| 研究生: |
吳昱賢 Wu, Yu-Hsien |
|---|---|
| 論文名稱: |
氯化與硫化對金閃積層Ag-Pd-Au合金導線打線接合可靠度研究 A Study of Wire Bonding Reliability on Ag-Pd-Au Alloy Wire with Flash Au Film after Chlorination and Sulfidation |
| 指導教授: |
洪飛義
Hung, Fei-Yi 呂傳盛 Lui, Truan-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 銀合金導線 、鍍層 、打線接合 、氯化 、硫化 |
| 外文關鍵詞: | Silver alloy wire, Flash Au, Wire bonding, Chlorination, Sulfidation |
| 相關次數: | 點閱:73 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
打線接合為電子封裝產業中廣為應用且極為成熟之技術,但因近年金價上漲,促進許多替代材料開發。銅基導線與銀基導線便成為有潛力替代金導線之材料,本研究以Ag-2.5Pd-1.5Au導線 (APA導線)表面進行快速化鍍奈米級鍍金層,製成閃積金層銀鈀金合金導線(AAPA導線),因銀基導線位於富硫環境易有劣化之問題,因此本研究藉由快速化鍍奈米級鍍金層,提升其耐氯及抗硫化能力。
在線材氯化試驗方面,是使用飽和氯化鈉溶液並持溫60℃進行,將經過氯化之線材進行拉伸試驗可發現,隨著氯化時間上升,線材機械性質皆有下降之趨勢,且AAPA導線氯化後之機械性質表現皆較APA導線佳,對拉伸破斷面進行FIB離子束表面掃描,可發現氯離子沿著晶界對導線進行侵蝕,導致破壞形式由延性轉變為脆性破壞。在第一銲點氯化方面,可發現第一銲點經過氯化之後,會有球脫之現象發生,藉由FIB截面分析可發現,氯離子是侵蝕鋁墊導致其第一銲點可靠度下降。在第二銲點氯化方面,可發現第二銲點經過氯化後,與第一銲點不同的是,第二銲點不會有線脫情況發生,因第二銲點使用金墊,氯離子不會侵蝕金墊,故可以抑制線脫。
在線材硫化試驗方面,是於140℃以硫蒸氣持溫進行,經過10分鐘、30分鐘與1小時硫化後,可發現隨著硫化時間增加,因硫化銀層加厚線徑有逐漸上升趨勢,可發現孔洞生成於硫化銀層與導線材之間,且因其電流有效通道減少與高電阻硫化銀層增厚導致電性下降。在第一銲點硫化方面,將經過硫化之第一銲點進行拉伸可發現,因硫化所生成之孔洞與應力集中之影響,使其斷裂位置皆位於頸部。研究結果顯示,AAPA導線具有良好之耐氯抗硫能力,針對線材與銲點解析氯化與硫化之破壞機制,可提供封裝應用製程參考。
Wire bonding is a widely used technology in the electronic packaging industry. As the price of gold raise, many alternative materials have been promoted. Silver-based wires have become potential alternatives. In this study, AAPA wire is made of nanometer gold film which flashed on the surface of Ag-2.5Pd-1.5Au wire (APA wire).
In the chlorination test of wire, the mechanical properties of the AAPA wire were better than the APA wire. It was found that the chloride ion erodes the wire along the grain boundary, resulting in the change from ductile to brittle. In the chlorination test of the first bond, it can be found that the chloride ions erode the aluminum pad and cause the first bond fail. In the chlorination test of the second bond, it can be found that the second bond did not fail due to the using of the gold pad.
In the sulfidation test of wire, the average diameter of wire became thicker as the sulfidation time increased. The voids formed between the sulfide layer and the wire. In addition, the electrical conductivity reduced due to the decrease of current effective channel. In the sulfidation test of first bond, it can be found that its fracture position is located at the neck after tensile test. Obviously, it can be indicated that the effect of sulfidation caused more reliability concern on the wire. In a word, there is better resistance of chlorination and sulfidation on AAPA wire. The mechanism can provide reference for packaging application.
[1] G. G. Harman, “Wire Bonding in Microelectronics, 3rd Ed.”, McGraw-Hill, New York (2010) pp. 1-11.
[2] Y. Tian, C. Wang, I. Lum, M. Mayer, J. P. Jung and Y. Zhou, "Investigation of Ultrasonic Copper Wire Wedge Bonding on Au/Ni Plated Cu Substrates at Ambient Temperature", Journal of Materials Processing Technology, Vol. 208 (2008) pp. 179-186.
[3] Singh, G., & Mamat, O. "Effect of Conduction Pre-heating in Au-Al Thermosonic Wire Bonding." Journal of Surface Engineered Materials and Advanced Technology 1.03 (2011) pp. 121-124.
[4] S. Murali, N. Srikanth, C. J. Vath, Grains, deformation substructures, and slip bands observed in thermosonic copper ball bonding, Materials Characterization (2003) Vol.50, pp.39-50.
[5] A. Shah, H. Gaul, M. Schneider-Ramelow, H. Reichl, M. Mayer and Y. Zhou, “Ultrasonic Friction Power During Al Wire Wedge-Wedge Bonding”,Journal of Applied Physics, Vol. 106 (2009) pp. 503
[6] O. Anderson, H. Christensen, and P. Andreatch, "Technique for connecting electrical leads to semiconductors", Journal of Applied Physics, vol. 28 (1957) pp. 923-923.
[7] B. Langenecker, "Effects of Ultrasound on Deformation Characteristics of Metals", IEEE Transactions on Sonics and Ultrasonics,Vol. 13 (1966) pp. 1-8.
[8] A. Coucoulas, "Hot Work Ultrasonic Bonding-A Method of Facilitating Metal Flow by Restoration Process," in Proc. 20 IEEE Electronic Components Conf. (1970) pp. 549-556.
[9] S. Kumar, H. Kwon, Y. I. Heo, S. H. Kim, J. S. Hwang, and J. T. Moon, "Thermosonic ball bonding behavior and reliability study of Ag alloy wire," in Electronic Packaging Technology (ICEPT), 2013 14th International Conference on (2013) pp. 254-259.
[10] S. Kaimori, T. Nonaka, and A. Mizoguchi,“The Development of Cu Bonding Wire with Oxidation-Resistant Metal Coating”, IEEE Transactions on Advanced Packing, Vol. 29, No. 2 (2006), pp.227-231
[11] I. M. Kohen, L. J. Huang and P. S. Ayyaswamy, “Melting and Solidification of Thin Wires: A Class of Phase-Change Problems with A Mobile Interface - II. Experimental Confirmation”, International Journal of Heat and Mass Transfer, Vol. 38, No.9 (1995) pp. 1647-1659.
[12] 薛皓文,「退火溫度對 23μm 銀導線打線接合之再結晶及拉伸性質效應探討」,成功大學材料科學及工程學系碩士論文,民國九十九年。
[13] 陳眉瑜,「Ø20µm Ag-2Pd 合金導線放電結球特性及打線接合界面通電效應探討」,成功大學材料科學及工程學系碩士論文,民國一百零二年。
[14] 蔡咏真,「微細 Ag-2Pd-0.2 Au 合金導線放電結球特性及接合界面通電與熱效應探討」,成功大學材料科學及工程學系碩士論文,民國一百零四年。
[15] H. W. Hsueh, F. Y. Hung, T. S. Lui, L. H. Chen, Microstructure, electric flame-off characteristics and tensile properties of silver bonding wires, Microelectronics Reliability (2011) Vol. 51, pp. 2243-2249.
[16] H. H. Tsai, J. D. Lee, C. H. Tsai, H. C. Wang, C. C. Chang, and T. H. Chuang, "An innovative annealing-twinned Ag-Au-Pd bonding wire for IC and LED packaging," in Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2012 7th International (2012) pp. 243-246.
[17] H. C. William, "Metal Handbook-Properties and Selection: Nonferrous Alloys and Pure Metals", ASM International, 9th ed. Vol. 2 (1979).
[18] G. Khatibi, B. Weiss, J. Bernardi and S. Schwarz, "Microstructural Investigation of Interfacial Features in Al Wire Bonds", Journal of Electronic Materials, Vol. 41 (2012) pp. 3436-3446.
[19] 朱冠銘,「具奈米鍍鋅層精細鋁矽導線之放電成球機制及打線接合可靠度研究」,國立成功大學材料科學與工程研究所碩士論文,民國一百零五年。
[20] M. Guerdane, "Self-diffusion in intermetallic AlAu4: Molecular dynamics study down to temperatures relevant to wire bonding", Computational Materials Science, vol. 129 (2017) pp. 13-23.
[21] H. G. Kim, T. W. Lee, E. K. Jeong, W. Y. Kim and S. H. Lim, "Effects of Alloying Elements on Microstructure and Thermal Aging Properties of Au Bonding Wire", Microelectronics Reliability, Vol. 51, No. 12 (2011) pp. 2250-2256.
[22] H. Xu, C. Liu V. V. Silberschmidt, S. S. Pramana, T. J. White, Z. Chen, V. L. Acoff, Intermetallic phase transformations in Au-Al wire bonds, Intermetallics (2011) Vol. 19, pp. 1808-1816.
[23] C. D. Breach, F. Wulff, New observations on intermetallic compound formation in gold ball bonds: general growth patterns and identification of two forms of Au4Al, Microelectronics Reliability (2004) Vol. 44, pp. 973-981.
[24] T. Uno, Enhancing bondability with coated copper bonding wire, Microelectronics Reliability (2011) Vol. 51, pp. 88-96.
[25] C. Y. Chang, F. Y. Hung, and T. S. Lui, "Mechanical and Electrical Properties of Palladium-Coated Copper Wires with Flash Gold", Journal of Electronic Materials (2017) pp. 1-8.
[26] P. S. Ho and H. Huntington, "Electromigration and void observation in silver", Journal of Physics and Chemistry of Solids, vol. 27 (1966) pp. 1319-1329.
[27] C. Lu, "Review on silver wire bonding," in Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2013 8th International (2013) pp. 226-229.
[28] L. J. Kai, L. Y. Hung, L. W. Wu, M. Y. Chiang, D. S. Jiang, C. Huang, and Y. P. Wang, "Silver alloy wire bonding," in Electronic Components and Technology Conference (ECTC), 2012 IEEE 62nd (2012) pp. 1163-1168.
[29] Effenberg, G., llyenko, S. "Noble Metal. Selected Systems from Ag-Al-Zn to Rh-Ru-Sc" (2006) pp. 50-63.
[30] N. Sarkar, R. Fuys Jr, and J. Stanford, "The chloride corrosion behavior of silver-base casting alloys", Journal of dental research, vol. 58 (1979) pp. 1572-1577.
[31] L. Zhang, Y. Zhu, H. Chen, K. Leung, Y. Wu, and J. Wu, "Failure analysis on reflector blackening between lead frame electrodes in LEDs under WHTOL test", Microelectronics Reliability, vol. 55, (2015) pp. 799-806.
[32] 張嘉芸,「硫化與氯化對閃積金層鍍鈀銅導線顯微組織與打線接合特性研究」,國立成功大學材料科學與工程研究所碩士論文,民國一百零六年。
[33] 許哲瑋,「硫化及氯化對精細Ag-Pd-Au-Pt合金導線之打線接合可靠度研究」,國立成功大學材料科學與工程研究所碩士論文,民國一百零六年。
[34] Wang, J. N., Tsau, Y. W., & Ouyang, F. Y. "Failure Mechanism of Ag-4Pd alloy wire bonded on Al-Si metallization under High Temperature Storage and Thermal Cycle tests in Corrosive Environments." Materials Chemistry and Physics (2018).
校內:2023-09-01公開