簡易檢索 / 詳目顯示

研究生: 廖奕茹
Liao, Yi-Ru
論文名稱: 摻雜苄基膦酸於鈍化鈣鈦礦晶體薄膜在電致發光二極體之研究
Study the effect of benzylphosphonic acid to passivate perovskite polycrystal thin film in light-emitting diode
指導教授: 郭宗枋
Guo, Tzung-Fang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 65
中文關鍵詞: 鈣鈦礦有機發光二極體苄機膦酸鈣鈦礦鈍化
外文關鍵詞: perovskite light-emitting diodes, benzylphosphonic acid, perovskite passivation
相關次數: 點閱:43下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在多晶鈣鈦礦發光二極體領域中,表面與晶界上的缺陷都是影響鈣鈦礦薄膜穩定度的重要原因,本實驗室在2021年發表文章中利用兩性離子氯化膽鹼 (Choline Chloride, ChCl)有效鈍化鈣鈦礦中的帶電缺陷,藉此抑制鈣鈦礦層中的離子遷移,並藉此提升薄膜穩定度。[51]
    2022年,韓國首爾大學T. W. Lee團隊透過利用摻雜小分子強酸苄基膦酸(benzylphosphonic acid, BPA)於鈣鈦礦中,不僅成功鈍化鈣鈦礦結構缺陷,更有效減小晶粒尺寸,使元件效能大幅提升。
    因此本論文探討摻雜苄基膦酸於本實驗室備置之鈣鈦礦CH3NH3PbBr3前驅液中,並觀察薄膜型態以及光學性質,最後製作成元件進行電性比較,更透過製作不同電洞傳輸層的元件來確認摻雜苄基膦酸於鈣鈦礦薄膜的鈍化效果。
    實驗結果也證實苄基膦酸的摻雜能降低鈣鈦礦薄膜的缺陷以降低非輻射複合產生,藉此使摻雜苄基膦酸的鈣鈦礦元件不僅在亮度、電流效率以及壽命下都有明顯提升。

    In the field of optoelectronics, perovskite materials not only have high photoelectric conversion efficiency, but also adjustable emission wavelengths, high purity chromaticity, and emission linewidths below 20 nm are important advantages of perovskite materials.
    However, in the perovskite film, defects on the surface and grain boundaries are important reasons that affect the stability of the perovskite film, so we passivate the perovskite film by filling the structural defects of perovskite lattice, which can effectively improve the stability of the film.
    In 2022, the team of T. W. Lee from Seoul National University successfully passivated the structural defects of perovskite by doping benzylphosphonic acid (BPA) into perovskite. The performance of devices has been greatly improved.
    Based on this study, this paper discusses the doping of benzylphosphonic acid in the perovskite precursor. Then observe the film morphology, discuss the optical properties, and compare a device for electrical measurement.
    Finally, the devices by doping BPA have higher luminance、current efficiency, and lifetime. Better performance can contribute to BPA successfully passivating the perovskite structure.

