簡易檢索 / 詳目顯示

研究生: 賴柏吟
Lai, Po-yin
論文名稱: 截去Fas Ligand的細胞質端區域會促進腫瘤細胞的轉移能力
Truncated Cytoplasmic Domain of Fas Ligand Promotes Tumor Metastasis
指導教授: 楊倍昌
Yang, Bei-chang
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 64
中文關鍵詞: 轉移細胞腫瘤
外文關鍵詞: invasion, motility, migration, metastasis, ligand, tumor, fas
相關次數: 點閱:77下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • FasL 是一個廣為人知的穿膜蛋白,它最著名的功能是與Fas 結合進而引發細胞凋亡。之前的研究發現,腫瘤細胞表現FasL 可以引發淋巴細胞進行細胞凋亡進而促進腫瘤的轉移。為了進一步探討FasL 是否調控腫瘤細胞的移行與轉移,我們建立了兩個帶有FasL 基因缺失的質體,其中一個失去了FasL 細胞質端的CKI 結合區域,另一個則同時失去了CKI 結合區域以及proline‐rich 區域。我們先在NIH 3T3 細胞中過量表現完整的FasL或者細胞質端缺失的FasL,再衡量細胞在體外或體內實驗模式下移行的變化。我們發現不論是過量表現完整的FasL 或細胞質端缺失的FasL 都不會影響細胞的生長與細胞週期進程,而且在體外實驗模式中兩者都會促進細胞的移行和侵犯能力。此外,這個由FasL 引發的細胞移行並不是透過ERK 或者PI3 激酶的活性所達成。進一步發現,只有截去細胞質端的FasL 可以促進腫瘤細胞在體內實驗模式中的轉移能力,並且加強體外實驗中的細胞轉型能力,而完整的FasL 則不具有這些能力。我們的結論是,截去FasL 的細胞質端會促進腫瘤細胞的轉移和轉型能力。

    FasL is a well known death‐inducing transmembrane protein which binds to Fas and induces cell apoptosis. It was thought that tumor FasL induces apoptosis in infiltrating lymphocytes which results in increased tumor metastasis. To investigate whether FasL regulates tumor cell migration and metastasis, we constructed two plasmids each containing FasL with deletion of various cytoplasmic domain. One of them was deleted at the CKI‐binding motif and the other one lost both CKI‐binding motif and proline‐rich domain of Fas ligand cytoplasmic domain. We overexpressed the full length FasL or the cytoplasmic domain‐truncated FasL in NIH 3T3 cells and measured the alterations of cell motility in vitro and tumor metastasis in vivo. Overexpression of FasL or truncated FasL enhanced cell migration and invasiveness in vitro. In addition, the FasL induced cell migration is independent of ERK and PI3 kinase activity. However, only the truncated Fas ligand, but not the full‐length FasL, promoted tumor metastasis in vivo and increased cell transformation in vitro. In conclusion, truncated cytoplasmic domain of FasL promoted tumor metastasis and transformation.

    摘要 I Abstract II 誌謝 III Contents IV Figure Index VI Introduction 1 Materials & Methods 5 Materials 6 Media & Buffers 10 Methods 15 Plasmids isolation 15 Cell culture 16 Transfection 16 Cell proliferation assay 17 Flow cytometry analysis 18 Western‐Blot analysis 18 In vitro wound healing assay 20 Single cell motility assay 20 In vitro invasion assay 21 Experimental tumor metastasis in nude mice 22 Colony formation assay 22 Results 24 Construction of FasL deletion plasmids 24 Expression of ectopic FasL or Fas in NIH 3T3 cells 25 FasL alters cell motility 27 FasL promotes single cell motility 27 FasL enhances cell invasiveness 28 Deletion cytoplasmic domain of FasL promotes tumor metastasis in vivo 29 Deletion cytoplasmic domain of FasL induces cell transformation in vitro 31 The alternation of PI3 kinase activity 32 The alternation of ERK activity 33 Discussion 35 References 39 Figures 43

    1. Suda, T., et al., Molecular‐Cloning and Expression of the Fas Ligand, a Novel Member of the Tumor‐Necrosis‐Factor Family. Cell, 1993. 75(6): p. 1169‐1178.

    2. Oshimi, Y., et al., Involvement of Fas ligand and Fas‐mediated pathway in the cytotoxicity of human natural killer cells. Journal of Immunology, 1996. 157(7): p.
    2909‐2915.

    3. Hahne, M., et al., Melanoma cell expression of Fas(Apo‐1/CD95) ligand:Implications for tumor immune escape. Science, 1996. 274(5291): p. 1363‐1366.

    4. French, L.E., et al., Fas and Fas ligand in embryos and adult mice: Ligand expression in several immune‐privileged tissues and coexpression in adult tissues characterized by apoptotic cell turnover. Journal of Cell Biology, 1996. 133(2): p.335‐343.

