簡易檢索 / 詳目顯示

研究生: 蔡竣宇
Tsai, Chun-Yu
論文名稱: (1)製備由特定尺寸分佈之氧化石墨烯組成之朗謬耳-布洛傑特薄膜(2)奈米碳電極的製備與電化學性質鑑定
(1)Preparation of Langmuir-Blodgett Films Using Graphene Oxide Flakes with Specific Size Ranges(2)Preparation and Characterization of Carbon Nanopipette Electrode
指導教授: 陳巧貞
Chen, Chiao-Chen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 79
中文關鍵詞: 氧化石墨烯改良朗謬-布洛傑特薄膜奈米碳電極
外文關鍵詞: graphene oxide, modified langmuir-blodgett film, carbon nanopipette
相關次數: 點閱:52下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之長程目標為利用掃描探針顯微術檢驗氧化石墨烯的表面性質,因此本論文就氧化石墨烯的合成與鋪膜以及掃描探針的製備進行系統性的研究。氧化石墨烯雖然已被研究一段時間,但由於合成條件及石墨來源的差異對所製得之氧化石墨的結構都有顯著的影響,而目前對這些合成條件進行系統性探討的研究尚付之闕如,因此難以穩定控制所製得之氧化石墨烯的品質。本實驗整理了不同的製備條件與氧化石墨烯的顏色及性質差異,由於氧化程度影響了石墨烯共軛結構長短及其光學吸收的不同範圍,在低溫環境下,所製備的氧化石墨烯氧化程度差,光學吸收遍及可見光範圍,不僅顏色偏綠色且仍有明顯未氧化的石墨存在,在較高溫反應下,氧化程度較好且光學吸收藍移,顏色呈現亮黃色,但溫度過高(超過80 °C)會導致反應中的氧化劑分解而降低了氧化程度。本研究利用最優化的條件合成薄層(few layer)氧化石墨烯後,為了避免一般以旋轉塗布或滴落塗布的方式,所鋪陳之氧化石墨烯很容易產生皺摺及重疊而不利於後續鑑定之故,選擇利用改良朗謬-布洛傑特技術,將濃度0.015-0.02 mg/ml的氧化石墨烯懸浮液鋪陳於矽晶片上,調整副相pH為3-4,能得到型態較佳的薄膜,統計整體平均片徑落在20-30 µm。另外為了製備檢驗氧化石墨烯表面性質的掃描探針,採用成本低廉且簡單方便的熱裂解碳沈積的方式製備雙通道奈米碳電極,在兩種火焰強度下,皆以沉積時間10秒時有著較低的缺陷深度及較高的成功率,以STEM計算之探針孔徑大小為134.6 nm,電化學量測的穩態電流大小平均為132 pA和86 pA,雖找到較佳的沉積條件,但對於滴管尖端的隔板破損仍無法準確避免,需再對製備過程進行近一步的改良。

    The long term goal of this research is to investigate the interface properties of graphene oxide (GO) with nanopipette-based scanning probe microscopy (SPM) techniques. First of all, we try to optimize the synthesis process to prepare few layered GO for advanced interfacial examination. Through systematic investigation, the correlation between reaction conditions and the resultant properties of GO has been demonstrated. The optical properties of produced GO is found to be significantly affected by the synthesis conditions, which determines the oxidation degree and thus the length of conjugated  bond system in GO. It was found that synthesized GO with high oxidation degree shows light-brown color due to absorption of short wavelength of visible light by the short conjugated  bonds. In contrast, GO products with dark-green color indicate low oxidation degree, which increases the difficulties in exfoliation process, resulting in GO flasks with a thicker layer. With the optimal synthesis process, we are able to prepare few layerd GO with thickness smaller than 5 nm. For advanced examination with SPM, GO flasks are deposited on silica substrate by a modified Langmuir-blodgett (LB) technique to obtained a flat film of isolated GO flasks with less wrinkles and overlaps. By adjusting the acidity of the subphase solution used in modified LB technique to be pH 3-4, the prepared LB film of GO shows better quality when 0.015-0.02 mg/ml of GO suspension was applied and the average size of deposited GO flasks is in the range of 20-30 µm. In the last part, a multifunctional nanopipette was fabricated as the scanning probe of SPM to facilitate the interfacial characterization of GO. By pyrolytic deposition of carbon into selected barrel of a two-channel nanopipette, we successfully prepared a SPM probe which is able to record faradic and ionic measurement simultaneously.

    中文摘要 I Extended Abstracts II 誌謝 IX 目錄 X 表目錄 XII 圖目錄 XII 第1章 緒論與動機 1 第2章 文獻回顧 2 2.1 石墨烯(Graphene) 2 2.2 氧化石墨烯(Graphene oxide,GO) 3 2.2.1 基本性質 3 2.2.2 氧化機制 3 2.3 改良朗謬-布洛傑特薄膜(Modified langmuir-blodgett film) 5 2.4 奈米滴管(Nanopipette) 7 2.5 超微電極(Ultramicroelectrodes) 7 2.6 掃描離子電導顯微鏡(Scanning ion conductance microscopy,SICM) 10 2.6.1 離子電流(Ion current) 10 2.6.2 回饋控制模式(Feedback mode) 11 第3章 實驗方法與材料 14 3.1 氧化石墨烯製備 14 3.2 氧化石墨烯之樣品薄膜製備 18 3.3 氧化石墨烯之性質鑑定 20 3.3.1 掃描式電子顯微鏡(Scanning electron microscopy,SEM) 20 3.3.2 化學分析電子光譜(Electron spectroscopy for chemical analysis,ESCA) 20 3.3.3 X射線繞射分析(X-ray diffraction,XRD) 21 3.3.4 紫外-可見分光光度法(Ultraviolet-visible spectroscopy,UV-vis) 22 3.4 奈米滴管之製備 23 3.4.1 毛細管清洗 23 3.4.2 奈米滴管拉製 23 3.5 奈米碳電極之製備與鑑定 28 3.5.1 奈米碳電極製備流程與存放 28 3.5.2 奈米碳電極之形貌鑑定 29 3.5.3 奈米碳電極之電化學性質鑑定 30 第4章 結果與討論 32 4.1 氧化石墨烯製備 32 4.1.1 氧化石墨烯合成裝置架設 32 4.1.2 反應溫度與顏色比較 33 4.1.3 溫度與氧化程度 39 4.1.4 氧化石墨烯水洗與存放 39 4.1.5 氧化石墨烯樣品製備條件 42 4.1.6 溫度與片徑分布 47 4.2 嘗試合成大片徑氧化石墨烯 49 4.2.1 石墨粒徑差異的影響 49 4.2.2 預氧化插層的影響 51 4.3 奈米碳電極製備 54 4.3.1 碳電極製備裝置改良 54 4.3.2 碳沉積時間及火焰強弱影響 55 4.3.3 氮氣流速影響 59 4.3.4 電流直徑換算 60 4.3.5 奈米碳電極不同掃速影響 60 4.3.6 穩態電流不穩定探討 62 第5章 結論 66 第6章 參考資料 67 第7章 附錄 72

    1. Ni, Z. H.; Wang, H. M.; Kasim, J.; Fan, H. M.; Yu, T.; Wu, Y. H.; Feng, Y. P.; Shen, Z. X., Graphene Thickness Determination Using Reflection and Contrast Spectroscopy. Nano Lett. 2007, 7, 2758-2763.
    2. Lee, C.; Wei, X.; Kysar, J. W.; Hone, J., Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385.
    3. Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L., Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351-355.
    4. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666.
    5. Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N., Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett. 2008, 8, 902-907.
    6. Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K., Fine Structure Constant Defines Visual Transparency of Graphene. Science 2008, 320, 1308.
    7. Wu, J.; Agrawal, M.; Becerril, H. A.; Bao, Z.; Liu, Z.; Chen, Y.; Peumans, P., Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes. ACS Nano 2010, 4, 43-48.
    8. Eda, G.; Chhowalla, M., Chemically Derived Graphene Oxide: Towards Large-Area Thin-Film Electronics and Optoelectronics. Adv. Mater. 2010, 22, 2392-2415.
    9. Wang, X.; Zhi, L.; Müllen, K., Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells. Nano Lett. 2008, 8, 323-327.
    10. Gilje, S.; Han, S.; Wang, M.; Wang, K. L.; Kaner, R. B., A Chemical Route to Graphene for Device Applications. Nano Lett. 2007, 7, 3394-3398.
    11. Mohanty, N.; Berry, V., Graphene-Based Single-Bacterium Resolution Biodevice and DNA Transistor: Interfacing Graphene Derivatives with Nanoscale and Microscale Biocomponents. Nano Lett. 2008, 8, 4469-4476.
    12. Shan, C.; Yang, H.; Song, J.; Han, D.; Ivaska, A.; Niu, L., Direct Electrochemistry of Glucose Oxidase and Biosensing for Glucose Based on Graphene. Anal. Chem. 2009, 81, 2378-2382.
    13. Liu, Z.; Robinson, J. T.; Sun, X.; Dai, H., PEGylated Nanographene Oxide for Delivery of Water-Insoluble Cancer Drugs. J. Am. Chem. Soc. 2008, 130, 10876-10877.
    14. 沈賀,張立明,張智軍, 石墨烯在生物醫學領域的應用[J]. 東南大學學報 2011, 30, 218-223.
    15. Wu, S.-Y.; Yuen, S.-M.; Ma, C.-C. M.; Chiang, C.-L.; Huang, Y.-L.; Wu, H.-H.; Teng, C.-C.; Yang, C.-C.; Wei, M.-H., Preparation, Morphology, and Properties of Silane-Modified MWCNT/Epoxy Composites. J. Appl. Polym. Sci. 2010, 115, 3481-3488.
    16. Huang, Y.-L.; Ma, C.-C. M.; Yuen, S.-M.; Chuang, C.-Y.; Kuan, H.-C.; Chiang, C.-L.; Wu, S.-Y., Effect of Maleic Anhydride Modified MWCNTs on the Morphology and Dynamic Mechanical Properties of its PMMA Composites. Mater. Chem. Phys. 2011, 129, 1214-1220.
    17. Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009, 324, 1312.
    18. Xu, Y.; Bai, H.; Lu, G.; Li, C.; Shi, G., Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets. J. Am. Chem. Soc. 2008, 130, 5856-5857.
    19. Hummers, W. S.; Offeman, R. E., Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339-1339.
    20. Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J., Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Lett. 2009, 9, 30-35.
    21. Guerrero-Contreras, J.; Caballero-Briones, F., Graphene Oxide Powders with Different Oxidation Degree, Prepared by Synthesis Variations of the Hummers Method. Mater. Chem. Phys. 2015, 153, 209-220.
    22. Shin, H.-J.; Kim, K. K.; Benayad, A.; Yoon, S.-M.; Park, H. K.; Jung, I.-S.; Jin, M. H.; Jeong, H.-K.; Kim, J. M.; Choi, J.-Y.; Lee, Y. H., Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance. Adv. Funct. Mater. 2009, 19, 1987-1992.
    23. Mkhoyan, K. A.; Contryman, A. W.; Silcox, J.; Stewart, D. A.; Eda, G.; Mattevi, C.; Miller, S.; Chhowalla, M., Atomic and Electronic Structure of Graphene-Oxide. Nano Lett. 2009, 9, 1058-1063.
    24. Konios, D.; Stylianakis, M. M.; Stratakis, E.; Kymakis, E., Dispersion Behaviour of Graphene Oxide and Reduced Graphene Oxide. J. Colloid Interface Sci. 2014, 430, 108-112.
    25. Cho, H.; Rho, H.; Kim, J. H.; Chae, S.-H.; Pham, T. V.; Seo, T. H.; Kim, H. Y.; Ha, J.-S.; Kim, H. C.; Lee, S. H.; Kim, M. J., Graphene–Carbon–Metal Composite Film for a Flexible Heat Sink. ACS Appl. Mater. Interfaces 2017, 9, 40801-40809.
    26. Lee, J. S.; Kim, T.; Lee, H. H.; Kim, Y. H., Efficient Heat Dissipation by Ion-Mediation Assembled Reduced Graphene Oxide. J. Mater. Chem. C 2018, 6, 2515-2521.
    27. Kim, T.; Lee, J. S.; Lee, G.; Seo, D. K.; Baek, Y.; Yoon, J.; Oh, S. M.; Kang, T. J.; Lee, H. H.; Kim, Y. H., Autonomous Graphene Vessel for Suctioning and Storing Liquid Body of Spilled Oil. Sci. Rep. 2016, 6, 22339.
    28. Hegab, H. M.; Wimalasiri, Y.; Ginic-Markovic, M.; Zou, L., Improving the Fouling Resistance of Brackish Water Membranes via Surface Modification with Graphene Oxide Functionalized Chitosan. Desalination 2015, 365, 99-107.
    29. Lian, Q.; He, Z.; He, Q.; Luo, A.; Yan, K.; Zhang, D.; Lu, X.; Zhou, X., Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid Based on Tryptophan Functionalized Graphene. Anal. Chim. Acta 2014, 823, 32-39.
    30. Chia, J. S. Y.; Tan, M. T. T.; Khiew, P. S.; Chin, J. K.; Siong, C. W., A Bio-Electrochemical Sensing Platform for Glucose Based on Irreversible, Non-Covalent Pi–Pi Functionalization of Graphene Produced via a Novel, Green Snthesis Method. Sens. Actuators, B 2015, 210, 558-565.
    31. Sun, X.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H., Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1, 203-212.
    32. Peng, C.; Hu, W.; Zhou, Y.; Fan, C.; Huang, Q., Intracellular imaging with a graphene-based fluorescent probe. Small 2010, 6, 1686-92.
    33. Yang, X.; Zhang, X.; Liu, Z.; Ma, Y.; Huang, Y.; Chen, Y., High-Efficiency Loading and Controlled Release of Doxorubicin Hydrochloride on Graphene Oxide. J. Phys. Chem. C 2008, 112, 17554-17558.
    34. Dimiev, A. M.; Tour, J. M., Mechanism of Graphene Oxide Formation. ACS Nano 2014, 8, 3060-3068.
    35. Shao, G.; Lu, Y.; Wu, F.; Yang, C.; Zeng, F.; Wu, Q., Graphene Oxide: the Mechanisms of Oxidation and Exfoliation. J. Mater. Sci. 2012, 47, 4400-4409.
    36. Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y., Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors. ACS Nano 2008, 2, 463-470.
    37. Celestin, M.; Krishnan, S.; Bhansali, S.; Stefanakos, E.; Goswami, D. Y., A Review of Self-Assembled Monolayers as Potential Terahertz Frequency Tunnel Diodes. Nano Res. 2014, 7, 589-625.
    38. Botcha, V. D.; Singh, G.; Narayanam, P. K.; Talwar, S. S.; Srinivasa, R. S.; Major, S. S., A ‘modified’ Langmuir–Blodgett technique for transfer of graphene oxide monolayer sheets on solid substrates. Mater. Res. Express 2016, 3, 035002.
    39. Agnihotri, S.; Mukherji, S.; Mukherji, S., Immobilized Silver Nanoparticles Enhance Contact Killing and Show Highest Efficacy: Elucidation of the Mechanism of Bactericidal Action of Silver. Nanoscale 2013, 5, 7328-7340.
    40. Yu, Y.; Noël, J.-M.; Mirkin, M. V.; Gao, Y.; Mashtalir, O.; Friedman, G.; Gogotsi, Y., Carbon Pipette-Based Electrochemical Nanosampler. Anal. Chem. 2014, 86, 3365-3372.
    41. Takahashi, Y.; Shevchuk, A. I.; Novak, P.; Zhang, Y.; Ebejer, N.; Macpherson, J. V.; Unwin, P. R.; Pollard, A. J.; Roy, D.; Clifford, C. A.; Shiku, H.; Matsue, T.; Klenerman, D.; Korchev, Y. E., Multifunctional Nanoprobes for Nanoscale Chemical Imaging and Localized Chemical Delivery at Surfaces and Interfaces. Angew. Chem. Int. Ed. 2011, 50, 9638-9642.
    42. Umehara, S.; Karhanek, M.; Davis, R. W.; Pourmand, N., Label-Free Biosensing with Functionalized Nanopipette Probes. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 4611.
    43. Yuill, E. M.; Sa, N.; Ray, S. J.; Hieftje, G. M.; Baker, L. A., Electrospray Ionization from Nanopipette Emitters with Tip Diameters of Less than 100 nm. Anal. Chem. 2013, 85, 8498-8502.
    44. Wang, D.; Mirkin, M. V., Electron-Transfer Gated Ion Transport in Carbon Nanopipets. J. Am. Chem. Soc. 2017, 139, 11654-11657.
    45. Bulbul, G.; Chaves, G.; Olivier, J.; Ozel, E. R.; Pourmand, N., Nanopipettes as Monitoring Probes for the Single Living Cell: State of the Art and Future Directions in Molecular Biology. Cells 2018, 7.
    46. Monk, P. M. S., Fundamentals of Electroanalytical Chemistry. John Wiley & Sons: 2008.
    47. Bard, A. J.; Faulkner, L. R.; Leddy, J.; Zoski, C. G., Electrochemical Methods: Fundamentals and Applications. Wiley: 1980.
    48. Rolison, D. R.; Dunn, B., Electrically Conductive Oxide Aerogels: New Materials in Electrochemistry. J. Mater. Chem. 2001, 11, 963-980.
    49. Kwak, J.; Bard, A. J., Scanning Electrochemical Microscopy. Theory of the Feedback Mode. Anal. Chem. 1989, 61, 1221-1227.
    50. Montenegro, I.; Queirós, M. A.; Daschbach, J. L., Microelectrodes: Theory and Applications. Springer Science & Business Media: 2012.
    51. Walsh, D. A.; Lovelock, K. R. J.; Licence, P., Ultramicroelectrode Voltammetry and Scanning Electrochemical Microscopy in Room-Temperature Ionic Liquid Electrolytes. Chem. Soc. Rev. 2010, 39, 4185-4194.
    52. Hansma, P. K.; Drake, B.; Marti, O.; Gould, S. A.; Prater, C. B., The Scanning Ion-Conductance Microscope. Science 1989, 243, 641.
    53. Chen, C.-C.; Zhou, Y.; Baker, L. A., Scanning Ion Conductance Microscopy. Annu. Rev. Anal. Chem. 2012, 5, 207-228.
    54. Shevchuk, A. I.; Gorelik, J.; Harding, S. E.; Lab, M. J.; Klenerman, D.; Korchev, Y. E., Simultaneous Measurement of Ca2+ and Cellular Dynamics: Combined Scanning Ion Conductance and Optical Microscopy to Study Contracting Cardiac Myocytes. Biophys. J. 2001, 81, 1759-1764.
    55. Novak, P.; Li, C.; Shevchuk, A. I.; Stepanyan, R.; Caldwell, M.; Hughes, S.; Smart, T. G.; Gorelik, J.; Ostanin, V. P.; Lab, M. J.; Moss, G. W. J.; Frolenkov, G. I.; Klenerman, D.; Korchev, Y. E., Nanoscale Live-Cell Imaging Using Hopping Probe Ion Conductance Microscopy. Nat. Methods 2009, 6, 279.
    56. Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G., Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101.
