| 研究生: |
張啟修 Chang, Chi-Hsiu |
|---|---|
| 論文名稱: |
硫化鎘量子點在染料敏化太陽能電池應用的研究 The Application of CdS Quantum Dots on Dye-sensitized Solar Cells |
| 指導教授: |
李玉郎
Lee, Yuh-Lang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 染料敏化太陽能電池 、量子點 、化學浴沉積法 、多硫成份電解液 、開路電壓衰退分析 |
| 外文關鍵詞: | Chemical bath deposition, Quantum-dots, Open-circuit potential decay, Dye-sensitized solar cells, Polysulfide |
| 相關次數: | 點閱:79 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文有以下兩個研究目標。其一,以醇類代替純水作為溶劑使用在化學浴沉積法(chemical bath deposition, CBD),藉由此方法在二氧化鈦(TiO2)薄膜內部合成硫化鎘(CdS)量子點(quantum dots)。由於醇類溶液具有較小的表面張力(surface tention),較水溶液更易滲入TiO2孔洞深處進行反應。因此,使用醇類溶液除了能提高CdS量子點的吸附量,較佳的覆蓋率亦能有效的避免電子電洞的再結合。將此方法應用在CdS量子點敏化太陽能電池(dye-sensitized solar cells, DSSC)上,可得到1.84% 的電池效率。此效率已經超越目前文獻中量子點DSSC的最高紀錄。另一個研究目標,是以多硫成份電解液取代現有的碘離子/碘電解液,改善CdS量子點在碘離子/碘電解液中嚴重腐蝕問題。但在實驗過程中發現多硫成份電解液的填充因子(fill factor, FF)不佳導致整體效率下降,有鑑於此,我們藉由提高電解液中的含硫量以加速電洞被電解液還原的速度,可將FF由0.17拉升至0.43,相對的電池效率可達到1.15%。除此之外,本研究利用開路電壓衰退(open-circuit voltage decay, OCVD)的分析方法,就電解液與電池元件內各薄膜的特性作一系列探討,亦可部份釐清造成電池內部電子傳遞阻力之原因。
This study includes two researches. In the research one, Alcohol, instead of water, was used as a solvent in a chemical bath deposition (CBD) process for the in-situ synthesis of cadmium sulfide (CdS) quantum-dots (QDs) onto mesoporous TiO2 films. Due to the low surface tension, the alcohol solutions have high wettability and superior penetration ability on the mesoscopic TiO2 film, leading to a well-covered CdS QDs on the surface of mesopores. The CdS-sensitized TiO2 electrode prepared using the alcohol system not only has a higher incorporated amount of CdS, but also greatly inhibits the recombination of injected electrons. The efficiency of a CdS QDs-sensitized solar cell prepared by using the present method is as high as 1.84 % under the illumination of one sun (AM1.5, 100 mW/cm2).In the other case, polysulfide instead of iodide/triiodide was employed as the electrolyte in CdS QDs-sensitized solar cell. Polysulfide, is unlike iodide/triiodide which would corrode CdS QDs, is an appropriate electrolyte for this study. In this study, we attempt to solve the low fill factor problem of polysulfide. The fill factor has been enhanced from 0.17 to 0.43 in this study and the efficiency of a CdS QDs-sensitized solar cell using the present polysulfide-electrolyte is 1.15%. Besides, we used open-circuit voltage decay(OCVD) to analyse the characteristics of polysulfide-electrolyte and the interface of every thin films in solar cells. In this study, OCVD can make it clear that some results of electrons resistance inside the architecture of solar cells.
1. M. Grätzel, “Powering the planet” Nature 403, 363
(2000)
2. J. Pelly, “Solar cells that harness infrared light”
Environ. Sci. Technol, A-pages 39, 151A (2005)
3. H. Tsubomura, M. Matsumura, Y, Nomura and T. Amamiya,
“Dye-sensitized zinc oxide/aqueous
electrolyte/platinum photocell” Nature 261, 402 (1976)
4. B. O’Regan and M. Grätzel, “A low-cost, high
efficiency solar cell based on dye-sensitized
colloidal TiO2 films” Nature 353, 737 (1991)
5. M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A.
Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and
M. Grätzel, “Combined Experimental and DFT-TDDFT
Computational Study of Photoelectrochemical Cell
Ruthenium Sensitizers” J. Am. Chem. Soc 127, 16835
(2005)
6. T. Miyasaka, M. Ikegami and Y. Kijitori,
“Photovoltaic Performance of Plastic Dye-Sensitized
Electrodes Prepared by Low-Temperature Binder-Free
Coating of Mesoscopic Titania” Journal of The
Electrochemical Society 154, A455 (2007)
7. A. Hagfeldt and M. Grätzel, “Molecular
Photovoltaics” Acc. Chem. Res 33, 269 (2000)
8. M. Grätzel, “Solar Energy Conversion by Dye-
Sensitized Photovoltaic Cells” Inorg. Chem 44, 6841
(2005)
9. G. Wolfbauer, A. M. Bond, J. C. Eklund and D. R.
MacFarlane, “A channel flow cell system specifically
designed to test the effciency of redox shuttles in
dye sensitized solar cells” Solar Energy Materials &
Solar Cells 70, 85 (2001)
10. N. Kopidakis, K. D. Benkstein, J. Lagemaat and A. J.
Frank, “Transport-Limited Recombination of
Photocarriers in Dye-Sensitized Nanocrystalline TiO2
Solar Cells” J. Phys. Chem. B 107, 11307 (2003)
11. D. Kuang, C. Klein, H. J. Snaith, J. Moser, R. Humphry-
Baker, P. Comte, S. M. Zakeeruddin and M. Grätzel,
“Ion Coordinating Sensitizer for High Efficiency
Mesoscopic Dye-Sensitized Solar Cells: Influence of
Lithium Ions on the Photovoltaic Performance of Liquid
and Solid-State Cells” Nano Lett. 6, 669 (2006)
12. S. A. Haque, E. Palomares, B. M. Cho, A. N. M. Green,
N. Hirata, D. R. Klug and J. R. Durrant, “ Charge
Separation versus Recombination in Dye-Sensitized
Nanocrystalline Solar Cells: the Minimization of
Kinetic Redundancy” J. Am. Chem. Soc. 127, 3456 (2005)
13. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humpbry-
Baker, E. Müller, P. Liska, N. Vlachopoulos and M.
Grätzel, “Conversion of Light to Electricity by cis-
XzBis( 2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(
11) Charge-Transfer Sensitizers (X = C1-, Br-, I-, CN-
, and SCN-) on Nanocrystalline TiO2 Electrodes” J.
Am. Chem. Soc. 115, 6382 (1993)
14. P. Wang, S. M. Zakeeruddin, I. Exnar and M. Grätzel,
“High efficiency dye-sensitized nanocrystalline solar
cells based on ionic liquid polymer gel electrolyte”
Chem. Commun, 2972 (2002)
15. W. Kubo, T. Kitamura, K. Hanabusa, Y. Wada and S.
Yanagida, “Quasi-solid-state dye-sensitized solar
cells using room temperature molten salts and a low
molecular weight gelator” Chem. Commun, 374 (2002)
16. N. Mohmeyer, D. Kuang, P. Wang, H. W. Schmidt, S. M.
Zakeeruddin and M. Grätzel, “ An efficient
organogelator for ionic liquids to prepare stable
quasi-solidstate dye-sensitized solar cells” J.
Mater. Chem. 16, 2978 (2006)
17. A. F. Nogueira and M. D. Paoli, “A day sensitized
TiO2 photovoltatic cell constructed with an
elastomeric electrolyte” Solar Energy Materials &
Solar Cells 61, 135 (2000)
18. W. Kubo, K. Murakoshi, T. Kitamura, S. Yoshida, M.
Haruki, K. Hanabusa, H. Shirai, Y. Wada and S.
Yanagida, “Quasi-Solid-State Dye-Sensitized TiO2
Solar Cells: Effective Charge Transport in Mesoporous
Space Filled with Gel Electrolytes Containing Iodide
and Iodine” J. Phys. Chem. B 105, 12809 (2001)
19. T. Stergiopoulos, I. M. Arabatzis, G. Katsaros and P.
Falaras, “Binary Polyethylene Oxide/Titania Solid-
State Redox Electrolyte for Highly Efficient
Nanocrystalline TiO2 Photoelectrochemical Cells” Nano
Lett. 2, 1259 (2002)
20. P. Malik, M. Castro and C. Carrot, “Thermal
degradation during melt processing of poly(ethylene
oxide), poly(vinylidenefluoride-co-
hexafluoropropylene) and their blends in the presence
of additives, for conducting applications” Polymer
Degradation and Stability 91, 634 (2006)
21. P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K.
Nazeeruddin, T. Sekiguchi and M. Grätzel, “A stable
quasi-solid-state dye-sensitized solar cell with an
amphiphilic ruthenium sensitizer and polymer gel
electrolyte” Nature Materials 2, 402 (2003)
22. P. Wang, S. M. Zakeeruddin, M. Grätzel, “Solidifying
liquid electrolytes with fluorine polymer and silica
nanoparticles for quasi-solid dye-sensitized solar
cells” Journal of Fluorine Chemistry 125, 1241 (2004)
23. P. Wang, Q. Dai, S. M. Zakeeruddin, M. Forsyth, D. R.
MacFarlane and M. Grätzel, “Ambient Temperature
Plastic Crystal Electrolyte for Efficient, All-Solid-
State Dye-Sensitized Solar Cell” J. Am. Chem. Soc
126, 13590 (2004)
24. W. W. Yu and X. Peng, “Formation of High-Quality CdS
and Other II -VI Semiconductor Nanocrystals in
Noncoordinating Solvents:T unable Reactivity of
Monomers” Angew. Chem. Int. Ed. 41, 2368 (2002)
25. W. W. Yu, L. Q. W. Guo and X. Peng, “Experimental
Determination of the Extinction Coefficient of CdTe,
CdSe, and CdS Nanocrystals” Chem. Mater. 15, 2854
(2003)
26. R. He, X. Qian, J. Yin, H. Xi, L. Bian and Z. Zhu,
“Formation of monodispersed PVP-capped ZnS and CdS
nanocrystals under microwave irradiation” Colloids
and Surfaces A: Physicochem. Eng. Aspects 220, 151
(2003)
27. Y. Wang and N. Herron, “Nanometer-Sized Semiconductor
Clusters: Materials Synthesis, Quantum Size Effects,
and Photophysical Properties,” J. Phys. Chem. 95, 525
(1991)
28. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M.
Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S.
S. Gambhir and S. Weiss, “Quantum Dots for Live
Cells, in Vivo Imaging, and Diagnostics” Science 307,
538 (2005)
29. A. J. Nozik, “Exciton Multiplication and Relaxation
Dynamics in Quantum Dots: Applications to Ultrahigh-
Efficiency Solar Photon Conversion,” Inorganic
Chemistry 44, 6893 (2005)
30. W. Shockley and H. J. Queisser, “Detailed Balance
Limit of Efficiency of p-n Junction Solar Cells,” J.
Appl. Phys. 32, 510 (1961)
31. A. J. Nozik, “Quantum dot solar cells” Physica E 14,
115 (2002)
32. S. Abd-Lefdil, C. Messaoudi, M. Abd-Lefdil and D.
Sayah,“Temperature Growth and Annealing Effects on
CdS Thin Films Prepared by Chemical Bath Deposition
Process” phys. stat. sol. (a) 168, 417 (1998)
33. R. Vogel, P. Hoyer, and H. Weller, “Quantum-Sized
PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as
Sensitizers for Various Nanoporous Wide- Bandgap
Semiconductors” J. Phys. Chem. 98, 3183 (1994)
34. P. Hoyer and R. Könenkamp, “Photoconduction in porous
TiO2 sensitized by PbS quantum dots” Appl. Phys.
Lett. 66, 349 (1995)
35. R. Plass, S. Pelet, J. Krueger and M. Grätzel,
“Quantum Dot Sensitization of Organic-Inorganic Hybrid
Solar Cells” J. Phys. Chem. B 106, 7578 (2002)
36. J. L. Blackburn, D. C. Selmarten and A. J. Nozik,
“Electron Transfer Dynamics in Quantum Dot/Titanium
Dioxide Composites Formed by in Situ Chemical Bath
Deposition” J. Phys. Chem. B 107, 14154 (2003)
37. S. C. Lin, Y. L. Lee, C. H. Chang, Y. L. Shen and Y.
M. Yang, “Quantum Dot-Sensitized Solar Cells:
Assembly of CdS Quantum Dots Coupling Techniques of
Self-Assembly Monolayer and Chemical Bath Deposition”
Appl. Phys. Lett. 90, 143517 (2007)
38. C. Burda, X. Chen, R. Narayanan and M. A. El-Sayed,
“Chemistry and Properties of Nanocrystals of Different
Shapes” Chem. Rev. 105, 1025 (2005)
39. A. L. Rogach, A. Kornowski, M. Gao, A. Eychmüller and
H. Weller, “Synthesis and Characterization of a Size
Series of Extremely Small Thiol-Stabilized CdSe
Nanocrystals” J. Phys. Chem. B 103, 3065 (1999)
40. M. A. Hines and G. D. Scholes, “Colloidal PbS
Nanocrystals with Size-Tunable Near-Infrared Emission
Observation of Post-Synthesis Self-Narrowing of the
Particle Size Distribution” Adv. Mater. 15, 1844
(2003)
41. X. D. Ma, X. F. Qian, J. Yin, H. A. Xi and Z. K. Zhu,
“Preparation and Characterization of Polyvinyl Alcohol-
Capped CdSe Nanoparticles at Room Temperature”
Journal of Colloid and Interface Science 252, 77 (2002)
42. J. M. Nedeljković, O. I. Mićić, S. P. Ahrenkiel, A.
Miedaner and A. J. Nozik, “Growth of InP
Nanostructures via Reaction of Indium Droplets with
Phosphide Ions: Synthesis of InP Quantum Rods and
InP-TiO2 Composites” J. Am. Chem. Soc. 126, 2632
(2004)
43. L. Manna, D. J. Milliron, A. Meisel, E. C. Scher and
A. P. Alivisatos, “Controlled growth of tetrapod-
branched inorganic nanocrystals”, Nature Materials 2,
382 (2003)
44. K. W. Jun, P. K. Khannaa, K. B. Honga, J. O. Baeg and
Y. D. Suha, “Synthesis of InP nanocrystals from
indium chloride and sodium phosphide by solution
route” Materials Chemistry and Physics 96 494 (2006)
45. M. R. Greenberg, W. Chen, B. N. Pulford, G. A.
Smolyakov, Y. B. Jiang, S. D. Bunge, T. J. Boyle and
Marek Osiński, “Synthesis and Characterization of InP
and InN Colloidal Quantum Dots” Proc. of SPIE 5705,
68 (2005)
46. A. Agostiano, M. Catalano, M. L. Curri, M. D. Monica,
L. Manna and L. Vasanelli, “Synthesis and structural
characterisation of CdS nanoparticles prepared in a
four-components “water-in-oil” microemulsion”
Micron 31 253 (2000)
47. J. Zhang, L. Sun, C. Liao and C. Yan, “Size control
and photoluminescence enhancement of CdS
nanoparticles prepared via reverse micelle method”
Solid State Communications 124, 45 (2002)
48. Y. J. Shen, Y. L. Lee and Y. M. Yang, “Monolayer
Behavior and Langmuir-Blodgett Manipulation of CdS
Quantum Dots” J. Phys. Chem. B 110, 9556 (2006)
49. L. M. Peter, D. J. Riley, E. J. Tull and K. G. U.
Wijayantha, “Photosensitization of nanocrystalline
TiO2 by self-assembled layers of CdS quantum dots”
Chem. Commun., 1030 (2002)
50. I. Robel, V. Subramanian, M. Kuno and P. V. Kamat,
“Quantum Dot Solar Cells. Harvesting Light Energy with
CdSe Nanocrystals Molecularly Linked to Mesoscopic
TiO2 Films” J. Am. Chem. Soc. 128, 2385 (2006)
51. K.G. U. Wijayanthaa, L. M. Petera and L.C. Otley,
“Fabrication of CdS quantum dot sensitized solar cells
via a pressing route,” Solar Energy Materials & Solar
Cells 83, 363 (2004)
52. Q. Shen and T. Toyoda, “Characterization of
Nanostructured TiO2 Electrodes Sensitized with CdSe
Quantum Dots Using Photoacoustic and
Photoelectrochemical Current Methods” Japanese
Journal of Applied Physics 43, 2946 (2004)
53. A. Zaban, O. I. Mićić, B. A. Gregg, and A. J. Nozik,
“Photosensitization of Nanoporous TiO2 Electrodes with
InP Quantum Dots” Langmuir 14, 3153 (1998)
54. J. L. Blackburn, D. C. Selmarten, R. J. Ellingson, M.
Jones, O. Mićić and A. J. Nozik, “Electron and Hole
Transfer from Indium Phosphide Quantum Dots” J. Phys.
Chem. B 109, 2625 (2005)
55. R. D. Schaller and V. I. Klimov, “High Efficiency
Carrier Multiplication in PbSe Nanocrystals:
Implications for Solar Energy Conversion” Phys. Rev.
Lett. 92, 186601 (2004)
56. T. Hasobe, H. Imahori, P. V. Kamat, T. K. Ahn, S. K.
Kim, D. Kim, A. Fujimoto, T. Hirakawa and S. Fukuzumi,
“Photovoltaic Cells Using Composite Nanoclusters of
Porphyrins and Fullerenes with Gold Nanoparticles” J.
Am. Chem. Soc. 127, 1216 (2005)
57. K. George and P. V. Kamat, “Chromophore-
Functionalized Nanoparticles” Acc. Chem. Res. 36, 888
(2003)
58. Y. Tian and T. Tatsuma, “Mechanisms and Applications
of Plasmon-Induced Charge Separation at TiO2 Films
Loaded with Gold Nanoparticles,” J. Am. Chem. Soc.
127, 7632 (2005)
59. S. A. Mcdonald, G. Konstantatos, S. Zhang, P. W. Cyr,
E. J. D. Klem, L. Levina and E. H. Sargrnt, “Solution-
processed PbS quantum dot infrared photodetectors and
photovoltaics,” Nature Materials 4, 138 (2005)
60. S. A. Sapp, C. M. Elliott, C. Contado, S. Caramori and
C. A. Bignozzi, “Substituted Polypyridine Complexes
of Cobalt(II/III) as Efficient Electron-Transfer
Mediators in Dye-Sensitized Solar Cells” J. Am. Chem.
Soc. 124, 11215 (2002)
61. S. Cazzanti, S. Caramori, R. Argazzi, C. M. Elliott
and C. A. Bignozzi, “Efficient Non-corrosive Electron-
Transfer Mediator Mixtures for Dye-Sensitized Solar
Cells” J. Am. Chem. Soc. 128, 9996 (2006)
62. T. Nakanishi, B. Ohtani and K. Uosakin, “Effect of
immobilized electron relay on the interfacial
photoinduced electron transfer at a layered inorganic–
organic composite film on gold” Journal of
Electroanalytical Chemistry 455, 229 (1998)
63. L. Sheeney-Haj-Ichia, S. Pogorelova, Y. Gofer and I.
Willner, “Enhanced Photoelectrochemistry in CdS/Au
Nanoparticle Bilayers” Adv. Funct. Mater. 14, 416
(2004)
64. M. Grätzel, “Photoelectrochemical cells” Nature 414,
338 (2001)
65. Y. Tachibana, S. A. Haque, I. P. Mercer, J. E. Moser,
D. R. Klug and J. R. Durrant, “Modulation of the Rate
of Electron Injection in Dye-Sensitized
Nanocrystalline TiO2 Films by Externally Applied
Bias” J. Phys. Chem. B 105, 7424 (2001)
66. O. Niitsoo, S. K. Sarkar, C. Pejoux, S. Rühle, D.
Cahen and G. Hodes, “Chemical bath deposited CdS/CdSe-
sensitized porous TiO2 solar cells,” Journal of
Photochemistry and Photobiology A: Chemistry 181, 306
(2006)
67. N. C. Greenham, X. Peng and A. P. Alivisatos, “Charge
separation and transport in conjugated-
polymer/semiconductor-nanocrystal composites studied
by photoluminescence quenching and photoconductivity”
Phys. Rev. B 54, 628 (1996)
68. W. U. Huynh, X. Peng, and A. P. Alivisatos, “CdSe
Nanocrystal Rods/Poly(3-hexylthiophene) Composite
Photovoltaic Devices” Adv. Mater. 11, 923 (1999)
69. T. Kitamura, M. Maitani, M. Matsuda, Y. Wada and S.
Yanagida, “Improved Solid-State Dye Solar Cells with
Polypyrrole using a Carbon-Based Counter Electrode”
Chemistry Letters, 1054 (2001)
70. D. J. Milliron, I. Gur and A. P. Alivisatos, “Hybrid
Organic–Nanocrystal Solar Cells” Mrs Bulletin30, 41
(2005)
71. B. O’Regana, “Efficient dye-sensitized charge
separation in wide-band-gap p-n heterojunction” J.
Appl. Phys. 80, 4749 (1996)
72. K. Tennakone, G. R. R. A. Kumara, I. R. M. Kottegoda,
K. G. U. Wijayantha and V. P. S. Perera, “A solid-
state photovoltaic cell sensitized with a ruthenium
bipyridyl complex” J. Phys. D: Appl. Phys. 31, 1492
(1998)
73. B. O'Regan, D. T. Schwartz, S. M. Zakeeruddin and M.
Grätzel, “Electrodeposited Nanocomposite n-p
Heterojunctions for Solid-State Dye-Sensitized
Photovoltaics” Adv. Mater. 12, 1263 (2000)
74. G. R. R. A. Kumara, A. Konno, G. K. R. Senadeera, P.
V. V. Jayaweera, D. B. R. A. De Silva and K.
Tennakone, “Dye-sensitized solar cell with the hole
collector p-CuSCN deposited from a solution in n-
propyl sulphide” Solar Energy Materials & Solar Cells
69, 195 (2001)
75. B. O’Regan, F. Lenzmann, R. Muis and J. Wienke, “A
Solid-State Dye-Sensitized Solar Cell Fabricated with
Pressure-Treated P25-TiO2 and CuSCN: Analysis of Pore
Filling and IV Characteristics” Chem. Mater. 14, 5023
(2002)
76. B. O’Regan, F. Lenzmann, R. Muis and J. Wienke, “A
Solid-State Dye-Sensitized Solar Cell Fabricated with
Pressure-Treated P25-TiO2 and CuSCN: Analysis of Pore
Filling and IV Characteristics” Chem. Mater. 14, 5023
(2002)
77. R. Tena-Zaera, A. Katty, S. Bastide, C. Lévy-Clément,
B. O’Regan, V. Muňoz-Sanjosé, “ZnO/CdTe/CuSCN, a
promising heterostructure to act as inorganic eta-
solar cell” Thin Solid Films 483, 372 (2005)
78. B. C. O’Regan and F. Lenzmann, “Charge Transport and
Recombination in a Nanoscale Interpenetrating Network
of n-Type and p-Type Semiconductors: Transient
Photocurrent and Photovoltage Studies of
TiO2/Dye/CuSCN Photovoltaic Cells” J. Phys. Chem. B
108, 4342 (2004)
79. St. Kutzmutz, G. Láng and K. E. Heusler, “The
electrodeposition of CdSe from alkaline electrolytes”
Electrochimica Acta 47, 955 (2001)
80. C. L. Clément, R. T. Zaera, M. A. Ryan, A. Katty and
G. Hodes, “CdSe-Sensitized p-CuSCN/Nanowire n-ZnO
Heterojunction” Adv. Mater. 17, 1512 (2005)
81. I. Gur, N. A. Fromer, M. L Geier and A. P.
Alivisatos1, “Air-Stable All-Inorganic Nanocrystal
Solar Cells Processed from Solution,” Science 310,
462 (2005)
82. C. H. J. Liu, J. Olsen, D. R. Saunders and J. H. Wang,
“Photoactivation of CdSe Films for Photoelectrochemical
Cells” J. Electrochem. Soc.: Electrochemical Science
and Technology 128, 1224 (1981)
83. Y. Ueno, H. Minoura, T. Nishikawa and M. Tsuiki,
“Electrophoretically Deposited CdS and CdSe Anodes for
Photoelectrochemical Cells” J. Electrochem. Soc.:
Electrochemical Science and Technology 130, 43 (1983)
84. S. Licht, G. Hodes and J. Manassen, “Numerical
Analysis of Aqueous Polysulfide Solutions and Its
Application to Cadmium Chalcogenide/Pol y sulfide P ho
toelec tr oc hemical Solar Cells” Inorg. Chem. 25,
2486 (1986)
85. J. F. Reder and M. Rusek, “Photochemical hydrogen
production with platinized suspensions of cadmium
sulfide and cadmium zinc sulfide modified by silver
sulfide” J. Phys. Chem. 90, 824 (1986)
86. S. Licht, “A desription of energy conversion in
photoelectrochemical solar cells” Nature 330, 148
(1987)
87. S. Licht, “Electrolyte modified photoelectrochemical
solar cells” Solar Energy Materials & Solar Cells 38,
305 (1995)
88. G. Milczareka, A. Kasuyab, S. Mamykinb, T. Araib, K.
Shinodab and K. Tohji, “Optimization of a two-
compartment photoelectrochemical cell for solar
hydrogen production” International Journal of
Hydrogen Energy 28, 919 (2003)
89. G. Milczarek, A. Kasuya, K. Tohji, T. Arai, T. Ito,
“Photoelectrochemical oxygen evolution using
polysulfide as sacrificial electron acceptor” Solar
Energy Materials & Solar Cells 86, 43 (2005)
90. Y. Bessekhouada, M. Mohammedib and M. Trari,
“Hydrogen photoproduction from hydrogen sulfide on
Bi2S3 catalyst” Solar Energy Materials & Solar Cells
73, 339 (2002)
91. G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese and
C. A. Grimes, “Use of Highly-Ordered TiO2 Nanotube
Arrays in Dye-Sensitized Solar Cells” Nano Lett. 6,
215 (2006)
92. A. Zaban, M. Greenshtein and J. Bisquert,
“Determination of the Electron
Lifetime in Nanocrystalline Dye Solar Cells by Open-
Circuit Voltage Decay Measurements” Chem. Phys. Chem
4, 859 (2003)
93. J. Bisquert, A. Zaban, M. Greenshtein and I. Mora-Ser
ó, “Determination of Rate Constants for Charge
Transfer and the Distribution of Semiconductor and
Electrolyte Electronic Energy Levels in Dye-Sensitized
Solar Cells by Open-Circuit Photovoltage Decay
Method” J. Am. Chem. Soc. 126, 13550 (2004)
94. M. Quintana, T. Edvinsson, A. Hagfeldt and G.
Boschloo, “Comparison of Dye-Sensitized ZnO and TiO2
Solar Cells: Studies of Charge Transport and Carrier
Lifetime” J. Phys. Chem. C 111, 1035 (2007)
95. J. Bisquert, D. Cahen, G. Hodes, S. Rühle and A.
Zaban, “Physical Chemical Principles of Photovoltaic
Conversion with Nanoparticulate, Mesoporous Dye-
Sensitized Solar Cells” J. Phys. Chem. B 108, 8106
(2004)
96. 林昇志, “量子點的組裝及其在染料敏化太陽能電池的應用”
國立成功大學化學工程學系碩士論文 民國95年
97. D. Myers, “Surfaces, Interfaces and Colloides :
Principles and Application” 2nd edition, WILEY-VCH,
141 (1999)
98. M. K. Nazeeruddin, R. Humphry-Baker, P. Liska and M.
Grätzel,“Investigation of Sensitizer Adsorption and
the Influence of Protons on Current and Voltage of a
Dye-Sensitized Nanocrystalline TiO2 Solar Cell”J.
Phys. Chem. B 107, 8981 (2003)
99. Princeton Applied Research, “Basics of
electrochemical Impedance Spectroscopy”100. L.
Dloczik, O. Ileperuma, I. Lauermann, L. M. Peter, E.
A. Ponomarev, G. Redmond, N. J. Shaw and I. Uhlendorf,
“Dynamic Response of Dye-Sensitized Nanocrystalline
Solar Cells: Characterization by Intensity-Modulated
Photocurrent Spectroscopy” J. Phys. Chem. B 101,
10281 (1997)
101. S. G. Hickey and D. J. Riley, “Photoelectrochemical
Studies of CdS Nanoparticle-Modified Electrodes” J.
Phys. Chem. B 103, 4599 (1999)
102. J. Bisquert, “Influence of the boundaries in the
impedance of porous film electrodes” Phys. Chem.
Chem. Phys. 2, 4185 (2000)
103. J. Bisquert and V. S. Vikhrenko, “Interpretation of
the Time Constants Measured by Kinetic Techniques in
Nanostructured Semiconductor Electrodes and Dye-
Sensitized Solar Cells” J. Phys. Chem. B 108, 2313
(2004)
104. Q. Wang, J. E. Moser and M. Grätzel,“Electrochemical
Impedance Spectroscopic Analysis of Dye-Sensitized
Solar Cells” J. Phys. Chem. B 109, 14945 (2005)
105. M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata and S.
Isoda, “Determination of Parameters of Electron
Transport in Dye-Sensitized Solar Cells Using
Electrochemical Impedance Spectroscopy” J. Phys.
Chem. B 110, 13872 (2006)