簡易檢索 / 詳目顯示

研究生: 羅文振
Luo, Wen-Zhen
論文名稱: 316L不銹鋼在不同溫度下之動態撞擊行為分析
Dynamic Impact Behaviour of 316L Stainless Steel under Various Temperatures
指導教授: 李偉賢
Lee, Woei-Shyan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 121
中文關鍵詞: 霍普金森桿316L不銹鋼應變速率α’麻田散鐵雙晶差排
外文關鍵詞: split Hopkinson bar, 316L stainless steel, strain rate, α’ martensite, twins, dislocation
相關次數: 點閱:114下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用霍普金森高速撞擊試驗機,探討316L不銹鋼在不同溫度及應變速率之撞擊特性與微觀結構,測試時試片溫度設定在25~800℃,而應變速率則控制在103 s-1至5×103 s-1之範圍內,以分析及瞭解溫度及應變速率在塑變行為及微觀結構上之效應。實驗結果顯示,316L不銹鋼之塑流應力值、加工硬化率、應變速率敏感性係數及熱活化體積皆會隨著應變量、應變速率和溫度範圍之變異而改變。固定溫度條件時,塑流應力值、加工硬化率以及應變速率敏感性係數皆會隨應變速率增加而增益,而熱活化體積則會下降。另一方面,固定應變速率時,塑流應力值、加工硬化率與應變速率敏感性係數會循溫度上升而變小,但是熱活化體積卻會增大。此外,經由實驗結果之驗證,316L不銹鋼之撞擊變形行為可藉由Zerilli-Armstrong構成方程式提供精確之預測。光學顯微鏡之微觀結構分析可發現試片中滑移帶分佈,會隨應變速率與溫度增加而分佈愈廣,也可發現剪切帶裡會有微空孔出現,藉由空孔聚集連結成裂縫,最後造成材料發生破壞;另外,由掃描式電子顯微鏡得知其破壞模式,會延著最大剪應力方向同時發生延性剪切破壞與節瘤狀組織。而穿透式電子顯微鏡觀察則顯示材料中之差排密度、雙晶數量以及 麻田散鐵含量會隨著應變速率上升而增加,但隨著溫度的上升而減少。


    This study investigates the impact mechanical properties and microstructure of 316L stainless steel under strain rates ranging from 103 s-1 to 5×103 s-1 at temperatures of 25℃ to 800℃ by using split Hopkinson pressure bar tester. The relationship between mechanical properties and microstructure of the deformed specimen are discussed in terms of testing temperatures and strain rate. The experimental results indicate that the flow stress, work hardening rate, strain rate sensitivity and activation volume of 316L stainless steel all depend significantly on the strain, strain rate and testing temperature. For a constant temperature, the flow stress, work hardening rate and strain rate sensitivity increase with increasing strain rate, while the activation volume decreases. Conversely, for a constant strain rate, the flow stress, work hardening rate and strain rate sensitivity decrease with increasing temperature, while the activation volume increases. It is found that the impact deformation behaviour of 316L stainless steel can be accurately described using the Zerilli-Armstrong constitutive equation. Optical microscopy analyses reveal that slip bands within the grains are found to increase with increasing the strain rate and testing temperature. Microvoid nucleation and growth within shear band are evident during the fracture process. Scanning electron microscopy fractographic observations show that the fracture features are characterized by ductile shear fracture and that knobbly structure form with respect to the direction of maximum shear stress. Transmission electron microscopy structural observation shows that an increase of strain rate or a decrease of testing temperature leads to an increase of dislocation densities, twin densities, and the volume fraction of α’ martensite.

    中文摘要 I ABSTRACT II 誌謝 IV 總目錄 V 表目錄 VIII 圖目錄 IX 符號說明 XVI 第一章 前言 1 第二章 理論與文獻回顧 3 2-1 不銹鋼之介紹 3 2-2 316L不銹鋼之強化機構 3 2-3 塑性變形之機械測試類別 5 2-4 一維波傳理論 7 2-5 霍普金森桿原理 8 2-6 材料塑性變形行為之特性 10 2-7 材料構成方程式 13 第三章 實驗方法與步驟 21 3-1 實驗流程 21 3-2 實驗儀器與設備 21 3-3 實驗步驟 24 3-3-1 實驗材料備製 24 3-3-2 動態衝擊實驗 24 3-3-3 試件金相之觀察(OM) 25 3-3-4 破斷面之觀察(SEM) 25 3-3-5 TEM試片製備 26 3-3-6 微硬度實驗 26 3-3-7 導磁率量測與麻田散鐵轉換量計算 26 第四章 實驗結果與討論 31 4-1 應力-應變曲線 31 4-2 加工硬化率 32 4-3 應變速率敏感性係數 33 4-4 熱活化體積 34 4-5 活化能 35 4-6 溫度敏感性係數 36 4-7 理論溫升量 37 4-8 硬度分析 38 4-9 材料構成方程式 39 4-10 OM金相組織觀察 39 4-11 SEM破壞形貌分析 41 4-12 TEM微觀結構分析 43 第五章 結論 111 參考文獻 113 自述 121

    1.P. Yvon and F. Carré, “Structural Materials Challenges for Advanced Reactor Systems”, J. Nucl. Mater., Vol. 385, pp. 217-222, 2009.