    57. Tölle, F. J.; Gamp, K.; Mülhaupt, R., Scale-Up and Purification of Graphite Oxide as Intermediate for Functionalized Graphene. Carbon 2014, 75, 432-442.
    58. Chen, C.-H.; Hu, S.; Shih, J.-F.; Yang, C.-Y.; Luo, Y.-W.; Jhang, R.-H.; Chiang, C.-M.; Hung, Y., Jr., Effective Synthesis of Highly Oxidized Graphene Oxide That Enables Wafer-scale Nanopatterning: Preformed Acidic Oxidizing Medium Approach. Sci. Rep. 2017, 7, 3908.
    59. Dimiev, A.; Kosynkin, D. V.; Alemany, L. B.; Chaguine, P.; Tour, J. M., Pristine Graphite Oxide. J. Am. Chem. Soc. 2012, 134, 2815-2822.
    60. Cote, L. J.; Kim, J.; Zhang, Z.; Sun, C.; Huang, J., Tunable Assembly of Graphene Oxide Surfactant Sheets: Wrinkles, Overlaps and Impacts on thin Film Properties. Soft Matter 2010, 6, 6096-6101.
    61. Wang, X.; Bai, H.; Shi, G., Size Fractionation of Graphene Oxide Sheets by pH-Assisted Selective Sedimentation. J. Am. Chem. Soc. 2011, 133, 6338-6342.
    62. Wang, S.; Ang, P. K.; Wang, Z.; Tang, A. L. L.; Thong, J. T. L.; Loh, K. P., High Mobility, Printable, and Solution-Processed Graphene Electronics. Nano Lett. 2010, 10, 92-98.
    63. Dong, X.; Su, C.-Y.; Zhang, W.; Zhao, J.; Ling, Q.; Huang, W.; Chen, P.; Li, L.-J., Ultra-Large Single-Layer Graphene Obtained from Solution Chemical Reduction and its Electrical Properties. Phys. Chem. Chem. Phys. 2010, 12, 2164-2169.
    64. Ang, P. K.; Wang, S.; Bao, Q.; Thong, J. T. L.; Loh, K. P., High-Throughput Synthesis of Graphene by Intercalation−Exfoliation of Graphite Oxide and Study of Ionic Screening in Graphene Transistor. ACS Nano 2009, 3, 3587-3594.
    65. Chen, J.; Li, Y.; Huang, L.; Jia, N.; Li, C.; Shi, G., Size Fractionation of Graphene Oxide Sheets via Filtration through Track-Etched Membranes. Adv. Mater. 2015, 27, 3654-3660.
    66. Liang, Y.; Li, Y.; Wang, H.; Zhou, J.; Wang, J.; Regier, T.; Dai, H., Co3O4 Nanocrystals on Graphene as a Synergistic Catalyst for Oxygen Reduction Reaction. Nat. Mater. 2011, 10, 780.
    67. Zhu, Y.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M.; Su, D.; Stach, E. A.; Ruoff, R. S., Carbon-Based Supercapacitors Produced by Activation of Graphene. Science 2011, 332, 1537.
    68. Torrisi, F.; Hasan, T.; Wu, W.; Sun, Z.; Lombardo, A.; Kulmala, T. S.; Hsieh, G.-W.; Jung, S.; Bonaccorso, F.; Paul, P. J.; Chu, D.; Ferrari, A. C., Inkjet-Printed Graphene Electronics. ACS Nano 2012, 6, 2992-3006.
    69. Xin, G.; Yao, T.; Sun, H.; Scott, S. M.; Shao, D.; Wang, G.; Lian, J., Highly Thermally Conductive and Mechanically Strong Graphene Fibers. Science 2015, 349, 1083.
    70. He, P.; Gu, H.; Wang, G.; Yang, S.; Ding, G.; Liu, Z.; Xie, X., Kinetically Enhanced Bubble-Exfoliation of Graphite toward High-Yield Preparation of High-Quality Graphene. Chem. Mater. 2017, 29, 8578-8582.

    無法下載圖示 校內:2024-08-27公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE