| 研究生: |
梁邦頡 Liang, Pang-Chieh |
|---|---|
| 論文名稱: |
基於顱顏面解剖構造之硬組織的咬合平面定義法 Defining occlusal plane based on bony contour of craniofacial structure |
| 指導教授: |
林啟倫
Lin, Chi-Lun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | All-on-4® 、顱顏面硬組織 、咬合平面 、有限元素分析 |
| 外文關鍵詞: | All-on-4®, Hard Tissue of Craniofacial Structure, Occlusal Plane, Finite Element Analysis |
| 相關次數: | 點閱:39 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
臨床上在進行All-on-4®全口速訂植牙前,會針對患者的口腔狀況進行完整的植牙方案評估,其中就包含咬合平面位置的制定,而咬合平面的決定在整個流程中尤為重要,因為其直接影響到患者的面部美觀、牙齒排列與咀嚼系統的生物力學性能。在文獻回顧中,常見的咬合平面定義方式為Camper’s line主要是透過連線鼻翼下緣與耳珠上緣、中緣、下緣完成咬合平面的定義,然而Camper’s line作為最廣泛運用咬合平面定義方式,但卻容易受到顱面解剖位置或是軟組織差異的影響,而無法確定參考點的正確性。在進行全口速定植牙的電腦輔助設計時,需要導入患者口腔之數位醫學影像檔案,但在影像檔案中經常不包含建構咬合平面所需的軟組織特徵,因此本研究之目的是開發基於顱顏面硬組織的咬合平面定義方法。
納入30位患者作為研究數據,並將30位患者依照下顎缺牙程度與下顎角度進行分類,患者的數位影像檔案會經過立體化處裡並於於顱顏面硬組織中標記12個特徵點,分別是GO 1 (Gonion)、GO 2 (Gonion)、ME (Menton)、ANS (Anterior Nasal Spine)、PNS (Posterior Nasal Spine)、PNS 1、PNS 2、SM (Supramental), SS (Subspinale), OCC 1, OCC 2, OCC 3,OCC 2與OCC 3為下顎左右兩側第二臼齒頰側遠心端尖點,OCC 1為下顎門牙切齒,這些特徵點形成對應的點、線、面,並生成出ATC軸與P&P軸,以下顎基準平面繞ATC軸與P&P軸得出ATC平面與P&P平面,利用平面法向量的方式比較以上兩個平面與患者自然咬合平面角度差異值,以導航角的方式分解平面法向量,將法向量拆解成翻滾角及俯仰角,藉此觀察造成差異的旋轉方向,同時導入統計學的概念,以成對樣本T檢定的方式分析出平面之間的顯著性,評估兩種咬合平面是否與自然咬合平面存在顯著差異,最後利用有限元素分析驗證平面之間的差異對於力學性能上的影響。
平面角度差值的結果落在平均4.50°至4.60°,最小誤差值為0.95°,最大誤差值不超過10.0°,導航角的拆分不呈現了在各個角度之間的差異,明顯的看出造成差異較大的方向,也因為法向量的拆分有助於統計學進一步的分析,統計學在多數組別中皆顯示無顯著差異,部分組別因樣本數據不平均的問題造成統計學結果出現顯差異,而有限元素分析的結果證明了P&P平面與自然咬合平面在6.06°的角度差異值情況下,力學性能的表現幾乎相同,僅左側遠心端的皮質骨周圍出現略大於自然咬合平面9.4%的應力表現。
本研究使用不同的分析方式驗證兩種平面與自然咬合平面的差異,結果顯示在不同的分析方式中與自然咬合平面都有相近的效果,這表示本研究之方法針對不同的分類對象時皆表現出良好的泛用性,但此方法在建立每位患者對應的咬合平面時仍存在構造、前處理、模型製作等問題,此些問題衍伸出患者顱顏面構造、模型前處理、Inter & Intra差異、有限元素模型以及應用範圍上的挑戰與限制,尤其在應用範圍的部分,雖然對於完整有牙、部分缺牙及嚴重缺牙的患者皆評估出了良好的結果,但是對於全口無牙的患者仍然缺乏足夠的數據證明本研究之方法的可行性,因此未來需要納入更多元的患者進行相關的研究。
本研究提供臨床一全新的咬合平面定義方式,咬合平面的制定不需要倚靠任何輔助儀器,僅須透過簡單的提取特徵點及計算即可完成制定,此方法提供不完整之數位醫學影像建立出對應的咬合平面,更是首次以力學的角度評估咬合平面差異在All-on-4®治療方案下,對下顎骨植體周圍的應力影響。
The study aimed to develop a method for defining the occlusal plane in All-on-4® full-mouth reconstructions using digital medical images and focusing on hard tissue features of the craniofacial region. Traditional methods like Camper's line were noted for their susceptibility to soft tissue and craniofacial anatomical variations. Instead, the study proposed using specific hard tissue landmarks such as Gonion, Menton, Anterior Nasal Spine, and Supramental points to establish the occlusal plane. Thirty patients were categorized based on mandibular edentulism and angle, with their digital images stereotaxically processed and labeled for 12 craniofacial features.
The study generated occlusal planes (ATC and P&P) from these images and compared them to each patient’s natural occlusal plane using statistical methods and finite element analysis. Statistical analysis, primarily paired T-tests, generally indicated insignificant differences between the proposed planes and the natural occlusal plane, suggesting their similarity. Finite element analysis further supported this finding by demonstrating comparable mechanical performance between the P&P plane and the natural occlusal plane, with minor variations in stress distribution.
The research highlights the potential of using digital imaging and hard tissue characteristics to accurately define occlusal planes without additional devices, though it acknowledges challenges in patient-specific craniofacial modeling, particularly in fully edentulous cases. Further studies are recommended to validate and refine this method across broader patient populations.
1. Starcke, E.N., The history of articulators: the appearance and early history of facebows. J Prosthodont, 2000. 9(3): p. 161-5.
2. Starcke, E.N., The history of articulators: the appearance and early history of facebows. (1059-941X (Print)).
3. D'Souza, N.L. and K. Bhargava, A cephalometric study comparing the occlusal plane in dentulous and edentulous subjects in relation to the maxillomandibular space. J Prosthet Dent, 1996. 75(2): p. 177-82.
4. Hartono, R., The occlusal plane in relation to facial types. J Prosthet Dent, 1967. 17(6): p. 549-58.
5. D'Souza, N.L. and K. Bhargava, A cephalometric study comparing the occlusal plane in dentulous and edentulous subjects in relation to the maxillomandibular space. (0022-3913 (Print)).
6. Augsburger, R.H., Occlusal plane relation to facial type. The Journal of Prosthetic Dentistry, 1953. 3(6): p. 755-770.
7. Ohm, E. and J. Silness, The size of the Balkwill angle and the height of the Bonwill triangle. J Oral Rehabil, 1982. 9(4): p. 301-6.
8. Krekmanov, L., et al., Tilting of posterior mandibular and maxillary implants for improved prosthesis support. Int J Oral Maxillofac Implants, 2000. 15(3): p. 405-14.
9. Fortin, Y., R.M. Sullivan, and B.R. Rangert, The Marius implant bridge: surgical and prosthetic rehabilitation for the completely edentulous upper jaw with moderate to severe resorption: a 5-year retrospective clinical study. Clin Implant Dent Relat Res, 2002. 4(2): p. 69-77.
10. Maló, P., B. Rangert, and M. Nobre, "All-on-Four" immediate-function concept with Brånemark System implants for completely edentulous mandibles: a retrospective clinical study. Clin Implant Dent Relat Res, 2003. 5 Suppl 1: p. 2-9.
11. Maló, P., et al., "All-on-4" immediate-function concept for completely edentulous maxillae: a clinical report on the medium (3 years) and long-term (5 years) outcomes. Clin Implant Dent Relat Res, 2012. 14 Suppl 1: p. e139-50.
12. Lopes, A., et al., The NobelGuide(®) All-on-4(®) Treatment Concept for Rehabilitation of Edentulous Jaws: A Retrospective Report on the 7-Years Clinical and 5-Years Radiographic Outcomes. Clin Implant Dent Relat Res, 2017. 19(2): p. 233-244.
13. The gliding path of the mandible along the skull. Ferdinand Graf Spee (1855-1937), prosector at the Anatomy Institute of Kiel. J Am Dent Assoc, 1980. 100(5): p. 670-5.
14. Kumar, K.P. and S. Tamizharasi, Significance of curve of Spee: An orthodontic review. J Pharm Bioallied Sci, 2012. 4(Suppl 2): p. S323-8.
15. Wright, C.R., Evaluation of the factors necessary to develop stability in mandibular dentures. J Prosthet Dent, 1966. 16(3): p. 414-30.
16. Shetty, S., et al., Occlusal plane location in edentulous patients: a review. J Indian Prosthodont Soc, 2013. 13(3): p. 142-8.
17. Celebić, A., et al., A study of the occlusal plane orientation by intra-oral method (retromolar pad). J Oral Rehabil, 1995. 22(3): p. 233-6.
18. Wright, C.R., J.H. Muyskens, and et al., A study of the tongue and its relation to denture stability. J Am Dent Assoc, 1949. 39(3): p. 269-75.
19. Clapp, G.W., Mechanical side of anatomical articulation. 1910: Dental Digest.
20. Albrektsson, T., et al., PROSTHODONTIC TREATMENT FOR EDENTULOUS PATIENTS COMPLETE DENTURES AND IMPLANT-SUPPORTED PROSTHESES. 2017.
21. Al Quran, F.A., A. Hazza'a, and N. Al Nahass, The position of the occlusal plane in natural and artificial dentitions as related to other craniofacial planes. J Prosthodont, 2010. 19(8): p. 601-5.
22. The Glossary of Prosthodontic Terms: Ninth Edition. J Prosthet Dent, 2017. 117(5s): p. e1-e105.
23. Boucher, C.O., Complete denture prosthodontics--the state of the art. J Prosthet Dent, 1975. 34(4): p. 372-83.
24. Trapozzano, V.R., Occlusal records. The Journal of Prosthetic Dentistry, 1955. 5(3): p. 325-332.
25. Kumar, D., et al., A cephalometric analysis to establish a correlation of different ridge relations to three levels of camper's line in edentulous patients: An in vivo study. J Indian Prosthodont Soc, 2018. 18(4): p. 299-304.
26. Shkarin, V., et al., OCCLUSAL PLANE ORIENTATION IN PATIENTS WITH DENTOFACIAL ANOMALIES BASED ON MORPHOMETRIC CRANIO-FACIAL MEASUREMENT. Archiv Euromedica, 2021. 11: p. 116-121.
27. Türker, N., et al., Finite Element Stress Analysis of Applied Forces to Implants and Supporting Tissues Using the "All-on-Four" Concept with Different Occlusal Schemes. J Prosthodont, 2019. 28(2): p. 185-194.
28. Baker EW, S.M., Schulte E., Anatomy for Dental Medicine. 2nd ed. New York: Thieme, 2015.
29. 林家葳, "基於有限元素法的機器學習技術實現All-on-4®贋復設計之即時最佳化". 國立成功大學機械工程學系學位論文, 2022.
30. Mitrani, R., J.S. Brudvik, and K.M. Phillips, Posterior implants for distal extension removable prostheses: a retrospective study. Int J Periodontics Restorative Dent, 2003. 23(4): p. 353-9.
31. Fazi, G., et al., Three-dimensional finite element analysis of different implant configurations for a mandibular fixed prosthesis. Int J Oral Maxillofac Implants, 2011. 26(4): p. 752-9.
32. Silva, G., et al., Stress Patterns on Implants in Prostheses Supported by Four or Six Implants: A Three-Dimensional Finite Element Analysis. The International journal of oral & maxillofacial implants, 2010. 25: p. 239-46.
33. Lahori, M., R. Nagrath, and N. Malik, A Cephalometric Study on the Relationship Between the Occlusal Plane, Ala-Tragus and Camper's Lines in Subjects with Angle's Class I, Class II and Class III Occlusion. J Indian Prosthodont Soc, 2013. 13(4): p. 494-8.
34. Kumar, S., S. Garg, and S. Gupta, A determination of occlusal plane comparing different levels of the tragus to form ala-tragal line or Camper's line: A photographic study. J Adv Prosthodont, 2013. 5(1): p. 9-15.