簡易檢索 / 詳目顯示

研究生: 姜婷毓
Chiang, Ting-Yu
論文名稱: 無機碳對氨氧化菌族群及其硝化反應表現之影響探討
Evaluation of the Effects of Inorganic Carbon on Microbial Ecology of Ammonia-oxidizing Bacteria and Their Nitrification Performance
指導教授: 黃良銘
Whang, Liang-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 82
中文關鍵詞: 無機碳,氨氧化菌,尾端螢光標定限制片段多行性分析(T-RFLP),選殖與定序(cloning and sequencing)
外文關鍵詞: Inorganic carbon, Ammonia oxidizing bacteria, T-RFLP, Cloning and Sequencing
相關次數: 點閱:86下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無機碳對硝化反應的限制原本往往被忽略,但隨著近年來大量產生的產業高氮廢水,硝化系統的無機碳源需求增加,逐漸有研究討論關於無機碳於硝化反應中扮演之角色與其限制。先前的研究(Whang et al., 2009)發現添加Na2CO3較添加NaOH做為高氮低碳石化廢水(C/N大約等於1)硝化處理系統中的化學緩衝溶液可促進硝化反應效率,並且首先觀察到氨氧化菌族群在不同添加物操作時期的改變現像,但其確切機制仍未知,因此本研究針對無機碳對氨氧化菌族群生態以及其硝化反應表現進行探討。
    本研究假設不同的無機碳濃度會優厚培養(enrich)出不同的氨氧化菌族群,藉由設立兩個相同植種源、不同進流無機碳濃度的CSTR生物反應槽進行探討,一為充足且過量的無機碳(100 mg-C/L,高無機碳),另一為給與有限的無機碳濃度(15 mg-C/L,低無機碳),進流基質氨氮濃度皆為250mg/L,在操作期間可維持約95%的良好硝化效率,硝酸氮為出流水主要產物,進流基質與出流水的氮系化合物質量平衡可達90%以上,根據amoA(ammonia monooxygenase gene subunit A)功能性基因選殖(cloning)與定序(sequencing)結果發現高無機碳生物反應槽內Nm. nitrosa lineage為優勢氨氧化菌族群,而低無機碳生物反應槽則以Nm. europaea lineage為優勢氨氧化菌族群,顯示確實不同的無機碳濃度條件所馴養之氨氧化菌族群有別,再進一步分析amoA功能性基因之尾端修飾限制片段長度多型性(Terminal Restriction Fragment Length Polymorphism,T-RFLP)反應槽氨氧化菌族群監測結果,顯現在經過大約40天的馴養之後,兩個生物反應槽的T-RFLP圖譜結果出現差異,高無機碳生物反應槽圖譜以48/135 TF(terminal fragment)為主要,而低無機碳生物反應槽圖譜則以219/270 TF為大宗;以批次實驗進行硝化動力探討,在不同無機碳濃度對氨氧化速率的實驗結果發現當初始添加無機碳濃度低於50 mg-C/L時對高無機碳生物反應槽內Nm. nitrosa-like氨氧化菌有抑制,導致氨氧化速率減低,然而在低無機碳反應槽則是直到初始添加之無機碳濃度低於10 mg-C/L才有顯著的氨氧化速率降低,以上結果證實本研究的初始實驗假設,不同的氨氧化菌族群有不同的無機碳親和力,並且在不同無機碳濃度條件下確實可被選擇與馴養。

    Inorganic carbon (IC) limitation in nitrogen removal process is often neglected, as it is usually present in abundance in full-scale wastewater systems due to the oxidation of organic matter by heterotrophic activity and is high enough for the autotrophic bacteria to grow. Recently, wastewaters with low organic carbon to nitrogen ratio, such as rejection water of digested, sludge have been studied for development of optimized nitrogen removal systems, but little is known regarding the effects of inorganic carbon limitation on ammonia-oxidizing bacteria (AOB) populations in such systems. Whang et al. (2009) reported that addition of Na2CO3, compared with addition of NaOH, as pH adjusting chemical would improve nitrification performance by providing sufficient inorganic carbon for nitrifying bacteria. In addition to improvement on nitrification performance, addition of Na2CO3 or NaOH would also influence the dominant AOB populations presented in the bioreactors. Results showing the effects of adding different buffering chemicals such as NaOH or Na2CO3 on AOB populations have never been demonstrated until Whang et al., although the exact mechanisms are still not clear at this time. Therefore, the effects of inorganic carbon concentration on microbial ecology of AOB and their nitrification performance were investigated in this study.
