| 研究生: |
陳思羽 Chen, Sih-Yu |
|---|---|
| 論文名稱: |
Ho2Ir2O7之磁性研究 Magnetic Properties of Ho2Ir2O7 |
| 指導教授: |
張烈錚
Chang, Lieh-Jeng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | Ho2Ir2O7 、磁結構 、Pyrochlore |
| 外文關鍵詞: | Ho2Ir2O7, magnetic structures, pyrochlores |
| 相關次數: | 點閱:71 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Pyrochlore 結構本身具有幾何受挫性,加上擁有強磁矩 Ho3+ 間的磁偶極交互作用,使許多 Ho-pyrochlores 具有自旋冰的特性。另一方面,具備5d 電子軌域的 Ir-pyrochlore 預測會有電子-電子關聯和自旋軌道耦合的交互作用,近期受到關注,因此本文將呈現 Ho2Ir2O7 在直流磁化率、交流磁化率、比熱和中子彈性散射實驗上的結果,藉由直流磁化率的測量確認在 140 K 下 Ir4+ 的有序排列,磁亂度的分析顯示 Ho3+ 和 Ir4+ 之間的作用,崩解自旋冰基態本為 2進2出的短距有序結構。而中子繞射和比熱測量更進一步透露分別在18 K 和 75 K ~ 100 K 之間Ho-pyrochlores 形成 <111> 和垂直 <111> 形式的長距磁序排列,前者即為全進全出的磁結構。
Recently, there is a growing interest in iridated-pyrochlore compounds primarily due to possess 5d-electron elements. Among these compounds, Ho2Ir2O7 is also the spin ice candidate. We will present the experimental results of magnetization, heat capacity, and neutron diffraction on Ho2Ir2O7. The magnetization and resistivity measurements confirm the Ir order temperature at ~140 K. The accumulated entropy of Rln2 released below 2 K shows the symmetry of the two-in-two-out spin ice ground state is destroyed by the interactions between Ho ions and Ir ions. The neutron diffraction results reveal two type of the polarization on Ho ions. One is the <111> type (i. e. the all-in-all-out state), the other one is the perpendicular <111> type. And they respectively start to polarize at 18 K and between 75 K and 100 K.
[1] "Hall Effect Measurements", (The National Institute of Standards and Technology, USA, 2008).
[2] MPMS SQUID VSM User's Manual (Quantum Design, Inc, USA, 2009).
[3] PPMS AC Measurement System (ACMS) Option User’s Manual (Quantum Design, Inc, USA, 2003).
[4] PPMS Hardware Manual. (Quantum Design, Inc, USA, 2008).
[5] PPMS Heat Capacity Option User's Manual. (Quantum Design, Inc, USA, 2004).
[6] R. Aldus, Frustrated Magnets, UCL, 2010.
[7] P. W. Anderson, "New Approach to the Theory of Superexchange Interactions," Physical Review 115 (1), 2-13 (1959).
[8] D. Antonio, "AC Susceptibility and Heat Capacity Studies of the Geometrically Frustrated Pyrochlores Terbium Titanium Tin Oxides and Holmium Titanates," (2009).
[9] A. R. Barron, Physical Methods in Chemistry and Nano Science. (Connexions, USA, 2012), pp. 365.
[10] S. Blundell, Magnetism in Condensed Matter. (Oxford University Press, UK, 2001).
[11] Th. Brückel, G. Heger, D. Richter, G. Roth, and R. Zorn, Neutron Scattering Lectures of the JCNS Laborator Course Held at Forschungszentrum Jülich and the Research Reactor FRM II of TU Munich In Cooperation with RWTH Aachen And University of Münster. (Forschungszentrum Jülich, Germany, 2012).
[12] S. T. Bramwell, M. N. Field, M. J. Harris, and I. P. Parkin, "Bulk Magnetization of the Heavy Rare Earth Titanate Pyrochlores-a Series of Model Frustrated Magnets," Journal of Physics: Condensed Matter 12 (4), 483 (2000).
