| 研究生: |
陳柏安 Chen, Bo-An |
|---|---|
| 論文名稱: |
基於核磁共振影像之肩盂骨缺損電腦自動評估系統 Computer evaluation system of glenoid bone loss from MR image |
| 指導教授: |
孫永年
Sun, Yung-Nien |
| 共同指導教授: |
蘇維仁
Su, Wei-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 肩關節不穩定 、肩盂骨分割 、肩盂骨缺損 、三維影像對位 、核磁共振影像 |
| 外文關鍵詞: | shoulder instability, glenoid bone segmentation, glenoid bone loss, volume registration, magnetic resonance imaging |
| 相關次數: | 點閱:96 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肩盂骨的骨缺損常常在前肩關節不穩定的狀況下被發現,由於肩盂股骨缺損的程度將會影像到後續外科醫師治療的方式,所以一個準確且可靠得的肩盂骨缺損量測是必要的。本論文著重於利用三維核磁共振影像量測並分析肩關節的肩盂骨缺損的程度,提出一套完整的方法流程,其中包含了肩盂骨的三維模型分割與肩盂骨缺損的量測。在肩盂骨的三維模型分割中,我們會先從訓練影像中建立肩盂骨的三維形狀模型,並訓練模型形變時所需要的比重參數,讓最後形變的結果能夠最接近手動的分割結果。為了得到更準確的分割結果,本論文整合了兩組不同掃描角度的核磁共振影像,兩組影像先利用兩階段的對位方式整合在一起,最後再進行模型形變的流程,得到高準確性的分割結果,尤其是在肩盂骨關節面的分割結果,更是有顯著的改善。在肩盂骨缺損的量測上,會先將分割好的肩盂骨旋轉至預先制訂好的量測切面,利用切面與肩盂骨的部分交集輪廓,並採用最佳擬合圓法來計算骨缺損的程度。
在實驗中,六名前肩關節脫臼的病人與一名正常人皆在成大醫院放射科中接受肩部核磁共振的檢查,並利用本論文所提出的方法自動計算肩盂骨缺損的程度,並將自動量測的結果與手動量測的結果作比較,其比較結果顯示兩者擁有高度的一致性,兩者之間也都只有些許的誤差。因此,本論文所提出的方法能夠幫助臨床上外科醫師評估病人肩盂骨缺損的程度,並且有機會成為輔助醫師的一個準確且可靠的工具。
Bone loss of the glenoid is a common finding in anterior glenohumeral instability. This study investigates the quantification of glenoid bone loss in anterior shoulder using T1-weighted oblique 3D MR images. The automatic method proposed for this study includes 3D glenoid bone reconstruction and glenoid bone loss measurement. In the glenoid bone reconstruction, an initial glenoid shape model was established first and the energy weights were trained from manually traced segmentation examples during an pre-training step. In order to get an accurate glenoid bone, an integrated segmentation method was designed by using two MRI sets from different scanning views. The two images were aligned by a two-step registration method including coarse and fine registration steps. In the coarse registration step, the segmented sagittal glenoid shape is registered to the axial image volume. In the fine registration step, mutual information (MI) and artificial bee colony (ABC) algorithm are adopted to optimize the registration parameters. The resulting glenoid surface was further refined by a deformation process as the final step.
Six cases with anterior shoulder dislocation and one healthy case were used in the experiment of glenoid bone loss quantification. The glenoid reconstruction result and bone loss measurement by the proposed automatic method were compared to manual results by an expert. The results showed only a small deviation between the two measurements. Thus, the proposed measurement method has great potential to be an accurate and robust tool for glenoid evaluation from shoulder MRI.
[1] Sugaya H, Moriishi J, Dohi M, Kon Y, Tsuchiya A. "Glenoid rim morphology in recurrent anterior glenohumeral instability". J Bone Joint Surg Am 2003; 85-A:878–884.
[2] Tian C.Y., Shang Y., Zheng Z.Z., "Glenoid Bone Lesions: Comparison Between 3D VIBE Images in MR Arthrography and Nonarthrographic MSCT", Journal of magnetic resonance imaging, 2012, 36:231–236.