    5. Nagata, S., Fas ligand‐induced apoptosis. Annual Review of Genetics, 1999. 33: p.29‐55.

    6. Kischkel, F.C., et al., Cytotoxicity‐Dependent Apo‐1 (Fas/Cd95)‐Associated Proteins Form a Death‐Inducing Signaling Complex (Disc) with the Receptor. Embo Journal,
    1995. 14(22): p. 5579‐5588.

    7. Alderson, M.R., et al., Fas Ligand Mediates Activation‐Induced Cell‐Death in Human T‐Lymphocytes. Journal of Experimental Medicine, 1995. 181(1): p. 71‐77.

    8. Brunner, T., et al., Cell‐Autonomous Fas (Cd95) Fas‐Ligand Interaction Mediates Activation‐Induced Apoptosis in T‐Cell Hybridomas. Nature, 1995. 373(6513): p.441‐444.

    9. Wu, J.G., et al., Autoimmune‐Disease in Mice Due to Integration of an Endogenous Retrovirus in an Apoptosis Gene. Journal of Experimental Medicine, 1993. 178(2): p.
    461‐468.

    10. Stuart, P.M., et al., CD95 ligand (FasL)‐induced apoptosis is necessary for corneal allograft survival. Journal of Clinical Investigation, 1997. 99(3): p. 396‐402.

    11. Hill, L.L., et al., Fas ligand: A sensor for DNA damage critical in skin cancer etiology. Science, 1999. 285(5429): p. 898‐900.

    12. Griffith, T.S., et al., Fas Ligand‐Induced Apoptosis as a Mechanism of Immune Privilege. Science, 1995. 270(5239): p. 1189‐1192.

    13. Bellgrau, D., et al., A Role for Cd95 Ligand in Preventing Graft‐Rejection. Nature, 1995. 377(6550): p. 630‐632.

    14. Hunt, J.S., et al., Fas ligand is positioned in mouse uterus and placenta to prevent trafficking of activated leukocytes between the mother and the conceptus. Journal
    of Immunology, 1997. 158(9): p. 4122‐4128.

    15. Gochuico, B.R., et al., Airway epithelial Fas ligand expression: potential role in modulating bronchial inflammation. American Journal of Physiology‐Lung Cellular
    and Molecular Physiology, 1998. 18(3): p. L444‐L449.

    16. Giordano, C., et al., Potential involvement of fas and its ligand in the pathogenesis of Hashimoto's thyroiditis. Science, 1997. 275(5302): p. 960‐963.

    17. Wu, J.G., et al., Fas ligand mutation in a patient with systemic lupus erythematosus and lymphoproliferative disease. Journal of Clinical Investigation, 1996. 98(5): p.
    1107‐1113.

    18. Takahashi, T., et al., Generalized Lymphoproliferative Disease in Mice, Caused by a Point Mutation in the Fas Ligand. Cell, 1994. 76(6): p. 969‐976.

    19. Tanaka, M., et al., Expression of the Functional Soluble Form of Human Fas Ligand in Activated Lymphocytes. Embo Journal, 1995. 14(6): p. 1129‐1135.

    20. Vargo‐Gogola, T., et al., Identification of novel matrix metalloproteinase‐7 (matrilysin) cleavage sites in murine and human Fas ligand. Archives of Biochemistry and Biophysics, 2002. 408(2): p. 155‐161.

    21. Holler, N., et al., Two adjacent trimeric Fas ligands are required for Fas signaling and formation of a death‐inducing signaling complex. Molecular and Cellular
    Biology, 2003. 23(4): p. 1428‐1440.

    22. Tanaka, M., et al., Downregulation of Fas ligand by shedding. Nature Medicine, 1998. 4(1): p. 31‐36.

    23. Jodo, S., et al., Apoptosis‐inducing membrane vesicles ‐ A novel agent with unique properties. Journal of Biological Chemistry, 2001. 276(43): p. 39938‐39944.

    24. Redondo, P., et al., Fas and Fas ligand: expression and soluble circulating levels in cutaneous malignant melanoma. British Journal of Dermatology, 2002. 147(1): p.
    80‐86.

    25. Verbeke, C.S., et al., Fas ligand expression in Hodgkin lymphoma. American Journal of Surgical Pathology, 2001. 25(3): p. 388‐394.

    26. Kase, S., et al., Expression of Fas and Fas ligand in esophageal tissue mucosa and carcinomas. International Journal of Oncology, 2002. 20(2): p. 291‐297.

    27. Lim, S.C., Expression of Fas ligand and sFas ligand in human gastric adenocarcinomas. Oncology Reports, 2002. 9(1): p. 103‐107.

