簡易檢索 / 詳目顯示

研究生: 翁念寬
Weng, Nian-Kuan
論文名稱: 以靜電紡絲製備螢光奈米纖維應用於金屬離子感測
Fluorescent Electrospun Nanofibers for the Application of Metal Ion Sensing
指導教授: 吳文中
Wu, Wen-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 86
中文關鍵詞: 溫度敏感性質高分子金屬離子感測器靜電紡絲
外文關鍵詞: thermo-responsive polymers, metal ion sensing, electrospinning
相關次數: 點閱:82下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 靜電紡絲是近年來用來製備多功能性高分子奈米纖維的一項新穎技術。多功能性高分子溶液被電場吸引到噴嘴下方幾英吋距離的目標物表面,噴出的聚合物經延展後而變為奈米級纖維。當考量製備感測元件的應用價值時,相較於微米等級的纖維,電紡纖維因大幅度的提高纖維的比表面積,進而提升感測能力。本論文利用施蒂勒耦合反應(stille coupling reaction)與鈴木-宮浦耦合反應( Suzuki-Miyauracoupling reaction)合成具金屬離子感測能力的分子Bpy-F-Bpy與單體Fbpy。配合N-methylolacrylamide (NMA)作為奈米纖維的交聯鏈段,以及具有溫度敏感性質的N-isopropylacrylamide (NIPAAm)作為協助纖維再生的脫水(dehydration)鏈段,以自由基聚合法(Free Radical polymerization)合成不同比例的共聚高分子 poly(NIPAAm-co-NMA)與 poly(NIPAAm-co-NMA-co-Fbpy)。將前者混摻螢光感測基團 Bpy-F-Bpy後以靜電紡絲技術製備為高分子奈米纖維與由後者製備出的高分子靜電紡絲纖維分別作為金屬離子感測器,針對其奈米結構、金屬離子感測和光物理性質進行研究。
    我們發現能透過改變NMA之混摻比例調整鏈段的親水性,調整其最低臨界溶解溫度(lower critical solution temperature,LCST);透過改變Bpy-F-Bpy摻混比例調整奈米纖維對金屬離子的感測能力。當Bpy-F-Bpy分別為溶液、混摻薄膜、混摻奈米纖維型態進行Hg2+感測時,可發現奈米纖維之Stern-Volmer plot之斜率的絕對值較大且螢光光譜紅移(red shift)較薄膜與溶液明顯。因為溶液類似三維結構、薄膜比較類似二維結構,而fiber因為纖維的侷限性而較類似一維結構。而較紅移代表聚集程度較好,斜率較大代表敏感程度較好,因此利用價值以纖維較勝於薄膜。我們將螯合過金屬離子之纖維加熱高於LCST導致纖維脫水,而脫水使金屬離子脫附,達到再生的目的。

    Two series of multifunctional electrospun (ES) nanofibers composed of poly(NIPAAm-co-NMA) blending BpyFBpy and poly(NIPAAm-co-NMA-co-Fbpy), respectively, were successfully prepared via the ES process. FBPY demonstrated blue or red shift in emission wavelength and intensity quench when chelation with different metal ions. With appropriate proportion of NMA in the copolymers, films and nanofibers can maintain their morphology in water with varying temperature treatments. Copolymers in three states, solution, film and nanofiber, were prepared and their effects on sensing ability were investigated.

    第一章、緒論 1 1.1 研究背景與文獻回顧 1 1.1.1 重金屬汙染 1 1.1.1.1 前言 1 1.1.1.2 常見重金屬汙染對環境與人體的危害 2 1.1.2 功能性高分子材料 3 1.1.2.1 芴類螢光高分子 4 1.1.2.2 環境應答型高分子 4 1.1.3 螢光材料 7 1.1.3.1 螢光 7 1.1.3.2 螢光與磷光產生機制 8 1.1.3.3 影響螢光的變數 10 1.1.4 感測器 13 1.1.4.1 金屬辨識單元與螢光感測器 14 1.1.4.2 金屬離子之螢光感測器的感測機制 15 1.1.4.2.1 Monomer-Excimer 15 1.1.4.2.2 光誘導電子轉移機制 ( photoinduced electron transfer,PET ) 17 1.1.4.2.3 光誘導電荷轉移機制 (photoinduced charge transfer,PCT) 18 1.1.4.2.4 Förster Resonance Energy Transfer(FRET)20 1.1.5 靜電紡絲技術 21 1.1.5.1 靜電紡絲背景與簡介 22 1.1.5.1.1 纖維的種類 22 1.1.5.1.2 紡絲技術簡介 23 1.1.5.2 靜電紡絲原理與裝置 23 1.1.5.3 影響靜電紡絲的奈米纖維的因素 24 1.1.5.3.1 不穩定性射流 24 1.1.5.3.2 影響靜電紡絲基本參數 25 1.2 研究動機與目的 31 第二章、實驗 33 2.1 實驗藥品 33 2.2 實驗方法 35 2.2.1 bpy-F-bpy合成 35 2.2.2 F-bpy單體合成 37 2.2.3 高分子聚合 39 2.2.3.1 Poly(N-isopropylacrylamide -co-N-methylolacrylamide) (P1、P2) 40 2.2.3.2 Poly(N-isopropylacrylamide -co-N-methylolacrylamide –co-Fbpy)(F1、F2) 41 2.2.4 奈米纖維製備與交聯 42 2.2.5 金屬離子感測 42 2.2.5.1 Bpy-F-Bpy溶液金屬離子感測 43 2.2.5.2 高分子奈米纖維金屬離子感測 43 2.2.6 Lower critical solution temperature(LCST)測試 44 2.2.7 再生 44 2.3 儀器鑑定 44 2.3.1 Gel permeation chromatography(GPC) 44 2.3.2 Nuclear Magnetic Resonance(NMR) 45 2.3.3 Ultraviolet-visible spectra(UV-vis. spectra) 45 2.3.4 Photoluminescence Spectroscopy(PL) 46 2.3.5 Scanning electron microscope(SEM) 46 第三章、結果與討論 47 3.1聚合與鑑定 47 3.1.1 Bpy-F-Bpy合成 47 3.1.2 F-bpy單體合成 49 3.1.3 Poly(NIPAAm-co-NMA)(PNN,P1、P2)合成 49 3.1.4 Poly(NIPAAm-co-NMA-co-Fbpy)(PNNF,F1、F2)合成 53 3.1.5 Fbpy含量鑑定 56 3.1.6 溫度敏感性質 57 3.2 奈米纖維的製備與性質鑑定 58 3.3 金屬離子錯合與光物理性質 67 3.3.1 測試Bpy-F-Bpy溶液感測金屬離子之能力與特性 67 3.3.2 測試P系列高分子薄膜感測金屬離子之能力與特性 69 3.3.3 測試P系列高分子奈米纖維感測金屬離子之能力與特性 70 3.3.4 測試F系列溶液感測金屬離子之能力與特性 75 3.3.5 測試F系列高分子薄膜感測金屬離子之能力與特性 77 3.3.6 測試F系列高分子奈米纖維感測金屬離子之能力與特性 78 3.4 再生 80 第四章、結論 82 第五章、參考文獻 83

    1.Jarup, L., Hazards of heavy metal contamination. British Medical Bulletin, 2003. 68(1): p. 167-182.
    2.Gil, E. and S. Hudson, Stimuli-reponsive polymers and their bioconjugates. Progress in Polymer Science, 2004. 29(12): p. 1173-1222.
    3.Kikuchi, A. and T. Okano, Intelligent thermoresponsive polymeric stationary phases for aqueous chromatography of biological compounds. Progress in Polymer Science, 2002. 27: p. 1165-1193.
    4.Hoffman, A.S., P.S. Stayton, V. Bulmus, G. Chen, J. Chen, C. Cheung, and A. Chilkoti, Really smart bioconjugates of smart polymers and receptor proteins. John Wiley & Sons, Inc, 2000: p. 577-586.
    5.Cornil, J., I. Gueli, A. Dkhissi, J.C. Sancho-Garcia, E. Hennebicq, J.P. Calbert, V. Lemaur, D. Beljonne, and J.L. Brédas, Electronic and optical properties of polyfluorene and fluorene-based copolymers: A quantum-chemical characterization. The Journal of Chemical Physics, 2003. 118(14): p. 6615.
    6.Zhang, F., W. Mammo, L.M. Andersson, S. Admassie, M.R. Andersson, and O. Inganäs, Low-Bandgap Alternating Fluorene Copolymer/Methanofullerene Heterojunctions in Efficient Near-Infrared Polymer Solar Cells. Advanced Materials, 2006. 18(16): p. 2169-2173.
    7.Liu, L., C.-L. Ho, W.-Y. Wong, K.-Y. Cheung, M.-K. Fung, W.-T. Lam, A.B. Djurišić, and W.-K. Chan, Effect of Oligothienyl Chain Length on Tuning the Solar Cell Performance in Fluorene-Based Polyplatinynes. Advanced Functional Materials, 2008. 18(18): p. 2824-2833.
    8.Chen, C.H., Y.C. Hsu, H.H. Chou, K.R. Thomas, J.T. Lin, and C.P. Hsu, Dipolar compounds containing fluorene and a heteroaromatic ring as the conjugating bridge for high-performance dye-sensitized solar cells. Chemistry, 2010. 16(10): p. 3184-93.
    9.Anthony, J.E., Functionalized Acenes and Heteroacenes for Organic Electronics. Chemical Reviews, 2006. 106: p. 5028-5048.
    10.Rathnayake, H.P., A. Cirpan, F.E. Karasz, M.Y. Odoi, N.I. Hammer, M.D. Barnes, and P.M. Lahti, Luminescence of Molecular and Block Copolymeric 2,7-Bis(phenylethenyl)-fluorenones; Identifying Green-Band Emitter Sites in a Fluorene-Based Luminophore. Chemistry of Materials, 2007. 19(13): p. 3265-3270.
    11.Le´vesque, I., Y. Tao, M. D’Iorio, and A. Donat-Bouillud, Light-Emitting Diodes from Fluorene-Based e-Conjugated Polymers. Chemistry of Materials, 2000. 12: p. 1931-1936.
    12.Yu, K., L. Zhang, and A. Eisenberg, Novel Morphologies of “Crew-Cut” Aggregates of Amphiphilic Diblock Copolymers in Dilute Solution. Langmuir, 1996. 12: p. 5980-5984.
    13.Yu, D., Y. Zhang, and B. Liu, Interpolyelectrolyte Complexes of Anionic Water-Soluble Conjugated Polymers and Proteins as Platforms for Multicolor Protein Sensing and Quantification. Macromolecules, 2008. 41: p. 4003-4011.
    14.Mittal, V., N.B. Matsko, A. Butté, and M. Morbidelli, Synthesis of temperature responsive polymer brushes from polystyrene latex particles functionalized with ATRP initiator. European Polymer Journal, 2007. 43(12): p. 4868-4881.
    15.Saeed, A., D.M.R. Georget, and A.G. Mayes, Synthesis, characterisation and solution thermal behaviour of a family of poly (N-isopropyl acrylamide-co-N-hydroxymethyl acrylamide) copolymers. Reactive and Functional Polymers, 2010. 70(4): p. 230-237.
    16.Bin Liu, Wang-Lin Yu, Jian Pei, Shao-Yong Liu, Yee-Hing Lai and Wei Huang Macromolecules. 2001, 34, 7932-7940
    17.Vrijheid, M., E. Cardis, P. Ashmore, A. Auvinen, E. Gilbert, R.R. Habib, H. Malker, C.R. Muirhead, D.B. Richardson, A. Rogel, M. Schubauer-Berigan, H. Tardy, M. Telle-Lamberton, and -.C.S. Grp, Ionizing Radiation and Risk of Chronic Lymphocytic Leukemia in the 15-Country Study of Nuclear Industry Workers. Radiation Research, 2008. 170(5): p. 661-665.
    18.Zhang, M., P. Lu, Y. Ma, and J. Shen, Metal Ionochromic Effects of Conjugated Polymers: Effects of the Rigidity of Molecular Recognition Sites on Metal Ion Sensing. The Journal of Physical Chemistry B, 2003. 107: p. 6535-6538.
    19.KAVARNOS, G.J. and N.J. TURRO, Photosensitization by Reversible Electron Transfer: Theories, Experimental Evidence, and Examples. Chemical Reviews, 1986. 86: p. 401-449.
    20.林哲生, 利用Pentiptycene 及Calix[4]arene 設計與合成新型之螢光感應器. 國立中央大學化學研究所碩士論文, 2000.
    21.Winnik, F.M., Photophysics of Preassociated Pyrenes in Aqueous Polymer Solutions and in Other Organized Media. Chemical Reviews, 1993. 93: p. 587-614.
    22.郭幸甄, 具備電子予體與受體之雙極性有機分子的合成與特性. 國立中央大學化學研究所碩士論文, 2006.
    23.Huber, R., A Structural Basis of Light Energy and Electron Transfer in Biology (Nobel Lecture). Angew Chem Int Ed Engl, 1989. 28: p. 848-869.
    24.游仁吉, 具備電子予體與受體之七環十四烷衍生物的製備及其特性. 國立中央大學化學研究所碩士論文, 2003.
    25.黃中煜, 含胺基之二苯乙烯衍生物之光異構化行為與螢光感應行為之研究. 國立中央大學化學研究所博士論文, 2008.
    26.Sapsford, K.E., L. Berti, and I.L. Medintz, Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations. Angew Chem Int Ed Engl, 2006. 45(28): p. 4562-89.
    27.Rubio, E.R., J.O. de Urbina, J.S. Santoyo, E.V. Perez, and G.T.H. Espanol, Degree of uniformity in the treatment of hepatocellular carcinoma in the Spanish teams of liver transplantation. Medicina Clinica, 2013. 141(9): p. 406-410.
    28.Chow, E., F. Macrae, J. Burn, and I.I.-H.F.C. Cli, Survey of HNPCC Management Analysis of Responses from 18 International Cancer Centres. Hereditary Cancer in Clinical Practice, 2005. 3: p. 137-146.
    29.李俊慶, 靜電紡絲製作KNN奈米線. 逢甲大學材料與製造工程材料所碩士論文, 2012.
    30.Baji, A., Y.-W. Mai, Q. Li, and Y. Liu, Nanoscale investigation of ferroelectric properties in electrospun barium titanate/polyvinylidene fluoride composite fibers using piezoresponse force microscopy. Composites Science and Technology, 2011. 71(11): p. 1435-1440.
    31.Lee, K.H., H.Y. Kim, H.J. Bang, Y.H. Jung, and S.G. Lee, The change of bead morphology formed on electrospun polystyrene fibers. Polymer, 2003. 44(14): p. 4029-4034.
    32.LEE, K.H., H.Y. KIM, Y.J. RYU, K.W. KIM, and S.W. CHOI, Mechanical Behavior of Electrospun Fiber Mats of Poly(vinyl chloride)/Polyurethane Polyblends. Polymer Science, 2003. 41: p. 1256-1262.
    33.Fong, H., I. Chun, and D.H. Reneker, Beaded nanofibers formed during electrospinning. Polymer, 1999. 40: p. 4585-4592.
    34.Zong, X., K. Kim, D. Fang, S. Ran, B.S. Hsiao, and B. Chu, Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer, 2002. 43: p. 4403-4412.
    35.Reneker, D.H., A.L. Yarin, H. Fong, and S. Koombhongse, Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. Journal of Applied Physics, 2000. 87(9): p. 4531.
    36.Casper, C.L., J.S. Stephens, N.G. Tassi, D.B. Chase, and J.F. Rabolt, Controlling Surface Morphology of Electrospun Polystyrene Fibers: Effect of Humidity and Molecular Weight in the Electrospinning Process. Macromolecules, 2004. 37: p. 573-578.
    37.KOOMBHONGSE, S., W. LIU, and D.H. RENEKER, Flat Polymer Ribbons and Other Shapes by Electrospinning. Polymer Science, 2001. 39: p. 2598-2606.
    38.Wannatong, L., A. Sirivat, and P. Supaphol, Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene. Polymer International, 2004. 53(11): p. 1851-1859.
    39.Xia, Y. and D. Li, <Fabrication of titania nanofibers by electrospinning.pdf>. Nano Lett, 2003. 3(4): p. 555-560.
    40.CLOUPEAU, M. and B. PRUNET-FOCH, ELECTROSTATIC SPRAYING OF LIQUIDS IN CONE-JET MODE. Journal of Electrostatics, 1989. 22: p. 135-159.
    41.Lee, K.H., H.Y. Kim, Y.M. La, D.R. Lee, and N.H. Sung, Influence of a mixing solvent with tetrahydrofuran andN,N-dimethylformamide on electrospun poly(vinyl chloride) nonwoven mats. Journal of Polymer Science Part B: Polymer Physics, 2002. 40(19): p. 2259-2268.
    42.Schwab, P.F.H., F. Fleischer, and J. Michl, Preparation of 5-brominated and 5, 5'-dibrominated 2, 2'-bipyridines and 2, 2'-bipyrimidines. The Journal of Organic Chemistry, 2002. 67: p. 443-449.
    43.Miyaura, N. and A. Suzuki, Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds. Chemical Reviews, 1995. 95: p. 2457-2483.
    44.Chuang, W.-J., W.-Y. Chiu, and H.-J. Tai, Thermally crosslinkable poly(N-isopropylacrylamide) copolymers: Synthesis and characterization of temperature-responsive hydrogel. Materials Chemistry and Physics, 2012. 134(2-3): p. 1208-1213.

    無法下載圖示 校內:2019-09-09公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE