and A.V. Bakin, Role of high-molecular weight tropomyosins in TGF-beta-mediated control of cell motility. Int J Cancer, 2008. 122(1): p. 78-90.
    33. Guo, W. and F.G. Giancotti, Integrin signalling during tumour progression. Nat Rev Mol Cell Biol, 2004. 5(10): p. 816-26.
    34. Bhowmick, N.A., et al., Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Molecular Biology of the Cell, 2001. 12(1): p. 27-36.
    35. Janda, E., et al., Ras and TGF[beta] cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J Cell Biol, 2002. 156(2): p. 299-313.
    36. Lee, Y.I., Y.J. Kwon, and C.K. Joo, Integrin-linked kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition. Biochem Biophys Res Commun, 2004. 316(4): p. 997-1001.
    37. Bakin, A.V., et al., p38 mitogen-activated protein kinase is required for TGF beta-mediated fibroblastic transdifferentiation and cell migration. Journal of Cell Science, 2002. 115(15): p. 3193-3206.
    38. Levayer, R. and T. Lecuit, Breaking down EMT. Nature Cell Biology, 2008. 10(7): p. 757-9.
    39. Stahl, P.J. and D. Felsen, Transforming growth factor-beta, basement membrane, and epithelial-mesenchymal transdifferentiation: implications for fibrosis in kidney disease. Am J Pathol, 2001. 159(4): p. 1187-92.
    40. Comoglio, P.M., C. Boccaccio, and L. Trusolino, Interactions between growth factor receptors and adhesion molecules: breaking the rules. Current Opinion in Cell Biology, 2003. 15(5): p. 565-571.
    41. Fereol, S., et al., Prestress and adhesion site dynamics control cell sensitivity to extracellular stiffness. Biophysical Journal, 2009. 96(5): p. 2009-22.
    42. Doerner, A.M. and B.L. Zuraw, TGF-beta1 induced epithelial to mesenchymal transition (EMT) in human bronchial epithelial cells is enhanced by IL-1beta but not abrogated by corticosteroids. Respir Res, 2009. 10: p. 100.
    43. Williams, C.M., et al., Fibronectin expression modulates mammary epithelial cell proliferation during acinar differentiation. Cancer Research, 2008. 68(9): p. 3185-92.
    44. Taubenberger, A., et al., Revealing early steps of alpha2beta1 integrin-mediated adhesion to collagen type I by using single-cell force spectroscopy. Molecular Biology of the Cell, 2007. 18(5): p. 1634-44.
    45. Borok, Z., Role for alpha3 integrin in EMT and pulmonary fibrosis. J Clin Invest, 2009. 119(1): p. 7-10.
    46. Selhuber-Unkel, C., et al., Cooperativity in adhesion cluster formation during initial cell adhesion. Biophysical Journal, 2008. 95(11): p. 5424-31.
    47. Puklin-Faucher, E. and M.P. Sheetz, The mechanical integrin cycle. Journal of Cell Science, 2009. 122(Pt 2): p. 179-86.
    48. Eibl, R.H. and M. Benoit, Molecular resolution of cell adhesion forces. IEE Proc Nanobiotechnol, 2004. 151(3): p. 128-32.
    49. Shintani, Y., et al., Collagen I-mediated up-regulation of N-cadherin requires cooperative signals from integrins and discoidin domain receptor 1. J Cell Biol, 2008. 180(6): p. 1277-89.
    50. Koenig, A., et al., Collagen type I induces disruption of E-cadherin-mediated cell-cell contacts and promotes proliferation of pancreatic carcinoma cells. Cancer Research, 2006. 66(9): p. 4662-71.
    51. Li, F., et al., Force measurements of the alpha5beta1 integrin-fibronectin interaction. Biophysical Journal, 2003. 84(2 Pt 1): p. 1252-62.
    52. Chang, T.-K., Mearurement of cell detaching force on substrates with different stiffness by atomic force microscopy. 2008.
    53. Syu, J.-H., Measurement of cell detaching force on substrates with different rigidity by atomic force microscopy. 2009.
    54. Safina, A.F., et al., Ras alters epithelial-mesenchymal transition in response to TGFbeta by reducing actin fibers and cell-matrix adhesion. Cell Cycle, 2009. 8(2): p. 284-98.
    55. Friedrichs, J., J. Helenius, and D.J. Muller, Stimulated single-cell force spectroscopy to quantify cell adhesion receptor crosstalk. Proteomics.
    56. Kass, L., et al., Mammary epithelial cell: influence of extracellular matrix composition and organization during development and tumorigenesis. Int J Biochem Cell Biol, 2007. 39(11): p. 1987-94.

    下載圖示 校內:2012-08-16公開
    校外:2015-08-16公開
    QR CODE