    28. Nozoe, T., et al., Fas ligand expression is correlated with metastasis in colorectal carcinoma. Oncology, 2003. 65(1): p. 83‐88.

    29. Muschen, M., et al., CD95 ligand expression as a mechanism of immune escape in breast cancer. Immunology, 2000. 99(1): p. 69‐77.

    30. Igney, F.H. and P.H. Krammer, Immune escape of tumors: apoptosis resistance and tumor counterattack. Journal of Leukocyte Biology, 2002. 71(6): p. 907‐920.

    31. Reimer, T., et al., FasL : Fas ratio ‐ A prognostic factor in breast carcinomas. Cancer
    Research, 2000. 60(4): p. 822‐828.

    32. Mottolese, M., et al., Prognostic relevance of altered Fas (CD95)‐system in human breast cancer. International Journal of Cancer, 2000. 89(2): p. 127‐132.

    33. Pitti, R.M., et al., Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature, 1998. 396(6712): p. 699‐703.

    34. Bai, C., et al., Overexpression of M68/DcR3 in human gastrointestinal tract tumors independent of gene amplification and its location in a four‐gene cluster.
    Proceedings of the National Academy of Sciences of the United States of America, 2000. 97(3): p. 1230‐1235.

    35. Arakawa, Y., et al., Frequent gene amplification and overexpression of decoy receptor 3 in glioblastoma. Acta Neuropathologica, 2005. 109(3): p. 294‐298.

    36. Ohshima, K., et al., Amplification and expression of a decoy receptor for Fas ligand (DcR3) in virus (EBV or HTLV‐I) associated lymphomas. Cancer Letters, 2000. 160(1):
    p. 89‐97.

    37. Boursalian, T.E. and P.J. Fink, Mutation in Fas ligand impairs maturation of thymocytes bearing moderate affinity T cell receptors. Journal of Experimental Medicine, 2003. 198(2): p. 349‐360.

    38. Suzuki, I. and P.J. Fink, Maximal proliferation of cytotoxic T lymphocytes requires reverse signaling through Fas ligand. Journal of Experimental Medicine, 1998.
    187(1): p. 123‐128.

    39. Suzuki, I. and P.J. Fink, The dual functions of Fas ligand in the regulation of peripheral CD8+ and CD4+ T cells. Proceedings of the National Academy of Sciences of the United States of America, 2000. 97(4): p. 1707‐1712.

    40. Bodmer, J.L., P. Schneider, and J. Tschopp, The molecular architecture of the TNF superfamily. Trends in Biochemical Sciences, 2002. 27(1): p. 19‐26.

    41. Orlinick, J.R., K.B. Elkon, and M.V. Chao, Separate domains of the human Fas ligand dictate self‐association and receptor binding. Journal of Biological Chemistry, 1997. 272(51): p. 32221‐32229.

    42. Watts, A.D., et al., A casein kinase I motif present in the cytoplasmic domain of members of the tumour necrosis factor ligand family is implicated in 'reverse
    signalling'. Embo Journal, 1999. 18(8): p. 2119‐2126.

    43. Hane, M., et al., Interaction of Peptides Derived from the Fas Ligand with the Fyn‐Sh3 Domain. Febs Letters, 1995. 373(3): p. 265‐268.

    44. Sun, M.Y., et al., The cytoplasmic domain of Fas igand costimulates TCR signals. Journal of Immunology, 2006. 177(3): p. 1481‐1491.

    45. Jodo, S., et al., Cutting edge: Fas ligand (CD178) cytoplasmic tail is a positive regulator of Fas ligand‐mediated cytotoxicity. Journal of Immunology, 2005. 174(8):
    p. 4470‐4474.

    46. Xiao, S., et al., Novel negative regulator of expression in Fas ligand (CD178) cytoplasmic tail: Evidence for translational regulation and against Fas ligand retention in secretory lysosomes. Journal of Immunology, 2004. 173(8): p.
    5095‐5102.

    47. Rodriguez, L.G., X. Wu, and J.‐L. Guan, Wound‐healing assay, in Methods in Molecular Biology. 2004. p. 23‐29.

    48. Barnhart, B.C., et al., CD95 ligand induces motility and invasiveness of apoptosis‐resistant tumor cells. Embo Journal, 2004. 23(15): p. 3175‐3185.

    49. Bradley, M.O., et al., Experimental Metastasis in Nude Mice of Nih 3t3 Cells Containing Various Ras Genes. Proceedings of the National Academy of Sciences of the United States of America, 1986. 83(14): p. 5277‐5281.

    50. Huang, C., K. Jacobson, and M.D. Schaller, MAP kinases and cell migration. Journal of Cell Science, 2004. 117(20): p. 4619‐4628.

    下載圖示 校內:立即公開
    校外:2007-04-13公開
    QR CODE