[13] S. T. Bramwell and M. J. P. Gingras, "Spin Ice State in Frustrated Magnetic Pyrochlore Materials," Science 294 (5546), 1495-1501 (2001).
[14] S. T. Bramwell and M. J. Harris, "Frustration in Ising-Type Spin Models on the Pyrochlore Lattice," Journal of Physics: Condensed Matter 10 (14), L215 (1998).
[15] S. T. Bramwell, M. J. Harris, B. C. den Hertog, M. J. P. Gingras, J. S. Gardner, D. F. McMorrow, A. R. Wildes, A. L. Cornelius, J. D. M. Champion, R. G. Melko, and T. Fennell, "Spin Correlations in Ho2Ti2O7: a Dipolar Spin Ice System," Physical Review Letters 87 (4), 047205 (2001).
[16] A. L. Cornelius and J. S. Gardner, "Short-Range Magnetic Interactions in the Spin-Ice Compound Ho2Ti2O7," Physical Review B 64 (6), 060406 (2001).
[17] H. T. Diep, Frustrated Spin Systems. (World Scientific, Singapore, 2013)2nd ed.
[18] J. S. Gardner, A. L. Cornelius, L. J. Chang, M. Prager, T. Brückel, and G. Ehlers, "Spin Dynamics in Ho2Ru2O7," Journal of Physics: Condensed Matter 17 (44), 7089 (2005).
[19] J. S. Gardner, M. J. P. Gingras, and J. E. Greedan, "Magnetic Pyrochlore Oxides," Reviews of modern Physics 82 (1), 53 (2010).
[20] M. J. P. Gingras and B. C. den Hertog, "Origin of Spin-Ice Behavior in Ising Pyrochlore Magnets with Long-Range Dipole Interactions: an Insight from Mean-Field Theory," Canadian journal of physics 79 (11-12), 1339-1351 (2001).
[21] T. Hahn, International Tables for Crystallography: Brief Teaching Edition of Volume A, Space-Group Symmetry. (Kluwer Academic, International Union of Crystallography, UK, 1996).
[22] M. J. Harris, S. T. Bramwell, D. F. McMorrow, T. h. Zeiske, and K. W. Godfrey, "Geometrical Frustration in the Ferromagnetic Pyrochlore Ho2Ti2O7," Physical Review Letters 79 (13), 2554 (1997).
[23] A. Huq, "POWGWN - Powder Diffractometer", (Oak Ridge National Laboratory (ORNL), Spallation Neutron Source, USA, 2015).
[24] A. Huq, J. P. Hodges, L. Heroux, and O. Gourdon, "POWGEN: a Third-Generation High Resolution High-Throughput Powder Diffraction Instrument at the Spallation Neutron Source", (Oak Ridge National Laboratory (ORNL), Spallation Neutron Source, USA, 2011).
[25] M. Ito, Y. Yasui, M. Kanada, H. Harashina, S. Yoshii, K. Murata, M. Sato, H. Okumura, and K. Kakurai, "Nature of Spin Freezing Transition of Geometrically Frustrated Pyrochlore System R2Ru2O7 (R=Rare Earth Elements and Y)," Journal of Physics and Chemistry of Solids 62 (1–2), 337-341 (2001).
[26] H. Kadowaki, Y. Ishii, K. Matsuhira, and Y. Hinatsu, "Neutron Scattering Study of Dipolar Spin Ice Ho2Sn2O7: Frustrated Pyrochlore Magnet," Physical Review B 65 (14), 144421 (2002).
[27] C. Kittel, Introduction to Solid State Physics. (Wiley, USA, 2005).
[28] S. M. Koohpayeh, J. J. Wen, B. A. Trump, C. L. Broholm, and T. M. McQueen, "Synthesis, Floating Zone Crystal Growth and Characterization of the Quantum Spin Ice Pr2Zr2O7 Pyrochlore," Journal of Crystal Growth 402, 291-298 (2014).
[29] O. V. Kovalev, H. T. Stokes, and D. M. Hatch, Representations of the Crystallographic Space Groups: Irreducible Representations, Induced Representations, and Corepresentations. (Gordon and Breach Science, UK, 1993).
[30] E. Lefrançois, V. Simonet, R. Ballou, E. Lhotel, A. Hadj-Azzem, S. Kodjikian, P. Lejay, P. Manuel, D. Khalyavin, and L. C. Chapon, "Anisotropy Tuned Magnetic Order in Pyrochlore Iridates," arXiv preprint arXiv:1502.00787 (2015).
[31] T. E. Mason, D. Abernathy, I. Anderson, J. Ankner, T. Egami, G. Ehlers, A. Ekkebus, G. Granroth, M. Hagen, and K. Herwig, "The Spallation Neutron Source in Oak Ridge: a Powerful Tool for Materials Research," Physica B: Condensed Matter 385, 955-960 (2006).
[32] K. Matsuhira, Y. Hinatsu, K. Tenya, and T. Sakakibara, "Low Temperature Magnetic Properties of Frustrated Pyrochlore Ferromagnets Ho2Sn2O7 and Ho2Ti2O7," Journal of Physics: Condensed Matter 12 (40), L649 (2000).
[33] K. Matsuhira, M. Wakeshima, Y. Hinatsu, and S. Takagi, "Metal–Insulator Transitions in Pyrochlore Oxides Ln2Ir2O7," Journal of the Physical Society of Japan 80 (9), 094701 (2011).
[34] K. Matsuhira, M. Wakeshima, R. Nakanishi, T. Yamada, A. Nakamura, W. Kawano, S. Takagi, and Y. Hinatsu, "Metal–Insulator Transition in Pyrochlore Iridates Ln2Ir2O7 (Ln= Nd, Sm, and Eu)," Journal of the Physical Society of Japan 76 (4), 043706 (2007).
[35] P. A. McClarty, O. Sikora, R. Moessner, K. Penc, F. Pollmann, and N. Shannon, "Chain-Based Order and Quantum Spin Liquids in Dipolar Spin Ice," Physical Review B 92 (9), 094418 (2015).
[36] G. R. Melko and J. P. M. Gingras, "Monte Carlo Studies of the Dipolar Spin Ice Model," Journal of Physics: Condensed Matter 16 (43), R1277 (2004).
[37] R. G. Melko, B. C. den Hertog, and M. J. P. Gingras, "Long-Range Order at Low Temperatures in Dipolar Spin Ice," Physical Review Letters 87 (6), 067203 (2001).
[38] L. Pauling, The Nature of the Chemical Bond. (Cornell university press Ithaca, NY, 1960).
[39] Dmytro Pesin and Leon Balents, "Mott Physics and Band Topology in Materials with Strong Spin–Orbit Interaction," Nature Physics 6 (5), 376-381 (2010).
[40] D. Pomaranski, L. R. Yaraskavitch, S. Meng, K. A. Ross, H. M. L. Noad, H. A. Dabkowska, B. D. Gaulin, and J. B. Kycia, "Absence of Pauling's Residual Entropy in Thermally Equilibrated Dy2Ti2O7," Nature Physics 9 (6), 353-356 (2013).
[41] A. P. Ramirez, A. Hayashi, R. J. Cava, R. Siddharthan, and B. S. Shastry, "Zero-Point Entropy in Spin Ice," Nature 399 (6734), 333-335 (1999).
[42] J. Rodríguez-Carvajal, "Recent advances in magnetic structure determination by neutron powder diffraction," Physica B: Condensed Matter 192 (1), 55-69 (1993).
[43] J. Rodriguez-Carvajal, "An Introduction to the Program FULLPROF 2000", (Laboratoire Léon Brillouin, CEA-CNRS: Saclay, France, 2001).
[44] S. Rosenkranz, A. P. Ramirez, A. Hayashi, R. J. Cava, R. Siddharthan, and B. S. Shastry, "Crystal-Field Interaction in the Pyrochlore Magnet Ho2Ti2O7," Journal of Applied Physics 87 (9), 5914-5916 (2000).
[45] M. C. Shapiro, S. C. Riggs, M. B. Stone, C. R. de la Cruz, S. Chi, A. A. Podlesnyak, and I. R. Fisher, "Structure and Magnetic Properties of the Pyrochlore Iridate Y2Ir2O7 " Physical Review B 85 (21), 214434 (2012).
[46] G. Shirane, S. M. Shapiro, and J. M. Tranquada, Neutron Scattering with a Triple-Axis Spectrometer: Basic Techniques. (Cambridge University Press, UK, 2002).
[47] J. S Steinhart and S. R Hart, presented at the Deep Sea Research and Oceanographic Abstracts, 1968 (unpublished).
[48] M. A. Subramanian, G. Aravamudan, and G. V. S. Rao, "Oxide Pyrochlores—a Review," Progress in Solid State Chemistry 15 (2), 55-143 (1983).
[49] M. Suzuki and I. Suzuki, "Lecture Note on Solid State Physics Superexchange Interaction," Binghamton, New York, 13902-16000.
[50] N. Taira, M. Wakeshima, and Y. Hinatsu, "Magnetic Properties of Iridium Pyrochlores R2Ir2O7 (R= Y, Sm, Eu and Lu)," Journal of Physics: Condensed Matter 13 (23), 5527 (2001).
[51] H. Takatsu, K. Watanabe, K. Goto, and H. Kadowaki, "Comparative Study of Low-Temperature X-Ray Diffraction Experiments on R2Ir2O7 (R= Nd, Eu, and Pr)," Physical Review B 90 (23), 235110 (2014).
[52] K. Tomiyasu, K. Matsuhira, K. Iwasa, M. Watahiki, S. Takagi, M. Wakeshima, Y. Hinatsu, M. Yokoyama, K. Ohoyama, and K. Yamada, "Emergence of Magnetic Long-range Order in Frustrated Pyrochlore Nd2Ir2O7 with Metal–Insulator Transition," Journal of the Physical Society of Japan 81 (3), 034709 (2012).
[53] C. R. Wiebe, J. S. Gardner, S. J. Kim, G. M. Luke, A. S. Wills, B. D. Gaulin, J. E. Greedan, I. Swainson, Y. Qiu, and C. Y. Jones, "Magnetic Ordering in the Spin-Ice Candidate Ho2Ru2O7," Physical Review Letters 93 (7), 076403 (2004).
[54] W. Witczak-Krempa, G. Chen, Y.-B. Kim, and L. Balents, "Correlated Quantum Phenomena in the Strong Spin-Orbit Regime," arXiv preprint arXiv:1305.2193 (2013).
[55] W. Witczak-Krempa, A. Go, and Y.-B. Kim, "Pyrochlore Electrons Under Pressure, Heat, and Field: Shedding Light on the Iridates," Physical Review B 87 (15), 155101 (2013).
[56] W. Witczak-Krempa and Y.-B. Kim, "Topological and Magnetic Phases of Interacting Electrons in the Pyrochlore Iridates," Physical Review B 85 (4), 045124 (2012).
[57] D. Yanagishima and Y. Maeno, "Metal-Nonmetal Changeover in Pyrochlore Iridates," Journal of the Physical Society of Japan 70 (10), 2880-2883 (2001).
[58] K.-Y. Yang, Y.-M. Lu, and Y. Ran, "Quantum Hall Effects in a Weyl semimetal: Possible Application in Pyrochlore Iridates," Physical Review B 84 (7), 075129 (2011).
[59] 石洺瑞, 磁電傳輸性質, 國立成功大學, 2010.
[60] 許樹恩 and 吳泰伯, X 光繞射原理與材料結構分析. (國科會精儀中心, 台灣, 1992).
校內:2018-07-01公開