    摘要 I Extended Abstract II 致謝 XI 目錄 XIII 表目錄 XVI 圖目錄 XVII 第一章 緒論 1 1.1 前言 1 1.2 有機電激發元件之發展 2 1.2.1 鈣鈦礦光伏元件之發展 4 1.3 研究動機 5 1.4 論文大綱 6 第二章 鈣鈦礦發光二極體之發展 7 2.1 前言 7 2.2 有機電激發元件之介紹 9 2.2.1 有機電激發元件之基本結構 9 2.2.2 有機電激發元件之操作原理 10 2.3 鈣鈦礦發光二極體之發展歷程 11 2.4 鈣鈦礦薄膜缺陷及鈍化 14 2.5 章節總結 17 第三章 元件製程與量測分析 18 3.1 前言 18 3.2 有機鈣鈦礦發光二極體之元件製程 19 3.2.1 氧化銦錫陽極製備 19 3.2.2 基板清潔 21 3.2.3 氧化銦錫陽極表面處理 21 3.2.4 電洞傳輸層製備 21 3.2.5 主動層製備 22 3.2.6 電子傳輸層備製 23 3.2.7 緩衝層及金屬陰極備製 23 3.3 薄膜特性及元件之電性表現與光學特性量測 24 3.3.1 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 24 3.3.2 光致發光光譜儀 (Photoluminescence Spectroscopy, PL) 24 3.3.3 X光繞射儀 (X-ray diffractometer, XRD) 25 3.3.4 紫外-可見光分光光譜儀 (UV-visible Spectrophotometer, UV-Vis) 25 3.3.5 X射線光電子能譜學 (X-ray photoelectron spectroscopy, XPS) 26 3.3.6 衰減全反射式傅立葉紅外光譜儀 (ATR-FTIR) 26 3.3.7 電流-亮度-電壓特性量測系統 (I-L-V Measurement) 27 3.3.8 偏壓誘發光致發光光譜 (Bias-induced Photoluminescence) 27 3.4 章節總結 28 第四章 鈣鈦礦發光二極體之研究 29 4.1 前言 29 4.2 摻雜不同濃度苄基膦酸對於鈣鈦礦元件及薄膜之影響 30 4.2.1 薄膜表面形貌分析 30 4.2.2 薄膜晶體結構分析 32 4.2.3 薄膜光學特性分析 34 4.2.4 薄膜時間解析光致發光分析 37 4.2.5 薄膜X射線光電子能譜分析 38 4.2.6 薄膜衰減全反射式傅立葉紅外光譜儀分析 40 4.2.7 元件特性分析 41 4.3 摻雜苄基膦酸元件電流-亮度線性表現之分析 43 4.3.1 界面特性對於摻雜苄基膦酸元件表現之影響 44 4.3.2 摻雜苄基膦酸元件之偏壓誘發光致發光分析 48 4.3.3 摻雜苄基膦酸元件之壽命分析 51 4.4 苄基膦酸摻雜Quasi-2D鈣鈦礦元件特性分析 52 4.4.1 元件電性分析 53 4.4.2 元件亮度-電流線性表現分析 54 4.5 章節總結 55 第五章 結論與未來工作 56 5.1 結論 56 5.2 未來工作 57 參考文獻 59

    [1] M. Pope, H. P. Kallmann and P. Magnante, “Electroluminescence in organic crystals”, The Journal of Chemical Physics 38, 2042 (1963).
    [2] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes”, Applied Physics Letters 51, 913-915 (1987).
    [3] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns and A. B. Holmes, “Light-emitting diodes based on conjugated polymers”, Nature 347, 539-541 (1990).
    [4] A. Kojima, K. Teshima ,Y. Shirai and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells”, Journal of the American Chemical Society 131, 6050-6051 (2009).
    [5] R. F. Service, “Perovskite solar cells keep on surging”, Science 344, 458 (2014).
    [6] https://www.nrel.gov/pv/cell-efficiency.html (National renewable energy laboratory, NREL, accessed 20 May 2023).
    [7] H. C. Cho, Y. H. Kim, C. Wolf, H. D. Lee and T. W. Lee, “Improving the stability of metal halide perovskite materials and light‐emitting diodes”, Advanced Materials 30, 42 (2018).
    [8] J. S. Kim, J. M. Heo, G. S. Park, S. J. Woo, C. S. Cho, H. J. Yun, D. H. Kim, J. W. Park, S. C. Lee, S. H. Park, E. Yoon and N. C. Greenham and T. W. Lee, “Ultra-bright, efficient and stable perovskite light-emitting diodes”, Nature 611, 688-694 (2022).
    [9] N. G. Park, “Perovskite solar cells: an emerging photovoltaic technology”, Material Today 18, 65-72 (2014).
    [10] M. Era, S. Morimoto, T. Tsutsui and S. Saito, “Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4”, Applied Physics Letters 65, 676-678 (1994).
    [11] J. S. Manse, J. A. Christian and P. V. Kamat, “Intriguing optoelectronic properties of metal halide perovskites”, Chemical Reviews 21, 12956-13008 (2016).
