簡易檢索 / 詳目顯示

研究生: 張啟修
Chang, Chi-Hsiu
論文名稱: 硫化鎘量子點在染料敏化太陽能電池應用的研究
The Application of CdS Quantum Dots on Dye-sensitized Solar Cells
指導教授: 李玉郎
Lee, Yuh-Lang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 121
中文關鍵詞: 染料敏化太陽能電池量子點化學浴沉積法多硫成份電解液開路電壓衰退分析
外文關鍵詞: Chemical bath deposition, Quantum-dots, Open-circuit potential decay, Dye-sensitized solar cells, Polysulfide
相關次數: 點閱:79下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文有以下兩個研究目標。其一,以醇類代替純水作為溶劑使用在化學浴沉積法(chemical bath deposition, CBD),藉由此方法在二氧化鈦(TiO2)薄膜內部合成硫化鎘(CdS)量子點(quantum dots)。由於醇類溶液具有較小的表面張力(surface tention),較水溶液更易滲入TiO2孔洞深處進行反應。因此,使用醇類溶液除了能提高CdS量子點的吸附量,較佳的覆蓋率亦能有效的避免電子電洞的再結合。將此方法應用在CdS量子點敏化太陽能電池(dye-sensitized solar cells, DSSC)上,可得到1.84% 的電池效率。此效率已經超越目前文獻中量子點DSSC的最高紀錄。另一個研究目標,是以多硫成份電解液取代現有的碘離子/碘電解液,改善CdS量子點在碘離子/碘電解液中嚴重腐蝕問題。但在實驗過程中發現多硫成份電解液的填充因子(fill factor, FF)不佳導致整體效率下降,有鑑於此,我們藉由提高電解液中的含硫量以加速電洞被電解液還原的速度,可將FF由0.17拉升至0.43,相對的電池效率可達到1.15%。除此之外,本研究利用開路電壓衰退(open-circuit voltage decay, OCVD)的分析方法,就電解液與電池元件內各薄膜的特性作一系列探討,亦可部份釐清造成電池內部電子傳遞阻力之原因。

    This study includes two researches. In the research one, Alcohol, instead of water, was used as a solvent in a chemical bath deposition (CBD) process for the in-situ synthesis of cadmium sulfide (CdS) quantum-dots (QDs) onto mesoporous TiO2 films. Due to the low surface tension, the alcohol solutions have high wettability and superior penetration ability on the mesoscopic TiO2 film, leading to a well-covered CdS QDs on the surface of mesopores. The CdS-sensitized TiO2 electrode prepared using the alcohol system not only has a higher incorporated amount of CdS, but also greatly inhibits the recombination of injected electrons. The efficiency of a CdS QDs-sensitized solar cell prepared by using the present method is as high as 1.84 % under the illumination of one sun (AM1.5, 100 mW/cm2).In the other case, polysulfide instead of iodide/triiodide was employed as the electrolyte in CdS QDs-sensitized solar cell. Polysulfide, is unlike iodide/triiodide which would corrode CdS QDs, is an appropriate electrolyte for this study. In this study, we attempt to solve the low fill factor problem of polysulfide. The fill factor has been enhanced from 0.17 to 0.43 in this study and the efficiency of a CdS QDs-sensitized solar cell using the present polysulfide-electrolyte is 1.15%. Besides, we used open-circuit voltage decay(OCVD) to analyse the characteristics of polysulfide-electrolyte and the interface of every thin films in solar cells. In this study, OCVD can make it clear that some results of electrons resistance inside the architecture of solar cells.