    The hypothesis that different inorganic carbon concentrations would enrich different AOB populations was examined by operating two chemostat bioreactors fed with different influent carbonate concentrations at 15 and 100 mg-IC/L, respectively. During the operation period, both bioreactors were able to maintain satisfactory nitrification efficiency, more than 95% of an influent ammonium concentration of 250 mg-N/L was oxidized to nitrate, without nitrite accumulation. Based on cloning/ sequencing results targeting on ammonia monooxygenase gene subunit A (amoA), Nitrosomomas nitrosa lineage was the dominant AOB population in the high-IC bioreactor, while Nm. europaea lineage was dominant in the low-IC bioreactor. According to the amoA-based terminal restriction fragment length polymorphism (T-RFLP) electropherogram result, the dominant terminal fragments (TF) changed after 40 days of operation. The high-IC bioreactor seemed to be dominated by Nm. nitrosa-like AOB (48/135 TF signature), while Nm. europaea-like AOB (219/270 TF signature) was dominant in the low-IC bioreactor. Furthermore, results of batch experiments on effects of IC concentration on ammonia-oxidation rate indicated that low IC conditions (lower than 50 mg-C/L) had negative impact on Nm. nitrosa-like AOB dominated in the high-IC bioreactor, but not on Nm. europaea-like AOB enriched in the low-IC bioreactor until the IC concentrations lower than 10 mg-C/L. These findings confirmed the hypothesis that different AOB populations with different IC affinity may be enriched/selected under different inorganic carbon concentrations.

    摘要 I Abstract III 誌謝 V 目錄 VIII 圖目錄 X 表目錄 XII 第一章 前言 1 第二章 文獻回顧 4 2-1 自然界氮化合物之循環 4 2-2 氮及氮化合物對環境的影響 5 2-3 生物處理汙水之原理 7 2-4 硝化作用 8 2-5 硝化動力學 8 2-6 氨氧化菌種類與特性 9 2-6-1 氨氧化菌生化特性 9 2-6-2 氨氧化菌親緣關係 11 2-7 影響硝化反應的環境與操作因子 14 2-8 無機碳對硝化的影響 16 2-9 活性汙泥中的硝化菌生態結構 18 2-10 分子生物技術應用於氨氧化菌生態結構之研究 20 2-10-1 聚合酶連鎖反應(Polymerase Chain Reaction,PCR) 23 2-10-2 末端限制酶片段長度多型性分析(Terminal Restriction Fragment Length Polymorphism,T-RFLP) 26 2-10-3 選殖與定序(cloning and sequencing) 31 第三章 材料與方法 34 3-1 CSTR生物反應槽 34 3-2 水質分析項目與方法 36 3-3 分子生物檢測鑑定技術 37 3-3-1 總DNA萃取 37 3-3-2 聚合酶連鎖反應(Polymerase Chain Reaction, PCR) 39 3-3-3 尾端修飾限制片段長度多型性(T-RFLP) 41 3-3-4 選殖(Cloning)與定序(Sequencing) 43 3-3-5 親緣關係分析 44 3-4 硝化動力批次實驗設計 44 第四章 結果與討論 47 4-1 反應槽硝化作用 47 4-2 反應槽氨氧化菌族群分析 50 4-2-1 氨氧化菌族群選殖(cloning)與定序(sequencing) 51 4-2-2 氨氧化菌T-RFLP分析 56 4-3 反應槽氨氧化菌族群硝化動力比較與分析 60 4-3-1 不同無機碳濃度之反應槽氨氧化菌動力分析 60 4-3-2 不同氨氮濃度之反應槽氨氧化菌動力分析 62 4-4 反應槽氨氧化菌族群之關係 64 第五章 結論與建議 68 5-1 結論 68 5-2 建議 69 參考文獻 71

    Aakra, A., Utaker, J.B. and Nes, I.F. (2001) Comparative phylogeny of the ammonia monooxygenase subunit A and 16S rRNA genes of ammonia-oxidizing bacteria. FEMS Microbiology Letters 205(2), 237-242.
    Abeliovich, A. and Vonshak, A. (1992) Anaerobic metabolism of Nitrosomonas europaea. Archives of Microbiology 158(4), 267-270.
    Alzerreca, J.J., Norton, J.M. and Klotz, M.G. (1999) The amo operon in marine, ammonia-oxidizing γ-proteobacteria. FEMS Microbiology Letters 180(1), 21-29.
    Amann, R., Ludwig, W. and Schleifer, K. (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59(1), 143-169.
    Anthonisen, A.C., Loehr, R.C., Prakasam, T.B.S. and Srinath, E.G. (1976) Inhibition of Nitrification by Ammonia and Nitrous Acid. Journal (Water Pollution Control Federation) 48(5), 835-852.
    Antoniou, P., Hamilton, J., Koopman, B., Jain, R., Holloway, B., Lyberatos, G. and Svoronos, S.A. (1990) Effect of temperature and pH on the effective maximum specific growth rate of nitrifying bacteria Water Research 24(1), 97-101.
    Biesterfeld, S., Farmer, G., Russell, P. and Figueroa, L. (2003) Effect of Alkalinity Type and Concentration on Nitrifying Biofilm Activity. Water Environment Research 75, 196-204.
    Bock, E., Schmidt, I., Stüven, R. and Zart, D. (1995) Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonium or hydrogen as electron donors and nitrite as electron acceptor. Archives of Microbiology 163(1), 16-20.
    Brock, T.D. and Madigan, M.D. (1988) Biology of microorganisms, Prentice Hall, Englewood Cliffs, N.J.
    Bruns, M.A., Stephen, J.R., Kowalchuk, G.A., Prosser, J.I. and Paul, E.A. (1999) Comparative Diversity of Ammonia Oxidizer 16S rRNA Gene Sequences in Native, Tilled, and Successional Soils. Appl. Environ. Microbiol. 65(7), 2994-3000.
    Burrell, P.C., Keller, J. and Blackall, L.L. (1998) Microbiology of a Nitrite-Oxidizing Bioreactor. Appl. Environ. Microbiol. 64(5), 1878-1883.
    Buswell, A.M., Shiota, T., Lawrence, N. and Meter, I.V. (1954) Laboratory Studies on the Kinetics of the Growth of Nitrosomonas with Relation to the Nitrification Phase of the B.O.D. Test. Appl Microbiol. 2(1), 21-25.
    Cannon, G.C., Bradburne, C.E., Aldrich, H.C., Baker, S.H., Heinhorst, S. and Shively, J.M. (2001) Microcompartments in Prokaryotes: Carboxysomes and Related Polyhedra. Appl. Environ. Microbiol. 67(12), 5351-5361.
    Carrera, J., Baeza, J.A., Vicent, T. and Lafuente, J. (2003) Biological nitrogen removal of high-strength ammonium industrial wastewater with two-sludge system. Water Research 37(17), 4211-4221.
    Chain, P., Lamerdin, J., Larimer, F., Regala, W., Lao, V., Land, M., Hauser, L., Hooper, A., Klotz, M., Norton, J., Sayavedra-Soto, L., Arciero, D., Hommes, N., Whittaker, M. and Arp, D. (2003) Complete Genome Sequence of the Ammonia-Oxidizing Bacterium and Obligate Chemolithoautotroph Nitrosomonas europaea. J. Bacteriol. 185(9), 2759-2773.
    Chamchoi, N. and Nitisoravut, S. (2007) Anammox enrichment from different conventional sludges. Chemosphere 66(11), 2225-2232.
    Charley, R.C., Hooper, D.G. and McLee, A.G. (1980) Nitrification Kinetics in Activated Sludge at Various Temperatures and Dissolved Oxygen Concentrations Water Research 14(10), 1387-1396.
    Clement, B.G., Kehl, L.E., DeBord, K.L. and Kitts, C.L. (1998) Terminal restriction fragment patterns (TRFPs), a rapid, PCR-based method for the comparison of complex bacterial communities. Journal of Microbiological Methods 31(3), 135-142.
    Dionisi, H.M., Layton, A.C., Harms, G., Gregory, I.R., Robinson, K.G. and Sayler, G.S. (2002) Quantification of Nitrosomonas oligotropha-Like Ammonia-Oxidizing Bacteria and Nitrospira spp. from Full-Scale Wastewater Treatment Plants by Competitive PCR. Appl. Environ. Microbiol. 68(1), 245-253.
    Eschenhagen, M., Schuppler, M. and R飉ke, I. (2003) Molecular characterization of the microbial community structure in two activated sludge systems for the advanced treatment of domestic effluents. Water Research 37(13), 3224-3232.
    Focht, D.D. and Verstraete, W. (1977) Biochemical ecology of nitrification and denitrification. . Advances in Microbial Ecology 1, 135-214.
    Furukawa, K., Ike, A., Ryu, S.-L. and Fujita, M. (1993) Nitrification of NH4-N polluted sea water by immobilized acclimated marine nitrifying sludge. Journal of Fermentation and Bioengineering 76(6), 515-520.
    Fux, C., Boehler, M., Huber, P., Brunner, I. and Siegrist, H. (2002) Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant. Journal of Biotechnology 99(3), 295-306.
    Gong, Z., Yang, F., Liu, S., Bao, H., Hu, S. and Furukawa, K. (2007) Feasibility of a membrane-aerated biofilm reactor to achieve single-stage autotrophic nitrogen removal based on Anammox. Chemosphere 69(5), 776-784.
    Green, M., Ruskol, Y., Shaviv, A. and Tarre, S. (2002) The effect of CO2 concentration on a nitrifying chalk reactor. Water Research 36(8), 2147-2151.
    Groeneweg, J., Sellner, B. and Tappe, W. (1994) Ammonia oxidation in Nitrosomonas at NH3 concentrations near Km: Effects of pH and temperature Water Research 28(12), 2561-2566.
    Guisasola, A., Petzet, S., Baeza, J.A., Carrera, J. and Lafuente, J. (2007) Inorganic carbon limitations on nitrification: Experimental assessment and modelling. Water Research 41(2), 277-286.
    Hagopian, D.S. and Riley, J.G. (1998) A closer look at the bacteriology of nitrification. Aquacultural Engineering 18(4), 223-244.
    Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT Nucleic Acids Symposium Series 41, 95-98.
    Hans-Peter Koops, A.P.-R. (2001) Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. FEMS Microbiology Ecology 37(1), 1-9.
    Harder, T., Lau, S.C.K., Tam, W.-Y. and Qian, P.-Y. (2004) A bacterial culture-independent method to investigate chemically mediated control of bacterial epibiosis in marine invertebrates by using TRFLP analysis and natural bacterial populations. FEMS Microbiology Ecology 47(1), 93-99.
    Head, I.M., Hiorns, W.D., Embley, M., McCarthy, A.J. and Saunders, J.R. (1993) The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequences. J. Gen. Microbiol. 139(6), 1147-1153.
    Henze, M.G., W.; Mino, T.; and Van Loosdrecht, M. (2000) Activated sludge models ASM1, ASM2, ASM2d and ASM3, IWA Publishing.
    Hiorns, W.D., Hastings, R.C., Head, I.M., McCarthy, A.J., Saunders, J.R. and Pickup, R.W. (1995) Amplification of 16S ribosomal RNA genes of autotrophic ammoniaoxidizing bacteria demonstrates the ubiquity of nitrosospiras in the environment. . Microbiol. 141, 2793-2800.
    Holben, W.E. (1994) Isolation and purification of bacterial DNA from soil, Soil Society of America, Madison, WI.
    Horz, H.-P., Rotthauwe, J.-H., Lukow, T. and Liesack, W. (2000) Identification of major subgroups of ammonia-oxidizing bacteria in environmental samples by T-RFLP analysis of amoA PCR products. Journal of Microbiological Methods 39(3), 197-204.
    Janus, H.M. and van der Roest, H.F. (1997) Don't reject the idea of treating reject water Water Science and Technology 35, 27-34.
    Jaspers, E. and Overmann, J. (1997) Separation of bacterial cells by isoelectric focusing, a new method for analysis of complex microbial communities. Appl. Environ. Microbiol. 63(8), 3176-3181.
    Jun, B.-H., Tanji, Y. and Unno, H. (2000) Stimulating accumulation of nitrifying bacteria in porous carrier by addition of inorganic carbon in a continuous-flow fluidized bed wastewater treatment reactor. Journal of Bioscience and Bioengineering 89(4), 334-339.
    Könneke, M., Bernhard, A.E., de la Torre, J.R., Walker, C.B., Waterbury, J.B. and Stahl, D.A. (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437, 543-546.
    Kennedy, N., Brodie, E., Connolly, J. and Clipson, N. (2004) Impact of lime, nitrogen and plant species on bacterial community structure in grassland microcosms. Environmental Microbiology 6(10), 1070-1080.
    Knowles, R. (1982) Denitrification. Microbiol. Mol. Biol. Rev. 46(1), 43-70.
    Koch, G., Kühni, M. and Siegrist, H. (2001) Calibration and validation of an ASM3-based steady-state model for activated sludge systems-Part I: Prediction of nitrogen removal and sludge production. Water Research 35, 2235.
    Koops, H.-P., Böttcher, B., Möller, U., Pommerening-Röser, A. and Stehr, G. (1991) Classification of eight new species of ammonia-oxidizing bacteria: Nitrosomonas communis sp. nov., Nitrosomonas ureae sp. nov., Nitrosomonas aestuarii sp. nov., Nitrosomonas marina sp. nov., Nitrosomonas nitrosa sp. nov., Nitrosomonas eutropha sp. nov., Nitrosomonas oligotropha sp. nov. J. Gen. Microbiol. 13, 1689-1699.
    Koops, H.-P. and Pommerening-Röser, A. (2001) Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. FEMS Microbiology Ecology 37(1), 1-9.
    Koops, H.-P., Purkhold, U., Pommerening-Röser, A., Timmermann, G. and Wagner, M. (2003) The prokaryotes: an evoling electronic resource for the microbiological community. Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H. and Stackebrandt, E. (eds), Springer, New York.
    Koops, H.-P., Purkhold, U., Pommerening-Röser, A., Timmermann, G. and Wagner, M. (2006) The prokaryotes: a handbook on the biology of bacteria. Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H. and Stackebrandt, E. (eds), pp. 778-811, Springer, New York.
    Kowalchuk, G.A., Bodelier, P.L.E., Heilig, G.H.J., Stephen, J.R. and Laanbroek, H.J. (1998) Community analysis of ammonia-oxidizing bacteria, in relation to oxygen availability in soils and root-oxygenated sediments, using PCR, DGGE and oligonucleotide probe hybridization. . FEMS Microbiol. Ecol. 27, 339-350.
    Kowalchuk, G.A. and Stephen, J.R. (2001) Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annual Review of Microbiology 55, 485-529.
    Lai, E., Senkpiel, S., Solley, D. and Keller, J. (2004) Nitrogen removal of high strength wastewater via nitritation/denitritation using a sequencing batch reactor. Water Science and Technology 82(10), 27-33.
    Laudelout, B.B.a.H. (1962) Kinetics of nitrite oxidation by Nitrobacter winogradskyi. Biochem J. 85(3), 440-447.
    Leininger, S., Urich, T., Schloter, M., Schwark, L., Qi, J., Nicol, G.W., Prosser, J.I., Schuster, S.C. and Schleper, C. (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442(17), 806-809.
    Liu, W.T., Marsh, T.L., Cheng, H. and Forney, L.J. (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol. 63(11), 4516-4522.
    Matulewich, V.A., Strom, P.F. and Finstein, M.S. (1975) Length of incubation for enumerating nitrifying bacteria present in various environments. Appl Microbiol. 29, 265-268.
    McTavish, H., Fuchs, J.A. and Hooper, A.B. (1993) Sequence of the gene coding for ammonia monooxygenase in Nitrosomonas europaea, pp. 2436-2444.
    Metcalf and Eddy (2003) Wastewater engineering: treatment and reuse, McGraw-Hill, NY.
    Mobarry, B., Wagner, M., Urbain, V., Rittmann, B. and Stahl, D. (1996) Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria Appl. Environ. Microbiol. 62(6), 2156-2162.
    Neufeld, R., Greenfield, J. and Rieder, B. (1986) Temperature, cyanide and phenolic nitrification inhibition. Water Research 20(5), 633-642.
    Norton, J., Alzerreca, J., Suwa, Y. and Klotz, M. (2002) Diversity of ammonia monooxygenase operon in autotrophic ammonia-oxidizing bacteria. Archives of Microbiology 177(2), 139-149.
    Painter, H.A. (1986) In Nitriifcation. Prosser, J.I. (ed), pp. 185-211, IRL Press Limited, Oxford.
    Park, H.-D. (2005) Effect of Dissolved Oxygen on Ammonia-Oxidizing Bacterial Communities in Activated Sludge, UNIVERSITY OF WISCONSIN-MADISON.
    Park, H.-D. and Noguera, D.R. (2004) Evaluating the effect of dissolved oxygen on ammonia-oxidizing bacterial communities in activated sludge. Water Research 38(14-15), 3275-3286.
    Park, H.-D., Regan, J.M. and Noguera, D.R. (2002) Molecular analysis of ammonia-oxidizing bacterial populations in aerated-anoxic Orbal processes. Water Environment Research 46(1-2), 273-280.
    Park, H.-D., Wells, G.F., Bae, H., Criddle, C.S. and Francis, C.A. (2006) Occurrence of Ammonia-Oxidizing Archaea in Wastewater Treatment Plant Bioreactors. APPLIED AND ENVIRONMENTAL MICROBIOLOGY 72(8), 5643-5647.
    Poth, M. (1986) Dinitrogen Production from Nitrite by a Nitrosomonas Isolate. Appl. Environ. Microbiol. 52(4), 957-959.
    Poth, M. and Focht, D.D. (1985) 15N Kinetic Analysis of N2O Production by Nitrosomonas europaea: an Examination of Nitrifier Denitrification. Appl. Environ. Microbiol. 49(5), 1134-1141.
    Prinčič, A., Mahne, I., Megušar, F., Paul, E.A. and Tiedje, J.M. (1998) Effects of pH and Oxygen and Ammonium Concentrations on the Community Structure of Nitrifying Bacteria from Wastewater. Appl. Environ. Microbiol. 64(10), 3584-3590.
    Purkhold, U., Pommerening-Roser, A., Juretschko, S., Schmid, M.C., Koops, H.-P. and Wagner, M. (2000) Phylogeny of All Recognized Species of Ammonia Oxidizers Based on Comparative 16S rRNA and amoA Sequence Analysis: Implications for Molecular Diversity Surveys. Appl. Environ. Microbiol. 66(12), 5368-5382.
    Randall, C.W., Barnard, J.L. and Stensel, H.D. (1992) Design and Retrofit of Wastewater Treatment Plants for Biological Nutrient Removal, Technomic Publishing AG, Lancaster, PA.
    Rittmann, B.E.a.M., P. L. (2000) Environmental biotechnology: Principles and applications, McGraw-Hill Higher Education.
    Roszak, D.B. and Colwell, R.R. (1987) Survival strategies of bacteria in the natural environment. Microbiol. Mol. Biol. Rev. 51(3), 365-379.
    Rotthauwe, J.H., Witzel, K.P. and Liesack, W. (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 63(12), 4704-4712.
    Saitou, N. and Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4), 406-425.
    Sambrook, J. and Russell, D.W. (2001) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
    Sanger, F., Nicklen, S. and Coulson, A.R. (1977) DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463-5467.
    Sawyer, C., McCarty, P. and Parkin, G. (2003) Chemistry for Environmental Engineering and Science McGraw-Hill.
    Schmidt, I. and Bock, E. (1997) Anaerobic ammonia oxidation with nitrogen dioxide by Nitrosomonas eutropha. Archives of Microbiology 167(2), 106-111.
    Schmidt, I., Sliekers, O., Schmid, M., Bock, E., Fuerst, J., Kuenen, J.G., Jetten, M.S.M. and Strous, M. (2003) New concepts of microbial treatment processes for the nitrogen removal in wastewater. FEMS Microbiology Reviews 27(4), 481-492.
    Shammas, N.K. (1986) Interactions of Temperature, pH, and Biomass on the Nitrification Process. Journal (Water Pollution Control Federation) 58(1), 52-59.
    Sharma, B. and Ahlert, R.C. (1977) Nitrification and nitrogen removal. Water Research 11, 897-925.
    Shin, J.-H., Sang, B.-I., Chung, Y.-C. and Choung, Y.-k. (2005) The removal of nitrogen using an autotrophic hybrid hollow-fiber membrane biofilm reactor. Desalination 183(1-3), 447-454.
    Shuval, H.I., Gruener, N. (1997) Infant methemoglobinemia and other health effects of nitrates in drinking water. Progress in Water Technology (8), 183-193.
    Stahl, D.A., Lane, D.J., Olsen, G.J. and Pace, N.R. (1985) Characterization of a Yellowstone hot spring microbial community by 5S rRNA sequences. Appl. Environ. Microbiol. 49(6), 1379-1384.
    Stephen, J.R., McCaig, A.E., Smith, Z., Prosser, J.I. and Embley, T.M. (1996) Molecular diversity of soil and marine 16S rRNA gene sequences related to β-subgroup ammoniaoxidizing bacteria. Appl. Environ. Microbiol. 62(11), 4147-4154.
    Suwa, Y., Imamura, Y., Suzuki, T., Tashiro, T. and Urushigawa, Y. (1994) Ammonia-oxidizing bacteria with different sensitivities to (NH4)2SO4 in activated sludges. Water Research 28, 1523-1532
    Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol Biol Evol 24(8), 1596-1599.
    U.S.-EPA (1993) Manual: Nitrogen control., U.S. EPA, Office of Research and Development, Office of Water, Washington, D.C.
    Wagner, M.R., G.; Amann, R.; Koops, H.-P.; and Schleifer, K.-H. (1995) In situ identification of ammonia-oxidizing bacteria. . Systematic Applied Microbiology 18(2), 251-256.
    Ward, D.M., Weller, R. and Bateson, M.M. (1990) 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345(6270), 63-65.
    Watson, S.W. (1971) Taxonomic considerations of the family Nitrobacteraceae Buchanan: Requests for opinions. Int. J. Syst. Bacteriol. 21, 254-270.
    Watson, S.W., Bock, E., Harms, H., Koops, H.-P. and Hooper, A.B. (1989) Bergey's Manual of Systematic Bacteriology, Williams & Wilkins.
    Wett, B. and Rauch, W. (2003) The role of inorganic carbon limitation in biological nitrogen removal of extremely ammonia concentrated wastewater. Water Research 37(5), 1100-1110.
    Whang, L.M., Park, H.D., Reusser, S. and Noguera, D.R. (2004) Combining aerated-anoxic and UCT processes for biological nutrient removal: Lessons from a full-scale study. , New Orleans, LA, USA.
    Whang, L.M., Yang, K.H., Yang, Y.F., Han, Y.L., Chen, Y.J. and Cheng, S.S. (2009) Microbial ecology and performance of ammonia oxidizing bacteria (AOB) in biological processes treating petrochemical wastewater with high strength of ammonia: effect of Na2CO3 addition. Water Science and Technology 59(2), 223-231.
    Wickins, J.F. (1993) Studies on marine biological filters: Model filters. Water Research 17(12), 1769-1780.
    Wild, H.E., Jr., Sawyer, C.N. and McMahon, T.C. (1971) Factors Affecting Nitrification Kinetics. Journal (Water Pollution Control Federation) 43(9), 1845-1854.
    Winogradsky, S. (1933) Recherches sur les organismes de la nitrification. Ann. Inst. Pasteur 4, 213-331.
    Woese, C.R., Weisburg, W.G., Hahn, C.M., Paster, B.J., Zablen, L.B., Lewis, B.J., Macke, T.J., Ludwig, W. and Stackebrandt, E. (1985) The phylogeny of purple bacteria: The gamma subdivision. Syst. Appl. Microbiol. 6(1), 25-33.
    Woese, C.R., Weisburg, W.G., Paster, B.J., Hahn, C.M., Tanner, R.S., Krieg, N.R., Koops, H.-P., Harms, H. and Stackebrandt, E. (1984) The phylogeny of purple bacteria: The beta subdivision. Syst. Appl. Microbiol. 5(3), 327-336.
    Wong-Chong, G. and Hall, J.D. (1980) Single stage nitrification of coke plant wastewater, pp. 395-456, Philadelphia, Pa.
    Yeates, T.O., Kerfeld, C.A., Heinhorst, S., Cannon, G.C. and Shively, J.M. (2008) Protein-based organelles in bacteria: carboxysomes and related microcompartments. Nat Rev Micro 6(9), 681-691.
    You, S.J., Hsu, C.L., Chuang, S.H. and Ouyang, C.F. (2003) Nitrification efficiency and nitrifying bacteria abundance in combined AS-RBC and A2O systems. Water Research 37(10), 2281-2290.

    下載圖示 校內:2010-08-28公開
    校外:2010-08-28公開
    QR CODE