[3] Provencher MT, Bhatia S, Ghodadra NS, et al, "Recurrent shoulder instability: current concepts for evaluation and management of glenoid bone loss", J Bone Joint Surg Am, 2010;92(Suppl 2):133-151.
[4] Lee R.K., Griffith J.F., Tong M.M., Sharma N., Yung P., "Glenoid Bone Loss: Assessment with MR Imaging, Radiology", Radiology: Volume 267: Number 2, May 2013.
[5] Gyftopoulos S., Hasan S., Bencardino J., Mayo J., Nayyar S., Babb J., Jazrawi L., "Diagnostic Accuracy of MRI in the Measurement of Glenoid Bone Loss", American Journal of Roentgenology 199, 2012, pp. 873-878.
[6] Saito H., Itoi E., Sugaya H., Minagawa H., Yamamoto N., Tuoheti Y., "Location of the glenoid defect in shoulders with recurrent anterior dislocation", The American Journal of Sports Medicine, 2005, pp. 889-893.
[7] Nofsinger C., Browning B., Burkhart SS., Pedowitz RA., "Objective preoperative measurement of anterior glenoid bone loss: a pilot study of a computer-based method using unilateral 3-dimensional computed tomography", Arthroscopy 27, 2011, pp. 322–329.
[8] Aaron J. Bois, Stephen D. Fening, Josh Polster, Morgan H. Jones, Anthony Miniaci, "Quantifying Glenoid Bone Loss in Anterior Shoulder Instability - Reliability and Accuracy of 2-Dimensional and 3-Dimensional Computed Tomography Measurement Techniques", The American Journal of Sports Medicine, 2012 Nov;40(11):2569-77.
[9] Chuang TY, Adams CR, Burkhart SS, "Use of preoperative three dimensional computed tomography to quantify glenoid bone loss in shoulder instability", Arthroscopy, 2008;24(4):376-382.
[10] Burkhart SS, De Beer JF, "Traumatic glenohumeral bone defects and their relationship to failure of arthroscopic Bankart repairs: significance of the inverted-pear glenoid and the humeral engaging Hill-Sachs lesion", Arthroscopy 2000;16:677-94.
[11] Provencher MT, Bhatia S, Ghodadra NS, et al, "Recurrent shoulder instability: current concepts for evaluation and management of glenoid bone loss", J Bone Joint Surg Am, 2010;92(Suppl 2):133-151.
[12] Joshua W. Giles, Gabor Puskas, Mark Welsh, James A. Johnson, George S. Athwal, "Do the Traditional and Modified Latarjet Techniques Produce Equivalent Reconstruction Stability and Strength?", The American Journal of Sports Medicine, 2012 Dec; 40(12):2801-7.
[13] Allan A. Young, Roberto Maia, Julien Berhouet, Gilles Walch, "Open Latarjet procedure for management of bone loss in anterior instability of the glenohumeral joint", Journal of Shoulder and Elbow Surgery Board of Trustees, 2011, 20, S61-S69.
[14] William E. Lorensen, Harvey E. Cline, "Marching cubes: A high resolution 3D surface construction algorithm", ACM SIGGRAPH Computer Graphics, Vol. 21, No. 4, pp. 163–169, 1987.
[15] Powell, M. J. D, "An efficient method for finding the minimum of a function of several variables without calculating derivatives", Computer Journal 7 (2): 155–162, 1964.
[16] Karaboga, N., A. Kalinli, and D. Karaboga, "Designing digital IIR filters using ant colony optimisation algorithm". Engineering Applications of Artificial Intelligence, 2004. 17(3): p. 301-309.
[17] Heinz R. Hoenecke Jr., Juan C. Hermida, Cesar Flores-Hernandez, Darryl D. D’Lima, "Accuracy of CT-based easurements of glenoid version for total shoulder arthroplasty", J Shoulder Elbow Surg (2010) 19, 166-171.
[18] Karin L. Ljungquist, R. Bryan Butler, Michael J. Griesser, Julie Y. Bishop, "Prediction of coracoid thickness using a glenoid widthebased model: implications for bone reconstruction procedures in chronic anterior shoulder instability", J Shoulder Elbow Surg (2012) 21, 815-821
[19] PTRS 846 Wiki. Available: http://ptrs846.wikispaces.com/Shoulder+Labral+Tear