    2.Y. Inoue and M. Kikuchi, “Present and Future Trends of Stainless steel for Automotive Exhaust Systems”, Nippon Steel Technical Report No. 88, pp. 62-69, 2003.
    3.W. J. Bencze, D. B. DeBra, L. Herman, T. Holmes, M. Adams, G. M. Keiser, and C. W. F. Everitt, “On-orbit Performance of the Gravity Probe B Drag-Free Translation Control System”, 29th Annual AAS Guidance and Control Conference, Breckenridge, Colorado, AAS 06-083, February 2006.
    4.T. J. Barber and F. Q. Picha, “In-Flight Propulsion System Characterization for Both Mars Exploration Rover Spacecraft”, 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Fort Lauderdale, Florida, AIAA 2004-3695, July 2004.
    5.D. Gibbon, J. Ward and N. Kay, “The Design, Development and Testing of a Propulsion System for the SNAP-1 Nanosatellite”, Proceedings of the 14th Annual AIAA/USU Conference on Small Satellites, Utah State University, SSC00-I-3, August 2000.
    6.E. Otero, A. Pardo, M. V. Utrilla, E. Saenz and J. F. Alvarez, “Corrosion Behaviour of AISI 304L and AISI 316L Stainless Steels Prepared by Powder Metallurgy in the Presence of Sulphuric and Phosphoric Acid”, Corrosion Sci., Vol. 40, No. 8, pp. 1421-1434, 1998.
    7.S. G. Hong and S. B. Lee, “The Tensile and Low Cycle Fatigue Behaviour of Cold Worked 316L Stainless Steel: Influence of Dynamic Strain Aging”, Int. J. Fatigue, Vol. 26, pp. 899-910, 2004.
    8.M. F. Abbod, C. M. Sellars, A. Tanaka, D. A. Linkens and M. Mahfouf, “Effect of Changing Strain Rate on Flow Stress during Hot Deformation of Type 316L Stainless Steel”, Mater. Sci. Eng. A, A491, pp. 290-296, 2008.
    9.M. C. Mataya, E. R. Nilsson, E. L. Brown and G. Krauss, “Hot Working and Recrystallization of As-cast 316L”, Metall. Mater. Trans. A, Vol. 34A, pp. 1683-1703, 2003.
    10.H. Kolsky, “An Investigation of the Mechanical Properties of Materials at Very High Strain Rates of Loading”, Proc. Phys. Soc., No. 62, pp. 676-700, 1949.
    11.Donald, Peckner; I. M. Bernstein: “Stainless Steels”, McGraw-Hill Publishing Company, 1977.
    12.R. A. Lula, J. Gordon Parr and Albert Hanson: “Stainless Steel” Metals Park, Ohio :American Society for Metals, 1986.
    13.R. J. DeAngelis and J. B. Choen, “Effects of Shock Loading on Copper, Part III”, Journal of Metals, Vol. 15, p. 681, 1963.
    14.F. Greulich and L. E. Murr, “Effect of Grain Size, Dislocation Cell Size and Deformation Twin Spacing on the Residual Strengthening of Shock-Loaded Nickel”, Mater. Sci. Eng. A, Vol. 39, pp. 81-93, 1979.
    15.K. Wongwiwat and L. E. Murr, “Effect of Shock Pressure, Pulse Duration, and Grain Size on Shock-Deformation Twinning in Molybdenum”, Mater. Sci. Eng. A, Vol. 35, pp. 273-285, 1978.
    16.J. A. Venables, “The Nucleation and Propagation of Deformation Twins”, J. Phys. Chem. Solids, Vol. 25, pp. 693-700, 1964.
    17.G. B. Olson and M. Cohen, “Kinetics of Strain-Induced Martensitic Nucleation”, Metall. Mater. Trans. A, Vol. 6A, pp. 791-795, 1975.
    18.K. P. Staudhammer, L. E. Murr and S. S. Hecker, “Nucleation and Evolution of Strain-Induced Martensitic (b.c.c) Embryos and Substructure in Stainless: A Transmission Electron Microscope Study”, Acta Metall., Vol. 31, No. 2, pp. 267-274, 1983.
    19.C. Garion, B. Skocze´n, and S. Sgobba, “Constitutive Modeling and Identification of Parameters of the Plastic Strain-induced Martensitic Transformation in 316L Stainless Steel at Cryogenic Temperatures”, Int. J. Plast., Vol. 22, No. 7, pp. 1234-1264, 2006
    20.C. Herrera, R. L. Plaut and A. F. Padilha, “Microstructural Refinement during Annealing of Plastically Deformed Austenitic Stainless Steels”, Mater. Sci. Forum, Vol. 550, pp. 423-428, 2007.
    21.T Kruml, J Polák and S. Degallaix, “Microstructure in 316LN Stainless Steel Fatigued at Low Temperature”, Mater. Sci. Eng. A, Vol. 293, pp. 275-280, 2000.
    22.D. R. Curran, L. Seaman and D. A. Shockey, “Linking Dynamic Fracture to Microstructural Process, Shock Wave and High-Strain-Rate Phenomena in Metal: Concepts and Applications”, pp. 22-26, 1980.
    23.U. S. Lindholm, in Techniques in Metals Research, Vol. 5, Part1, R. F. Bunshah (ed.), Wiley-Interscience, New York, pp. 199, 1971.
    24.U. S. Lindholm and L. W. Yeakly, “High Strain Rate Tension and Compression”, Exp. Mech., Vol. 3, pp. 81-88, 1983.
    25.W. S. Lee and C. F. Lin, “Plastic Deformation and Fracture Behaviour of Ti-6Al-4V Alloy Loaded with High Strain Rate under Various Temperatures”, Mater. Sci. Eng. A, Vol. 241, pp. 48-59, 1998.
    26.J. D. Campbell, “Dynamic Plasticity: Macroscopic and Microscopic Aspects”, Mater. Sci. Eng. A, Vol. 12, pp. 3-21, 1973.
    27.D. Klahn, A. K. Mukherjee and J. E. Dorn, Proceedings of the 2nd International Conference on the Strength of Metals and Alloys, Vol. III, ASM, pp. 951, 1970.
    28.J. D. Campbell and W. G. Ferguson, “The Temperature and Strain-Rate Dependence of the Shear Strength of Mild Steel”, Phil. Mag., Vol. 21, pp. 63-82, 1970.
    29.A. Seeger, “Dislocation and Mechanical Properties of Crystals”, Phil. Mag., Vol. 46, pp. 1194-1217, 1955.
    30.U. S. Lindholm and L. M. Yeakly, “Dynamic Deformation of Single and Polycrystalline Aluminum”, J. Mech. Phys. Solids, Vol. 13, pp. 41-49, 1965.
    31.W. G. Ferguson, A. Kumar and J. E. Dorn, “Dislocation Damping in Aluminum at High Strain Rates”, J. Appl. Phys., Vol. 38, pp. 1863-1869, 1967.
    32.J. D. Campbell and A. R. Dowling, “The Behaviour of Materials Subjected to Dynamic Incremental Shear Loading”, J. Mech. Phys. Solids, Vol. 18, pp. 43-63, 1970.
    33.Y. Bai and B. Dodd, Adiabatic Shear Localization, Pergamon Press, pp. 104-124, 1992.
    34.Z. Gronostajski, “The Constitutive Equations for FEM Analysis”, J. Mater. Process. Technol., Vol. 106, pp. 40-44, 2000.
    35.L. W. Meyer, N. Herzig, T. Halle, F. Hahn, L. Krueger and K. P. Staudhammer, “A Basic Approach for Strain Rate Dependent Energy Conversion Including Heat Transfer Effects: An Experimental and Numerical Study”, J. Mater. Process. Technol., Vol. 182, pp. 319-326, 2007.
    36.F. J. Zerilli and R. W. Armstrong, “Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations”, J. Appl. Phys., Vol. 61, pp. 1816-1825, 1987.
    37.F. J. Zerilli and R. W. Armstrong, “Constitutive Equation for HCP Metals and High Strength Alloy Steels”, in High Strain Rate Effects on Polymer, Metal and Ceramic Matrix Composites and Other Advanced Materials, AD-Vol. 48, pp. 121-126, 1995.
    38.D. Umbrello, R. M‘Saoubi and J. C. Outeiro, “The Influence of Johnson-Cook Material Constants on Finite Element Simulation of Machining of AISI 316L Steel”, Int. J. Mach. Tools Manuf., Vol. 47, pp. 462-470, 2007.
    39.U. R. Andrade, M. A. Meyers and A. H. Chokshi, “Constitutive Description of Work- and Shock-Hardened Copper”, Scr. Mater., Vol. 30, No. 7, pp. 933-938, 1994.
    40.S. S. Hecker, M. G. Stout, K. P. Staudhammer and J. L. Smith, “Effect of Strain Rate and Strain Rate on Deformation-Induced Transformation in 304 Stainless Steel: Part I. Magnetic Measurements and Mechanical Behavior”, Metall. Mater. Trans. A, Vol. 13A, pp. 619-626, 1982.
    41.L. Shi and D. O. Northwood, “The Mechanical Behavior of an AISI Type 310 Stainless Steel”, Acta Metal. Mater., Vol. 43, pp. 453-460, 1995.
    42.L-E. Lindgren, K. Domkin, and S. Hansson, “Dislocations, Vacancies and Solute Diffusion in Physical Based Plasticity Model for AISI 316L”, Mech. Mater., Vol. 40, pp. 907-919, 2008.
    43.W. S. Lee and C. Y. Liu, “Comparison of Dynamic Compressive Flow Behavior of Mild and Medium Steels over Wide Temperature Range”, Metall. Mater. Trans. A, Vol. 36, pp. 3175-3186, 2005.
    44.Nasr, M. N. A., Ng, E.-G., and Elbestawi, M. A. “Modelling the Effects of Tool-edge Radius on Residual Stresses When Orthogonal Cutting AISI 316L”, Int. J. Machine Tools Mf., Vol. 47, pp. 401-411, 2007.
    45.L. W. Meyer, N. Herzig, T. Halle, F. Hahn, L. Krueger and K. P. Staudhammer, “A Basic Approach for Strain Rate Dependent Energy Conversion Including Heat Transfer Effects : An Experimental and Numerical Study”, J. Mater. Process. Technol., Vol. 182, pp. 319-326, 2007.
    46.R. W. K. Honeycombe, The Plastic Deformation of Metals, 2nd Edition, Edward Arnold, London, pp. 129-132, 1984.
    47.M. A. Meyers and K. K. Chawla, Mechanical Metallurgy-Principles and Applications, Prentice-Hall, New Jersey, pp. 354-358, 1984.
    48.N. FUJITA, S. Ryoji, N. Takayuki and C. OUCHI, “Austenitic Grain Growth behavior Immediately after Dynamic Recrystallization in HSLA Steels and Austenitic Stainless Steel”, ISIJ Int., Vol. 48, No. 10, pp. 1419-1428, 2008.
    49.M. E. Backman, S. A. Schulz, J. C. Schulz and J. K. Pringle, “Scaling Rules for Adiabatic Shear”, in Metallurgical Applications of Shock Wave and High-Strain-Rate Phenomena (eds. L. E. Murr, K. P. Staudhammer and M. A. Meyers) pp. 675-688, Marcel Dekker Inc., New York, 1986.
    50.A. G. Odeshi and M. N. Bassim, “High Strain-rate Fracture and Failure of a High Strength Low Alloy Steel in Compression”, Mater. Sci. Eng. A, Vol. 525, pp. 96-101, 2009.
    51.R. K. Ham, “The Determination of Dislocation Densities in Thin Films”, Phil. Mag., Vol. 6, pp. 1183-1184, 1961.
    52.Y. Tomota, P. Lukas, S. Harjo, J-H. Park, N. Tsuchida, D. Neov, “In Situ Neutron Diffraction Study of IF and Ultra Low Carbon Steels upon Tensile Deformation”, Acta Mater., Vol. 51, pp. 819-830, 2003.
    53.X. Feaugas, “On the Origin of the Tensile Flow Stress in the Stainless Steel AISI 316L at 300 K: Back Stress and Effective Stress”, Acta mater., Vol. 47, No. 13, pp. 3617-3632, 1999.
    54.F. L. I. P. Drijber, J. B. Finlay, “Hoffmann Half-frame External Fixation Rigidity and Its Relationship to Universal Joint Slippage”, Ann. Biomed Eng, Vol. 20, pp. 533-545, 1992.
    55.P. Trivedi, D. P. Field, H. Weiland, “Alloying Effects on Dislocation Substructure Evolution of Aluminum Alloys”, Int. J. Plast., Vol. 20, pp. 459-476, 2004.
    56.M. A. Meryers, Dynamic Behavior of Materials, John Wiley & Sons, pp. 420-426, 1994.
    57.M. A Meryers, Mechanical Metallurgy Principles and Applications, Prentice-Hall, pp. 284-289, 1984.
    58.F. Hamdi and S. Asgari, “Evaluation of the Role of Deformation Twinning in Work Hardening behavior of Face-centered-cubic Polycrystals”, Metall. Mater. Trans. A, Vol. 39A, pp. 294-303, 2008.
    59.K. Spencer, J.D. Embury, K.T. Conlon, M. Véron, Y. Bréchet, “Strengthening via the Formation of Strain-induced Martensite in Stainless Steels”, Mater. Sci. Eng. A, Vol. 387-389, pp. 873-881, 2004.

    下載圖示 校內:立即公開
    校外:2013-08-10公開
    QR CODE