    中文摘要 I Abstract II 誌謝 III 目錄 V 表目錄 IX 圖目錄 XI 符號表 XVI 名詞縮寫 XVIII 第一章 緒論 1 1-1前言 1 1-2研究動機與目的                2 第二章 實驗原理與文獻回顧            4 2-1 DSSC之工作原理 4 2-2 DSSC之組成結構. 6 2-2.1透明導電玻璃 6 2-2.2二氧化鈦 7 2-2.3染料光敏化劑 7 2-2.4電解液 8 2-2.5金屬/導電玻璃對電極 10 2-3 DSSC之沿革及發展現況 11 2-4量子點之特性 12 2-4.1量子侷限效應 12 2-4.2衝擊離子化效應與歐傑再結合效應 16 2-4.3迷你傳送帶效應 18 2-5量子點合成及組裝技術 19 2-5.1化學浴沉積法 19 2-5.2自組裝單分子膜 21 2-5.3自組裝單分子膜與化學浴沉積共聯結組裝法 24 2-6量子點應用在DSSC之沿革及發展現況 25 2-7多硫成份電解液 31 2-8 DSSC之電流電壓輸出特性 33 2-9開路電壓衰退分析 38 第三章 實驗方法 43 3-1儀器設備 43 3-2實驗藥品 49 3-3實驗流程 51 3-3.1清洗透明導電玻璃基板 52 3-3.2 TiO2膠體溶液的製備 53 3-3.3 TiO2薄膜的製備 54 3-3.4化學浴沉積法合成並組裝CdS量子點 55 3-3.5配製電解液 55 3-3.6組裝電池 56 第四章 實驗數據與結果討論 59 4-1 TiO2薄膜特性分析 59 4-2 CdS量子點之光學特性分析 61 4-2.1以水溶液系統進行CBD之光學特性分析 61 4-2.2以醇類溶液系統進行CBD之光學特性分析 64 4-2.3以水或醇類溶液系統進行CBD之光學特性比較66 4-3 CdS量子點敏化太陽能電池之效能測定 68 4-3.1有機染料DSSC之效能測定 68 4-3.2以水溶液系統進行CBD之電池效能分析 69 4-3.3以醇類溶液系統進行CBD之電池效能分析 72 4-3.4以水或醇類溶液系統進行CBD之電池效能比較74 4-4多硫成份電解液之研究 80 4-4.1使用多硫成份電解液之光電流測試 80 4-4.2多硫成份電解液之最適溶劑的探討 82 4-4.3多硫成份電解液中電子載體濃度之探討 86 4-4.4多硫成份電解液中添加硫粉比例之探討 88 4-4.5多硫成份電解液加入促進劑之探討 91 4-4.6多硫成份電解液與碘離子/碘電解液之比較 94 4-5開路電壓衰退分析 99 4-5.1不同配方之多硫成份電解液的OCVD分析 99 4-5.2不同CBD層數之OCVD分析 103 第五章 結論 105 第六章 未來工作及建議 106 參考文獻 109 作者自述 121

    1. M. Grätzel, “Powering the planet” Nature 403, 363
    (2000)
    2. J. Pelly, “Solar cells that harness infrared light”
    Environ. Sci. Technol, A-pages 39, 151A (2005)
    3. H. Tsubomura, M. Matsumura, Y, Nomura and T. Amamiya,
    “Dye-sensitized zinc oxide/aqueous
    electrolyte/platinum photocell” Nature 261, 402 (1976)
    4. B. O’Regan and M. Grätzel, “A low-cost, high
    efficiency solar cell based on dye-sensitized
    colloidal TiO2 films” Nature 353, 737 (1991)
    5. M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A.
    Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and
    M. Grätzel, “Combined Experimental and DFT-TDDFT
    Computational Study of Photoelectrochemical Cell
    Ruthenium Sensitizers” J. Am. Chem. Soc 127, 16835
    (2005)
    6. T. Miyasaka, M. Ikegami and Y. Kijitori,
    “Photovoltaic Performance of Plastic Dye-Sensitized
    Electrodes Prepared by Low-Temperature Binder-Free
    Coating of Mesoscopic Titania” Journal of The
    Electrochemical Society 154, A455 (2007)
    7. A. Hagfeldt and M. Grätzel, “Molecular
    Photovoltaics” Acc. Chem. Res 33, 269 (2000)
    8. M. Grätzel, “Solar Energy Conversion by Dye-
    Sensitized Photovoltaic Cells” Inorg. Chem 44, 6841
    (2005)
    9. G. Wolfbauer, A. M. Bond, J. C. Eklund and D. R.
    MacFarlane, “A channel flow cell system specifically
    designed to test the effciency of redox shuttles in
    dye sensitized solar cells” Solar Energy Materials &
    Solar Cells 70, 85 (2001)
    10. N. Kopidakis, K. D. Benkstein, J. Lagemaat and A. J.
    Frank, “Transport-Limited Recombination of
    Photocarriers in Dye-Sensitized Nanocrystalline TiO2
    Solar Cells” J. Phys. Chem. B 107, 11307 (2003)
    11. D. Kuang, C. Klein, H. J. Snaith, J. Moser, R. Humphry-
    Baker, P. Comte, S. M. Zakeeruddin and M. Grätzel,
    “Ion Coordinating Sensitizer for High Efficiency
    Mesoscopic Dye-Sensitized Solar Cells: Influence of
    Lithium Ions on the Photovoltaic Performance of Liquid
    and Solid-State Cells” Nano Lett. 6, 669 (2006)
    12. S. A. Haque, E. Palomares, B. M. Cho, A. N. M. Green,
    N. Hirata, D. R. Klug and J. R. Durrant, “ Charge
    Separation versus Recombination in Dye-Sensitized
    Nanocrystalline Solar Cells: the Minimization of
    Kinetic Redundancy” J. Am. Chem. Soc. 127, 3456 (2005)
    13. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humpbry-
    Baker, E. Müller, P. Liska, N. Vlachopoulos and M.
    Grätzel, “Conversion of Light to Electricity by cis-
    XzBis( 2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(
    11) Charge-Transfer Sensitizers (X = C1-, Br-, I-, CN-
    , and SCN-) on Nanocrystalline TiO2 Electrodes” J.
    Am. Chem. Soc. 115, 6382 (1993)
    14. P. Wang, S. M. Zakeeruddin, I. Exnar and M. Grätzel,
    “High efficiency dye-sensitized nanocrystalline solar
    cells based on ionic liquid polymer gel electrolyte”
    Chem. Commun, 2972 (2002)
    15. W. Kubo, T. Kitamura, K. Hanabusa, Y. Wada and S.
    Yanagida, “Quasi-solid-state dye-sensitized solar
    cells using room temperature molten salts and a low
    molecular weight gelator” Chem. Commun, 374 (2002)
    16. N. Mohmeyer, D. Kuang, P. Wang, H. W. Schmidt, S. M.
    Zakeeruddin and M. Grätzel, “ An efficient
    organogelator for ionic liquids to prepare stable
    quasi-solidstate dye-sensitized solar cells” J.
    Mater. Chem. 16, 2978 (2006)
    17. A. F. Nogueira and M. D. Paoli, “A day sensitized
    TiO2 photovoltatic cell constructed with an
    elastomeric electrolyte” Solar Energy Materials &
    Solar Cells 61, 135 (2000)
    18. W. Kubo, K. Murakoshi, T. Kitamura, S. Yoshida, M.
    Haruki, K. Hanabusa, H. Shirai, Y. Wada and S.
    Yanagida, “Quasi-Solid-State Dye-Sensitized TiO2
    Solar Cells: Effective Charge Transport in Mesoporous
    Space Filled with Gel Electrolytes Containing Iodide
    and Iodine” J. Phys. Chem. B 105, 12809 (2001)
    19. T. Stergiopoulos, I. M. Arabatzis, G. Katsaros and P.
    Falaras, “Binary Polyethylene Oxide/Titania Solid-
    State Redox Electrolyte for Highly Efficient
    Nanocrystalline TiO2 Photoelectrochemical Cells” Nano
    Lett. 2, 1259 (2002)
    20. P. Malik, M. Castro and C. Carrot, “Thermal
    degradation during melt processing of poly(ethylene
    oxide), poly(vinylidenefluoride-co-
    hexafluoropropylene) and their blends in the presence
    of additives, for conducting applications” Polymer
    Degradation and Stability 91, 634 (2006)
    21. P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K.
    Nazeeruddin, T. Sekiguchi and M. Grätzel, “A stable
    quasi-solid-state dye-sensitized solar cell with an
    amphiphilic ruthenium sensitizer and polymer gel
    electrolyte” Nature Materials 2, 402 (2003)
    22. P. Wang, S. M. Zakeeruddin, M. Grätzel, “Solidifying
    liquid electrolytes with fluorine polymer and silica
    nanoparticles for quasi-solid dye-sensitized solar
    cells” Journal of Fluorine Chemistry 125, 1241 (2004)
    23. P. Wang, Q. Dai, S. M. Zakeeruddin, M. Forsyth, D. R.
    MacFarlane and M. Grätzel, “Ambient Temperature
    Plastic Crystal Electrolyte for Efficient, All-Solid-
    State Dye-Sensitized Solar Cell” J. Am. Chem. Soc
    126, 13590 (2004)
    24. W. W. Yu and X. Peng, “Formation of High-Quality CdS
    and Other II -VI Semiconductor Nanocrystals in
    Noncoordinating Solvents:T unable Reactivity of
    Monomers” Angew. Chem. Int. Ed. 41, 2368 (2002)
    25. W. W. Yu, L. Q. W. Guo and X. Peng, “Experimental
    Determination of the Extinction Coefficient of CdTe,
    CdSe, and CdS Nanocrystals” Chem. Mater. 15, 2854
    (2003)
    26. R. He, X. Qian, J. Yin, H. Xi, L. Bian and Z. Zhu,
    “Formation of monodispersed PVP-capped ZnS and CdS
    nanocrystals under microwave irradiation” Colloids
    and Surfaces A: Physicochem. Eng. Aspects 220, 151
    (2003)
    27. Y. Wang and N. Herron, “Nanometer-Sized Semiconductor
    Clusters: Materials Synthesis, Quantum Size Effects,
    and Photophysical Properties,” J. Phys. Chem. 95, 525
    (1991)
    28. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M.
    Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S.
    S. Gambhir and S. Weiss, “Quantum Dots for Live
    Cells, in Vivo Imaging, and Diagnostics” Science 307,
    538 (2005)
    29. A. J. Nozik, “Exciton Multiplication and Relaxation
    Dynamics in Quantum Dots: Applications to Ultrahigh-
    Efficiency Solar Photon Conversion,” Inorganic
    Chemistry 44, 6893 (2005)
    30. W. Shockley and H. J. Queisser, “Detailed Balance
    Limit of Efficiency of p-n Junction Solar Cells,” J.
    Appl. Phys. 32, 510 (1961)
    31. A. J. Nozik, “Quantum dot solar cells” Physica E 14,
    115 (2002)
    32. S. Abd-Lefdil, C. Messaoudi, M. Abd-Lefdil and D.
    Sayah,“Temperature Growth and Annealing Effects on
    CdS Thin Films Prepared by Chemical Bath Deposition
    Process” phys. stat. sol. (a) 168, 417 (1998)
    33. R. Vogel, P. Hoyer, and H. Weller, “Quantum-Sized
    PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as
    Sensitizers for Various Nanoporous Wide- Bandgap
    Semiconductors” J. Phys. Chem. 98, 3183 (1994)
    34. P. Hoyer and R. Könenkamp, “Photoconduction in porous
    TiO2 sensitized by PbS quantum dots” Appl. Phys.
    Lett. 66, 349 (1995)
    35. R. Plass, S. Pelet, J. Krueger and M. Grätzel,
    “Quantum Dot Sensitization of Organic-Inorganic Hybrid
    Solar Cells” J. Phys. Chem. B 106, 7578 (2002)
    36. J. L. Blackburn, D. C. Selmarten and A. J. Nozik,
    “Electron Transfer Dynamics in Quantum Dot/Titanium
    Dioxide Composites Formed by in Situ Chemical Bath
    Deposition” J. Phys. Chem. B 107, 14154 (2003)
    37. S. C. Lin, Y. L. Lee, C. H. Chang, Y. L. Shen and Y.
    M. Yang, “Quantum Dot-Sensitized Solar Cells:
    Assembly of CdS Quantum Dots Coupling Techniques of
    Self-Assembly Monolayer and Chemical Bath Deposition”
    Appl. Phys. Lett. 90, 143517 (2007)
    38. C. Burda, X. Chen, R. Narayanan and M. A. El-Sayed,
    “Chemistry and Properties of Nanocrystals of Different
    Shapes” Chem. Rev. 105, 1025 (2005)
    39. A. L. Rogach, A. Kornowski, M. Gao, A. Eychmüller and
    H. Weller, “Synthesis and Characterization of a Size
    Series of Extremely Small Thiol-Stabilized CdSe
    Nanocrystals” J. Phys. Chem. B 103, 3065 (1999)
    40. M. A. Hines and G. D. Scholes, “Colloidal PbS
    Nanocrystals with Size-Tunable Near-Infrared Emission
    Observation of Post-Synthesis Self-Narrowing of the
    Particle Size Distribution” Adv. Mater. 15, 1844
    (2003)
    41. X. D. Ma, X. F. Qian, J. Yin, H. A. Xi and Z. K. Zhu,
    “Preparation and Characterization of Polyvinyl Alcohol-
    Capped CdSe Nanoparticles at Room Temperature”
    Journal of Colloid and Interface Science 252, 77 (2002)
    42. J. M. Nedeljković, O. I. Mićić, S. P. Ahrenkiel, A.
    Miedaner and A. J. Nozik, “Growth of InP
    Nanostructures via Reaction of Indium Droplets with
    Phosphide Ions: Synthesis of InP Quantum Rods and
    InP-TiO2 Composites” J. Am. Chem. Soc. 126, 2632
    (2004)
    43. L. Manna, D. J. Milliron, A. Meisel, E. C. Scher and
    A. P. Alivisatos, “Controlled growth of tetrapod-
    branched inorganic nanocrystals”, Nature Materials 2,
    382 (2003)
    44. K. W. Jun, P. K. Khannaa, K. B. Honga, J. O. Baeg and
    Y. D. Suha, “Synthesis of InP nanocrystals from
    indium chloride and sodium phosphide by solution
    route” Materials Chemistry and Physics 96 494 (2006)
    45. M. R. Greenberg, W. Chen, B. N. Pulford, G. A.
    Smolyakov, Y. B. Jiang, S. D. Bunge, T. J. Boyle and
    Marek Osiński, “Synthesis and Characterization of InP
    and InN Colloidal Quantum Dots” Proc. of SPIE 5705,
    68 (2005)
    46. A. Agostiano, M. Catalano, M. L. Curri, M. D. Monica,
    L. Manna and L. Vasanelli, “Synthesis and structural
    characterisation of CdS nanoparticles prepared in a
    four-components “water-in-oil” microemulsion”
    Micron 31 253 (2000)
    47. J. Zhang, L. Sun, C. Liao and C. Yan, “Size control
    and photoluminescence enhancement of CdS
    nanoparticles prepared via reverse micelle method”
    Solid State Communications 124, 45 (2002)
    48. Y. J. Shen, Y. L. Lee and Y. M. Yang, “Monolayer
    Behavior and Langmuir-Blodgett Manipulation of CdS
    Quantum Dots” J. Phys. Chem. B 110, 9556 (2006)
    49. L. M. Peter, D. J. Riley, E. J. Tull and K. G. U.
    Wijayantha, “Photosensitization of nanocrystalline
    TiO2 by self-assembled layers of CdS quantum dots”
    Chem. Commun., 1030 (2002)
    50. I. Robel, V. Subramanian, M. Kuno and P. V. Kamat,
    “Quantum Dot Solar Cells. Harvesting Light Energy with
    CdSe Nanocrystals Molecularly Linked to Mesoscopic
    TiO2 Films” J. Am. Chem. Soc. 128, 2385 (2006)
    51. K.G. U. Wijayanthaa, L. M. Petera and L.C. Otley,
    “Fabrication of CdS quantum dot sensitized solar cells
    via a pressing route,” Solar Energy Materials & Solar
    Cells 83, 363 (2004)
    52. Q. Shen and T. Toyoda, “Characterization of
    Nanostructured TiO2 Electrodes Sensitized with CdSe
    Quantum Dots Using Photoacoustic and
    Photoelectrochemical Current Methods” Japanese
    Journal of Applied Physics 43, 2946 (2004)
    53. A. Zaban, O. I. Mićić, B. A. Gregg, and A. J. Nozik,
    “Photosensitization of Nanoporous TiO2 Electrodes with
    InP Quantum Dots” Langmuir 14, 3153 (1998)
    54. J. L. Blackburn, D. C. Selmarten, R. J. Ellingson, M.
    Jones, O. Mićić and A. J. Nozik, “Electron and Hole
    Transfer from Indium Phosphide Quantum Dots” J. Phys.
    Chem. B 109, 2625 (2005)
    55. R. D. Schaller and V. I. Klimov, “High Efficiency
    Carrier Multiplication in PbSe Nanocrystals:
    Implications for Solar Energy Conversion” Phys. Rev.
    Lett. 92, 186601 (2004)
    56. T. Hasobe, H. Imahori, P. V. Kamat, T. K. Ahn, S. K.
    Kim, D. Kim, A. Fujimoto, T. Hirakawa and S. Fukuzumi,
    “Photovoltaic Cells Using Composite Nanoclusters of
    Porphyrins and Fullerenes with Gold Nanoparticles” J.
    Am. Chem. Soc. 127, 1216 (2005)
    57. K. George and P. V. Kamat, “Chromophore-  
      Functionalized Nanoparticles” Acc. Chem. Res. 36, 888
      (2003)
    58. Y. Tian and T. Tatsuma, “Mechanisms and Applications
      of Plasmon-Induced Charge Separation at TiO2 Films
      Loaded with Gold Nanoparticles,” J. Am. Chem. Soc.
      127, 7632 (2005)
    59. S. A. Mcdonald, G. Konstantatos, S. Zhang, P. W. Cyr,
      E. J. D. Klem, L. Levina and E. H. Sargrnt, “Solution-
      processed PbS quantum dot infrared photodetectors and
      photovoltaics,” Nature Materials 4, 138 (2005)
    60. S. A. Sapp, C. M. Elliott, C. Contado, S. Caramori and
      C. A. Bignozzi, “Substituted Polypyridine Complexes
      of Cobalt(II/III) as Efficient Electron-Transfer
      Mediators in Dye-Sensitized Solar Cells” J. Am. Chem.
      Soc. 124, 11215 (2002)
    61. S. Cazzanti, S. Caramori, R. Argazzi, C. M. Elliott
      and C. A. Bignozzi, “Efficient Non-corrosive Electron-
      Transfer Mediator Mixtures for Dye-Sensitized Solar
      Cells” J. Am. Chem. Soc. 128, 9996 (2006)
    62. T. Nakanishi, B. Ohtani and K. Uosakin, “Effect of
      immobilized electron relay on the interfacial
      photoinduced electron transfer at a layered inorganic–
      organic composite film on gold” Journal of
      Electroanalytical Chemistry 455, 229 (1998)
    63. L. Sheeney-Haj-Ichia, S. Pogorelova, Y. Gofer and I.
      Willner, “Enhanced Photoelectrochemistry in CdS/Au
      Nanoparticle Bilayers” Adv. Funct. Mater. 14, 416
      (2004)
    64. M. Grätzel, “Photoelectrochemical cells” Nature 414,
      338 (2001)
    65. Y. Tachibana, S. A. Haque, I. P. Mercer, J. E. Moser,
      D. R. Klug and J. R. Durrant, “Modulation of the Rate
      of Electron Injection in Dye-Sensitized   
      Nanocrystalline TiO2 Films by Externally Applied
      Bias” J. Phys. Chem. B 105, 7424 (2001)
    66. O. Niitsoo, S. K. Sarkar, C. Pejoux, S. Rühle, D.
      Cahen and G. Hodes, “Chemical bath deposited CdS/CdSe-
      sensitized porous TiO2 solar cells,” Journal of
      Photochemistry and Photobiology A: Chemistry 181, 306
      (2006)
    67. N. C. Greenham, X. Peng and A. P. Alivisatos, “Charge
      separation and transport in conjugated-
      polymer/semiconductor-nanocrystal composites studied
      by photoluminescence quenching and photoconductivity”
      Phys. Rev. B 54, 628 (1996)
    68. W. U. Huynh, X. Peng, and A. P. Alivisatos, “CdSe
      Nanocrystal Rods/Poly(3-hexylthiophene) Composite
      Photovoltaic Devices” Adv. Mater. 11, 923 (1999)
    69. T. Kitamura, M. Maitani, M. Matsuda, Y. Wada and S.
      Yanagida, “Improved Solid-State Dye Solar Cells with
      Polypyrrole using a Carbon-Based Counter Electrode”
      Chemistry Letters, 1054 (2001)
    70. D. J. Milliron, I. Gur and A. P. Alivisatos, “Hybrid
      Organic–Nanocrystal Solar Cells” Mrs Bulletin30, 41
      (2005)
    71. B. O’Regana, “Efficient dye-sensitized charge
      separation in wide-band-gap p-n heterojunction” J.
      Appl. Phys. 80, 4749 (1996)
    72. K. Tennakone, G. R. R. A. Kumara, I. R. M. Kottegoda,
      K. G. U. Wijayantha and V. P. S. Perera, “A solid-
      state photovoltaic cell sensitized with a ruthenium
      bipyridyl complex” J. Phys. D: Appl. Phys. 31, 1492
      (1998)
    73. B. O'Regan, D. T. Schwartz, S. M. Zakeeruddin and M.
      Grätzel, “Electrodeposited Nanocomposite n-p
      Heterojunctions for Solid-State Dye-Sensitized
      Photovoltaics” Adv. Mater. 12, 1263 (2000)
    74. G. R. R. A. Kumara, A. Konno, G. K. R. Senadeera, P.
      V. V. Jayaweera, D. B. R. A. De Silva and K.
      Tennakone, “Dye-sensitized solar cell with the hole
      collector p-CuSCN deposited from a solution in n-
      propyl sulphide” Solar Energy Materials & Solar Cells
      69, 195 (2001)
    75. B. O’Regan, F. Lenzmann, R. Muis and J. Wienke, “A
      Solid-State Dye-Sensitized Solar Cell Fabricated with
      Pressure-Treated P25-TiO2 and CuSCN: Analysis of Pore
      Filling and IV Characteristics” Chem. Mater. 14, 5023
      (2002)
    76. B. O’Regan, F. Lenzmann, R. Muis and J. Wienke, “A
      Solid-State Dye-Sensitized Solar Cell Fabricated with
      Pressure-Treated P25-TiO2 and CuSCN: Analysis of Pore
      Filling and IV Characteristics” Chem. Mater. 14, 5023
      (2002)
    77. R. Tena-Zaera, A. Katty, S. Bastide, C. Lévy-Clément,
      B. O’Regan, V. Muňoz-Sanjosé, “ZnO/CdTe/CuSCN, a
      promising heterostructure to act as inorganic eta-
      solar cell” Thin Solid Films 483, 372 (2005)
    78. B. C. O’Regan and F. Lenzmann, “Charge Transport and
      Recombination in a Nanoscale Interpenetrating Network
      of n-Type and p-Type Semiconductors: Transient
      Photocurrent and Photovoltage Studies of  
      TiO2/Dye/CuSCN Photovoltaic Cells” J. Phys. Chem. B
      108, 4342 (2004)
    79. St. Kutzmutz, G. Láng and K. E. Heusler, “The
      electrodeposition of CdSe from alkaline electrolytes”
      Electrochimica Acta 47, 955 (2001)
    80. C. L. Clément, R. T. Zaera, M. A. Ryan, A. Katty and
      G. Hodes, “CdSe-Sensitized p-CuSCN/Nanowire n-ZnO
      Heterojunction” Adv. Mater. 17, 1512 (2005)
    81. I. Gur, N. A. Fromer, M. L Geier and A. P.
      Alivisatos1, “Air-Stable All-Inorganic Nanocrystal
      Solar Cells Processed from Solution,” Science 310,
      462 (2005)
    82. C. H. J. Liu, J. Olsen, D. R. Saunders and J. H. Wang,
     “Photoactivation of CdSe Films for Photoelectrochemical
      Cells” J. Electrochem. Soc.: Electrochemical Science
      and Technology 128, 1224 (1981)
    83. Y. Ueno, H. Minoura, T. Nishikawa and M. Tsuiki,
     “Electrophoretically Deposited CdS and CdSe Anodes for
      Photoelectrochemical Cells” J. Electrochem. Soc.:
      Electrochemical Science and Technology 130, 43 (1983)
    84. S. Licht, G. Hodes and J. Manassen, “Numerical
      Analysis of Aqueous Polysulfide Solutions and Its
      Application to Cadmium Chalcogenide/Pol y sulfide P ho
      toelec tr oc hemical Solar Cells” Inorg. Chem. 25,
      2486 (1986)
    85. J. F. Reder and M. Rusek, “Photochemical hydrogen
      production with platinized suspensions of cadmium
      sulfide and cadmium zinc sulfide modified by silver
      sulfide” J. Phys. Chem. 90, 824 (1986)
    86. S. Licht, “A desription of energy conversion in
      photoelectrochemical solar cells” Nature 330, 148
      (1987)
    87. S. Licht, “Electrolyte modified photoelectrochemical
      solar cells” Solar Energy Materials & Solar Cells 38,
      305 (1995)
    88. G. Milczareka, A. Kasuyab, S. Mamykinb, T. Araib, K.
      Shinodab and K. Tohji, “Optimization of a two-
      compartment photoelectrochemical cell for solar
      hydrogen production” International Journal of
      Hydrogen Energy 28, 919 (2003)
    89. G. Milczarek, A. Kasuya, K. Tohji, T. Arai, T. Ito,
     “Photoelectrochemical oxygen evolution using
      polysulfide as sacrificial electron acceptor” Solar
      Energy Materials & Solar Cells 86, 43 (2005)
    90. Y. Bessekhouada, M. Mohammedib and M. Trari,
     “Hydrogen photoproduction from hydrogen sulfide on
      Bi2S3 catalyst” Solar Energy Materials & Solar Cells
      73, 339 (2002)
    91. G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese and
      C. A. Grimes, “Use of Highly-Ordered TiO2 Nanotube
      Arrays in Dye-Sensitized Solar Cells” Nano Lett. 6,
      215 (2006)
    92. A. Zaban, M. Greenshtein and J. Bisquert,
     “Determination of the Electron
      Lifetime in Nanocrystalline Dye Solar Cells by Open-
      Circuit Voltage Decay Measurements” Chem. Phys. Chem
      4, 859 (2003)
    93. J. Bisquert, A. Zaban, M. Greenshtein and I. Mora-Ser
      ó, “Determination of Rate Constants for Charge
      Transfer and the Distribution of Semiconductor and
      Electrolyte Electronic Energy Levels in Dye-Sensitized
      Solar Cells by Open-Circuit Photovoltage Decay
      Method” J. Am. Chem. Soc. 126, 13550 (2004)
    94. M. Quintana, T. Edvinsson, A. Hagfeldt and G.
      Boschloo, “Comparison of Dye-Sensitized ZnO and TiO2
      Solar Cells: Studies of Charge Transport and Carrier
      Lifetime” J. Phys. Chem. C 111, 1035 (2007)
    95. J. Bisquert, D. Cahen, G. Hodes, S. Rühle and A.
      Zaban, “Physical Chemical Principles of Photovoltaic
      Conversion with Nanoparticulate, Mesoporous Dye-
      Sensitized Solar Cells” J. Phys. Chem. B 108, 8106
      (2004)
    96. 林昇志, “量子點的組裝及其在染料敏化太陽能電池的應用”
      國立成功大學化學工程學系碩士論文 民國95年
    97. D. Myers, “Surfaces, Interfaces and Colloides :
      Principles and Application” 2nd edition, WILEY-VCH,
      141 (1999)
    98. M. K. Nazeeruddin, R. Humphry-Baker, P. Liska and M.
      Grätzel,“Investigation of Sensitizer Adsorption and
      the Influence of Protons on Current and Voltage of a
      Dye-Sensitized Nanocrystalline TiO2 Solar Cell”J.
      Phys. Chem. B 107, 8981 (2003)
    99. Princeton Applied Research, “Basics of
      electrochemical Impedance Spectroscopy”100. L.
      Dloczik, O. Ileperuma, I. Lauermann, L. M. Peter, E.
      A. Ponomarev, G. Redmond, N. J. Shaw and I. Uhlendorf,
     “Dynamic Response of Dye-Sensitized Nanocrystalline
      Solar Cells: Characterization by Intensity-Modulated
      Photocurrent Spectroscopy” J. Phys. Chem. B 101,   
      10281 (1997)
    101. S. G. Hickey and D. J. Riley, “Photoelectrochemical
      Studies of CdS Nanoparticle-Modified Electrodes” J.
      Phys. Chem. B 103, 4599 (1999)
    102. J. Bisquert, “Influence of the boundaries in the
      impedance of porous film electrodes” Phys. Chem.
      Chem. Phys. 2, 4185 (2000)
    103. J. Bisquert and V. S. Vikhrenko, “Interpretation of
      the Time Constants Measured by Kinetic Techniques in
      Nanostructured Semiconductor Electrodes and Dye-
      Sensitized Solar Cells” J. Phys. Chem. B 108, 2313
      (2004)
    104. Q. Wang, J. E. Moser and M. Grätzel,“Electrochemical
      Impedance Spectroscopic Analysis of Dye-Sensitized
      Solar Cells” J. Phys. Chem. B 109, 14945 (2005)
    105. M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata and S.
      Isoda, “Determination of Parameters of Electron
      Transport in Dye-Sensitized Solar Cells Using
      Electrochemical Impedance Spectroscopy” J. Phys.
      Chem. B 110, 13872 (2006)

    下載圖示 校內:2008-07-20公開
    校外:2008-07-20公開
    QR CODE