    [12] H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. Hong, J. You, Y. Liu and Y. Yang, “Interface engineering of highly efficient perovskite solar cells”, Science 345, 542-546 (2014).
    [13] M. J. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. B. Zhao, E. M. Beauregard, P. Kanjanaboos, Z. Lu, D. H. Kim and E. H. Sargent, “Perovskite energy funnels for efficient light-emitting diodes”, Nature Nanotechnology 11, 872-877 (2016).
    [14] L. Dou, J. B You, Z. R Hong, W. H Chang, G. Li and Y. Yang, “Solution-processed hybrid perovskite photodetectors with high detectivity”, Nature Communications 5, 5404 (2014).
    [15] Y. J. Fang, Q. F. Dong, Y. C. Shao, Y. B. Yuan and J. S. Huang, “Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination”, Nature Photonics 9, 679-686 (2015).
    [16] Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higle, F. Deschler, M. Price, A. Sadhanala, L. M. Pazo, D. Credgingto, F. Hanusch, T. Bein, H. J. Snaith and R. H. Friend, “Bright light-emitting diodes based on organometal halide perovskite”, Nature Nanotech 9, 687-692 (2014).
    [17] L. Protesescu, S. Yakunin and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX4, X=Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut”, Applied Physics Letters 65, 676-678 (1994).
    [18] Y. H. Kim, H. Cho and T. W. Lee, “Metal halide perovskite light emitters”, PNAS 42,11694-11702 (2016).
    [19] S. E. Gao, Y. Finkenauer, B. P. Akriti and A. H. Dou, “Two-dimensional halide perovskite nanomaterials and heterostructures”, Chemical Society Reviews journal 47, 16 (2018).
    [20] J. H. Song, J. H. Li, X. M. Li, L. M. Xu, Y. H. Dong and H. B. Zeng, “Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3)”, Advanced Materials 27, 7162-7167 (2015).
    [21] F. Zhang, H. Z. Zhong, C. Chen, X. G. Wu, X. M. Hu, H. L. Huang, J. B. Han, B. S. Zou and Y. P. Dong, “Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X=Br, I, Cl) quantum dots: potential alternatives for display technology”, ACS Nano 9, 4533-4542 (2015).
    [22] X. L. Yang, X. W. Zhang, J. X. Deng, Z. M. Chu, Q. Jiang, J. H. Meng, P. Y. Wang, L. Q. Zhang, Z. G. Yin and J. B. You, “Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation”, Nature Communications 9, 570 (2018).
    [23] N. Heydari, S. M. B. Ghorashi, W. Han and J. H. Park, “Quantum dot-based light emitting diodes (QDLEDs): new progress”, UNTECH, 25-45 (2016).
    [24] K. Chondroudis and D. B. Mitzi, “Electroluminescence from an organic-inorganic perovskite incorporating a quaterthiophene dye within lead halide perovskite layers”, Chemistry of Materials 11, 3028-3030 (1999).
    [25] H. C. Cho, S. H. Jeong, M. H. Park, Y. H. Kim, C. Wolf, C. L. Lee, J. H. Heo, A. Sadhanala, N. S. Myoung, S. H. Yoo, S. H. Im, R. H. Friend and T. W. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes”, Science 350, 1222-1225 (2015).
    [26] Y. K. Chih, J. C. Wang, R. T. Yang, C. C. Liu, Y. C. Chang, Y. S. Fu, W. C. Lai, P. Chen, T. C. Wen, Y. C. Huang, C. S. Tsao and T. F. Guo, “NiOx electrode interlayer and CH3NH2/CH3NH3PbBr3 interface treatment to markedly advance hybrid perovskite-based light-emitting diodes”, Advanced Materials 28, 8687-8694 (2016).
    [27] S. A. Veldhuis, P. P. Boix, N. Yantara, M. J. Li, T.C. Sum, N. Mathews and S. G. Mhaisalkar, “Perovskite materials for light-emitting diodes and lasers”, Advanced Materials 28, 6804-6834 (2016).
    [28] G. Li, Z. K. Tan, D. Di, M. L. Lai, L. Jiang, J. H.W. Lim, R. H. Friend and N. C. Greenham, “Efficient light-emitting diodes based on nanocrystalline perovskite in a dielectric polymer matrix”, Nano Letters 4, 2640-2644 (2015).
    [29] J. Ye, M. M. Byranvand, C. O. Martínez, R. L. Z. Hoye, M. Saliba and L. Polavarapu, “Defect passivation in lead-halide perovskite nanocrystals and thin films: toward efficient LEDs and solar cells”, Angewandte Chemie International Edition 133, 21804-21828 (2021).
    [30] T. J. Hu, D. Y. Li, Q. S. Shan, Y. H. Dong, H. Y. Xiang, W. C. H. Choy and H. Zeng, “Defect behaviors in perovskite light-emitting diodes”, ACS Materials Letters 3, 1702-1728 (2021).
    [31] Z. Xiao, R. A. Kerner, L. Zhao, N. L. Tran, K. M. Lee, T. W. Koh, G. D. Scholes and B. P. Rand, “Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites” , Nature Photonics 11, 108-115 (2017).
    [32] D. P. Nenon, K. Pressler, J. Kang, B. A. Koscher, J. H. Olshansky, W. T. Osowiecki, M. A. Koc, L. W. Wang and A. P. Alivisatos, “Design principles for trap-free CsPbX3 nanocrystals: enumerating and eliminating surface halide vacancies with softer lewis bases”, Journal of the American Chemical Society 140, 50, 17760-17772 (2018). 
    [33] C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith and L. M. Herz, “High charge carrier mobilities and lifetimes in organolead trihalide perovskites”, Advanced Materials 26, 1584-1589 (2014).
    [34] L. M. Herz, “Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits”, ACS Energy Letters 2, 1539-1548 (2017).
    [35] W. D Xu, Q. Hu, S. Bai, C. X. Bao, Y. F. Miao, Z. C. Yuan, T. Borzda, A. J. Barker, E. Tyukalova, Z. J. Hu, M. Kawecki, H. Wang, Z. B. Yan, X. J. Liu, X.B. Shi, K. Uvdal, M. Fahlman, W. J. Zhang, M. Duchamp, J. M. Liu, A. Petrozza, J. P. Wang, L. M. Liu, W. Huang and F. Gao, “Rational molecular passivation for high-performance perovskite light-emitting diodes”, Nature Photonics 13, 418-424 (2019).
    [36] D. Meggiolaro, E. Mosconi and F. D. Angelis, “Formation of surface defects dominates ion migration in lead-halide perovskites”, ACS Energy Letters 4, 779-785 (2019).
    [37] L. Zhang, F. Yuan, J. Xi, B. Jiao, H. Dong, J. R. Li and Z. X. Wu, “Suppressing ion migration enables stable perovskite light-emitting diodes with all-inorganic strategy”, Advanced Functional Materials 30, 2001834 (2020).
    [38] R. López and R. Gómez, “Band-gap energy estimation from diffuse reflectance measurements on sol-gel and commercial TiO2: a comparative study”, Journal of Sol-Gel Science and Technology volume 61, 1-7 (2012).
    [39] M. Wagstaffe, A. G. Thomas, M. J. Jackman, M. Torres-Molina, K. L. Syres and K. Handrup, “An experimental investigation of the absorption of a phosphonic acid on the anatase TiO2 (101) surface”, The Journal of Physical Chemistry C 3, 1693-1700 (2016).
    [40] F. Li, H. Zhong, G. Zhao, S. Wang and G. Li, “Adsorption of α-hydroxyoctyl phosphonic acid to ilmenite/water interface and its application in flotation”, Colloids and surfaces A: physicochemical and engineering aspects 490, 67-73 (2016).
    [41] T. T. Xuan, X. F. Yang, S. Q. Lou, J. J. Huang, Y. Liu, J. B. Yu, H. L. Li, K. L. Wong, C. X. Wang and J. Wang, “Highly stable CsPbBr3 quantum dots coated with alkyl phosphate for white light-emitting diodes”, Nanoscale 40, 15286-15290 (2017).
    [42] R. Zhu, N. Guan, D. R. Wang, Y. Q. Bao, Z. B. Wu, and L. Song, “Review of defect passivation for NiOx-based inverted perovskite solar cells”, ACS Applied Energy Materials 4, 2098-2121 (2023).
    [43] G. B. Shen, H. Y. Dong, F. Yang, X. R. Ng, X. Li, F. Lin and C. Mu, “Application of an amphipathic molecule at the NiOx/perovskite interface for improving the efficiency and long-term stability of the inverted perovskite solar cells”, Journal of Energy Chemistry 78, 454-462 (2023).
    [44] D. D. Girolamo, F. D. Giacomo, F. Matteocci, A. G. Marrani, D. Dini and A. Abate, “Progress, highlights and perspectives on NiOx in perovskite photovoltaics”, Nanoscale 30, 7746-7759 (2020).
    [45] K. Sun, S. P. Zhang, P. C. Li, Y. J. Xia, X. Zhang, D. H. Du, F. H. Isikgor and J. Y. Ouyang, “Review on application of PEDOTs and PEDOT:PSS in energy conversion and storage devices”, Journal of Materials Science: Materials in Electronics 26, 438-4462 (2015).
    [46] S. Sun, J. J. Si, Z. G. Liu, R. Xu, Y. H. Du and Y. Tang, “Efficient perovskite light-emitting diodes with modified hole injection layer”, 19th International Conference on Optical Communications and Networks, 1-3 (2021).
    [47] B. C. He, T. H. Liu, B. Z. Wang, Z. R. Wen, X. C. Yu, G. C. Xing and S. Chen, “Boosting the efficiency of quasi-2D perovskite light-emitting diodes via tailoring the PEDOT: PSS hole transport layer”, Applied Surface Science 585, 152692 (2022).
    [48] C. Zuo and L. M. Ding, “Modified PEDOT layer makes a 1.52 V Voc for perovskite/PCBM solar cells”, Advanced Energy Materials 2, 1601193 (2017).
    [49] Y. H. Kim, H. C. Cho, J. H. Heo, T. S. Kim, N. S. Myoung, C. L. Lee, S. H. Im and T. W. Lee, “Multicolored organic/inorganic hybrid perovskite light-emitting diodes”, Advanced Materials 27, 11248-1254 (2014).
    [50] C. Li, A. Guerrero, Y. Zhong, A. Gräser, C. A. M. Luna, J. Köhler, J. Bisquert, R. Hildner and S. Huettner, “Real-time observation of iodide ion migration in methylammonium lead halide perovskites”, Small 13, 1701711 (2017).
    [51] T. L. Shen, A. Loganathan, T. H. Do, C. M Wu, Y. T. Chen, Z. J. Chen, N. C. Chiu, C. H. Shih, H. C Wang, J. H. Chou, Y. Y. Hsu, C. C. Liu, Y. C. Chang, Y. S. Fu, W. C. Lai, P. Chen, T. C. Wen and T. F. Guo, “Characterize and retard the impact of the bias-induced mobile ions in CH3NH3PbBr3 perovskite light-emitting diodes”, Advanced Optical Materials 10, 2101439 (2021).
    [52] Y. Q. Luo, P. Khoram, S. Brittman, Z. Y. Zhu, B. Lai, S. P. Ong, E. C. Garnett and D. P. Fenning, “Direct observation of halide migration and its effect on the photoluminescence of methylammonium lead bromide perovskite single crystals”, Advanced Materials 29, 1703451 (2017).
    [53] S. Chen, X. M. Wen, S. J. Huang, F. Z. Huang, Y. B. Cheng, M. Green and A. Ho-Baillie, “Light illumination induced photoluminescence enhancement and quenching in lead halide perovskite”, Solar RRL 1, 600001 (2016).
    [54] R. Luschtinetz, G. Seifert, E. Jaehne and H. J. P. Adler, “Infrared spectra of alkylphosphonic acid bound to aluminium surfaces”, Macromolecular Symposia 254, 2248-253 (2007).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE