簡易檢索 / 詳目顯示

研究生: 吳彥緯
Wu, Yan-Wei
論文名稱: 登革感染下新穎細胞自噬相關囊泡的形成與傳播
Formation and transmission of novel autophagy-associated vesicle in dengue infection
指導教授: 林以行
Lin, Yee-Shin
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 115
中文關鍵詞: 登革熱登革病毒中和性抗體輕鏈蛋白3細胞自噬登革囊泡自噬相關蛋 白9非結構性蛋白1免疫逃脫
外文關鍵詞: Dengue fever, dengue virus, neutralizing antibody, LC3, autophagy, dengue vesicle, Atg9, NS1, immune evasion
相關次數: 點閱:86下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在全球的感染症中,部分登革疾病以嚴重出血及休克症狀為特徵。登革疾病由登革病毒引起,埃及斑蚊和白線斑蚊能將登革病毒在熱帶與亞熱帶地區傳播。登革病毒可以由細胞釋出的病毒顆粒結合專一受器來進行細胞與細胞間的傳播。中和性抗體能阻止該常規的傳播,然而病人血清中的高濃度中和性抗體卻無法防止登革病毒的感染和疾病,部分肇因於抗體依靠性增強(ADE)。中和性抗體的弱效已經在C 型肝炎病毒和人類免疫缺陷病毒被描述,C 型肝炎病毒能以中和性抗體抗性或是外吐小體來傳播。人類免疫缺陷病毒則能以兩個鄰近細胞間膜的緊密接觸來避免中和性抗體,而在登革病毒則還未發現能避免中和性抗體的途徑。我們利用孔徑3 微米的膜隔開登革病毒感染的供體細胞和綠色螢光蛋白標定的受體細胞來建立轉孔共同培養。登革病毒感染後24 小時,比起緊密接觸共同培養,受體細胞顯示較低的感染率。在緊密接觸共同培養其培養液中加入中和性抗體不會減少受體細胞感染率。鑒於細胞自噬在先前的研究顯示其在登革病毒複製扮演重要角色,我們欲探討其參與在登革病毒緊密接觸共同培養系統中的傳播機制。細胞自噬是一種高度保留的細胞分解胞內受損胞器或是蛋白
    質凝聚的途徑。此外,細胞自噬也能以不同於內質網-高基氏體的分泌途徑致使蛋白質分泌。因此我們嘗試連結細胞自噬相關的非傳統分泌途徑與登革病毒避免中和性抗體傳播。首先,我們使用細胞自噬缺陷的供體細胞例如細胞自噬相關蛋白5 (Atg5)低表達Huh7 細胞和Atg5剔除MEF,並觀察到在緊密接觸共同培養系統中登革病毒傳播降低。利用共軛焦顯微鏡的分析,細胞自噬標誌輕鏈蛋白3 (LC3) 和登革病毒套膜蛋白被觀察到從供體細胞中被分泌出來,這些蛋白形成囊泡並黏附到受體細胞上。登革囊泡中含有病毒套膜蛋白、非結構性蛋白1(NS1)、前趨膜蛋白以及油滴,利用NS1 引子進行定量反轉錄聚合脢連鎖反應,確定囊泡中含有登革病毒的核醣核酸,給予核醣核酸脢能減少在登革囊泡的核醣核酸轉染下,受體細胞所表達的非結構性蛋白3(NS3)。這些結果意味著登革囊泡與細胞自噬體相關,且含有感染性的登革病毒核醣核酸。此外,囊泡媒介的傳播不能被外加的抗登革中和性抗體抑制,推測因為病毒核醣核酸被膜所保護,囊泡的膜則直接與目標細胞的膜融合,展開新一輪的感染。重要的是,我們在登革病人血清中也發現這種囊泡,體外分離後依然具有感染力。該細胞自噬相關登革囊泡對於登革病毒在病人體內傳播的角色還需要被研究。由於登革囊泡的尺寸大,膜的來源對囊泡的形成相當重要。細胞自噬相關蛋白9 (Atg9)是細胞自噬相關蛋白家族中唯一具有穿膜構造的蛋白,我們利用共軛焦顯微鏡發現Atg9 在細胞內和登革病毒NS1 有共位現象,這兩者都表達在登革囊泡的表面。共軛焦顯微鏡和免疫沉澱法證實Atg9 和登革病毒NS1 形成一個複合體。在早期病毒複製時,NS1 會表現在內質網上,藉由交互作用。我們證實登革病毒NS1 牽引Atg9 到內質網藉由他們的交互作用,而其突變蛋白則失去交互作用,原因是Atg9 突變造成其細胞內的不正常分布。此外,Atg9 缺陷的供體細胞例如Atg9 低表達Huh7,Atg9 突變高表達Huh7 和Atg9 剔除MEF,導致緊密接觸共同培養系統中受體細胞的感染率下降,原因是Atg9 缺陷的供體細胞產生病毒囊泡的數量下降。這些結果顯現Atg9 在囊泡形成扮演重要的角色。我們的研究發現細胞自噬作用的活化,不僅有利於登革病毒複製,更有助於登革囊泡的形成與傳播。這項研究或許能提供一個可能的免疫脫逃機制,來解釋登革病人中和性抗體為何失效。

    Among globally infectious diseases, dengue disease is partly characterized by severe hemorrhage or shock syndrome. Dengue disease is caused by dengue virus (DENV). Aedes egypti or Aedes albopictus can transmit DENV in tropical and subtropical regions. In cell-to-cell
    transmission, DENV can spread by cell-free virions binding to specific receptors. Neutralizing antibodies (NAbs) can block such conventional transmission. However, even high titers of NAbs in patients’ sera may not prevent DENV infection and disease partly as a result of antibody-dependent enhancement (ADE). The low efficacy of NAbs in viral infection has already been described for
    hepatitis C virus (HCV) and human immunodeficiency virus (HIV). HCV can spread via mechanisms of NAb-resistant or exosome-mediated release. In the case of HIV, the close-contact between membranes of two neighboring cells avoids extracellular NAbs. The mechanism of transmission which can avoid NAbs for DENV has not been defined. We set up a transwell co-culture system using a pore size of 3 m to separate donor infected with DENV and recipient labeled with green fluorescent protein (GFP). After 24 h DENV infection, the recipient cells showed a lower infection rate than recipient cells which were close-contact co-cultured with donor cells. Adding NAbs in the medium of close-contact co-culture system had no effect on infection rate of recipient cells. To clarify the mechanism of DENV transmission in close-contact co-culture system, autophagy was considered because previous studies showed its important role in DENV replication.
    Autophagy is a highly conserved cellular pathway to degrade intracellular damaged organelles or protein aggregation. Besides, secretion of several proteins can be triggered by autophagy which is distinguished from endoplasmic reticulum (ER)-Golgi secretory pathway. Therefore, we tried to link autophagy-related unconventional secretion to the DENV transmission avoiding NAbs. First, we used autophagy-deficient donor cells such as Atg5 knockdown Huh7 and Atg5 knockout mouse
    embryonic fibroblast (MEF), then observed the reduction of DENV transmission in close-contact co-culture system. By analysis of confocal microscopy, autophagy marker LC3 and DENV envelope (E) proteins were observed to be secreted from donor cells. Those proteins formed
    vesicles and attached to recipient cells. Such dengue vesicle contained viral proteins E, nonstructural protein 1 (NS1), prM, and lipid droplet. Using NS1 primer to perform qRT-PCR, the DENV RNA was determined to be contained in vesicle. Treatment with RNAase eliminated the nonstructural protein 3 (NS3) expression in recipient cells transfected by RNA from dengue vesicle. These results imply that dengue vesicle relates to autophagosome and contains infectious DENV RNA. Furthermore, vesicle-mediated transmission could not be blocked by adding anti-dengue NAbs, suggesting that the infectious viral RNA was protected by a membrane. Such membrane directly fused to the plasma membrane of target cells to initiate a new round of viral infection.
    Importantly, we also detected dengue vesicles in a patient’s serum and showed that they were infectious ex vivo. The role of dengue vesicle for DENV spread in patient still need to be clarified. Due to the big size of dengue vesicle, membrane source is important for vesicle formation. Among Atg proteins family, Atg9 is the only one containing transmembrane domains for membrane
    trafficking. We found that Atg9 colocalized with NS1 in the cytosol and both of them were on the surface of dengue vesicle. Confocal microscopy and co-immunoprecipitation confirmed that Atg9 and NS1 were in an interaction complex. During early viral replication, NS1 is expressed on the ER. We confirmed that NS1 interacted with Atg9 to recruit it to ER via their interaction, and Atg9 mutant lost the interaction. It was caused by an abnormal distribution of Atg9 mutant in the cell. Besides, Atg9 deficient donor cells, such as Atg9 knockdown Huh7, Atg9 mutant-overexpressing Huh7 and Atg9 knockout MEF, had a decreased infection rate of recipient cells in the close-contact co-culture system. This was caused by the reduced numbers of vesicles in Atg9 deficient donor cells. These results show that Atg9 plays an important role in the formation of dengue vesicle. Our study clarifies that the induction of autophagy is not only related to DENV replication but also contributes
    to the formation and transmission of dengue vesicle. This discovery may explain the inefficiency of antibody neutralization upon DENV infection as a potential immune evasion mechanism in dengue patients.

    中文摘要 1 Abstract 3 誌謝 6 Contents 8 Figure l ist 11 Abbreviation index 14 I. Background 15 Dengue disease 15 Dengue virus (DENV) 15 The entry of DENV 16 Host responses against DENV 17 Antibody escape in dengue disease 18 Autophagy 19 Atg9 vesicles 21 Autophagosome formation site 21 DENV and autophagy 22 Autophagy-related unconventional secretion 23 II. Specific aims 25 Schematic illustration of specific aims 26 III. Materials and methods 27 A. Materials 27 a. Cell line 27 b. DENV 27 c. Antibody 27 d. si/shRNA plasmid and primer 30 e. Reagent 31 f. Experimental consumable 35 g. Instrument 35 B. Methods 37 Cell culture 37 DENV culture and plaque assay 37 Isolation of dengue virions and vesicles 38 Monoclonal antibody preparation and purification 38 Immunofluorescence staining assay and surface staining 38 Co-immunoprecipitation 39 Western blotting 39 Direct and transwell culture system 39 Transmission electron microscopy (TEM) and immunogold stain 40 RT-PCR and qRT-PCR 40 Statistical analysis 40 IV. Results 41 Close-contact co-culture system enhances DENV infection rate. 41 Autophagy-deficient donor cells decrease transmission rate in closecontact co-culture system. 42 Extracellular vesicles contain DENV proteins and autophagy marker LC3. 43 Reduction of dengue vesicles in the DENV-infected autophagy deficient cells. 44 Infectious autophagy-associated dengue vesicles can escape antibody neutralization. 44 Viral and host proteins locate on the vesicle.45 Intracellular interaction between NS1 and Atg9. 46 Interaction of Atg9 and NS1 at ER. 47 Atg9 deficiency decreases the numbers of viral vesicles. 47 Atg9 deficiency decreases the infection rate in close-contact co-culture system. 47 V. Discussion 49 Roles of autophagy in DENV replication 49 Effect of bafilomycin A1 in dengue vesicle 50 Interaction between NS1 and Atg9 51 Secretion of dengue vesicle 52 Entry and elongation of dengue vesicle 54 Regulation of vesicle trafficking 55 Inhibitory strategy for dengue vesicle 55 VI. Conclusion 57 Schematic illustration of conclusion 58 VII. References 59 VIII. Figures 72 Curriculum Vitae 111

    Akey D.L., Brown W.C., Dutta S., Konwerski J., Jose J., Jurkiw T.J., DelProposto J., Ogata C.M., Skiniotis G., Kuhn R.J., Smith J.L. Flavivirus NS1 structures reveal surfaces for associations with membranes and the immune system. Science 343, 881-885(2014).
    Alayli F., Scholle F. Dengue virus NS1 enhances viral replication and pro-inflammatory cytokine production in human dendritic cells. Virology 496, 227-236 (2016).
    Axe E.L., Walker S.A., Manifava M., Chandra P., Roderick H.L., Habermann A., Griffiths G., Ktistakis N.T. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol.182, 685-701 (2008).
    Bargeron Clark K., Hsiao H.M., Noisakran S., Tsai J.J., Perng G.C. Role of microparticles in dengue virus infection and its impact on medical intervention strategies. Yale J. Biol. Med. 85, 3-18 (2012).
    Beale R., Wise H., Stuart A., Ravenhill B.J., Digard P., Randow F. A LC3-interacting motif in the influenza A virus M2 protein is required to subvert autophagy and maintain virion stability. Cell Host Microbe 15, 239-247 (2014).
    Bernardo L., Fleitas O., Pavón A., Hermida L., Guillén G., Guzman M.G. Antibodies induced by dengue virus type 1 and 2 envelope domain III recombinant proteins in
    monkeys neutralize strains with different genotypes. Clin. Vaccine Immunol. 16,1829-1831 (2009).
    Bhatt S., Gething P.W., Brady O.J., Messina J.P., Farlow A.W., Moyes C.L., Drake J.M.,Brownstein J.S., Hoen A.G., Sankoh O., Myers M.F., George D.B., Jaenisch T., Wint
    G.R., Simmons C.P., Scott T.W., Farrar J.J., Hay S.I. The global distribution and burden of dengue. Nature 496, 504-507 (2013).
    Brimacombe C.L., Grove J., Meredith L.W., Hu K., Syder A.J., Flores M.V., Timpe J.M.,Krieger S.E., Baumert T.F., Tellinghuisen T.L., Wong-Staal F., Balfe P., McKeating
    J.A. Neutralizing antibody-resistant hepatitis C virus cell-to-cell transmission. J.Virol. 85, 596-605 (2011).
    Cedillo-Barron L., Garcia-Cordero J., Bustos-Arriaga J., Leon-Juarez M.,Gutierrez-Castaneda B. Antibody response to dengue virus. Microbes Infect. 16,711-720 (2014).
    Cemma M., Brumell J.H. Interactions of pathogenic bacteria with autophagy systems. Curr.Biol. : CB 22, R540-545 (2012).
    Chen M.C., Lin C.F., Lei H.Y., Lin S.C., Liu H.S., Yeh T.M., Anderson R., Lin Y.S.Deletion of the C-terminal region of dengue virus nonstructural protein 1 (NS1)
    abolishes anti-NS1-mediated platelet dysfunction and bleeding tendency. J.Immunol.183, 1797-1803 (2009).
    Chen Q., Fang L., Wang D., Wang S., Li P., Li M., Luo R., Chen H., Xiao S. Induction ofautophagy enhances porcine reproductive and respiratory syndrome virus replication.
    Virus Res. 163, 650-655 (2012).
    Chen Y., Maguire T., Hileman R.E., Fromm J.R., Esko J.D., Linhardt R.J., Marks R.M.Dengue virus infectivity depends on envelope protein binding to target cell heparan
    sulfate. Nat. Med. 3, 866-871 (1997).
    Chen Y.H., Du W., Hagemeijer M.C., Takvorian P.M., Pau C., Cali A., Brantner C.A.,Stempinski E.S., Connelly P.S., Ma H.C., Jiang P., Wimmer E., Altan-Bonnet G.,
    Altan-Bonnet N. Phosphatidylserine vesicles enable efficient en bloc transmission of enteroviruses. Cell 160, 619-630 (2015).
    Chen Y.C., Wang S.Y., King C.C. Bacterial lipopolysaccharide inhibits dengue virus infection of primary human monocytes/macrophages by blockade of virus entry via a CD14-dependent mechanism. J. Virol.73, 2650-2657 (1999).
    Chuang Y.C., Lin J., Lin Y.S., Wang S., Yeh T.M. Dengue Virus Nonstructural Protein 1-Induced Antibodies Cross-React with Human Plasminogen and Enhance Its Activation. J. Immunol. 196, 1218-1226 (2016).
    Cruz-Oliveira C., Freire J.M., Conceição T.M., Higa L.M., Castanho M.A., Da Poian A.T.Receptors and routes of dengue virus entry into the host cells. FEMS Microbiol. Rev.39, 155-170 (2015).
    da Silva Voorham J.M., Rodenhuis-Zybert I.A., Ayala Nuñez N.V., Colpitts T.M., van der Ende-Metselaar H., Fikrig E., Diamond M.S., Wilschut J., Smit J.M. Antibodies
    against the envelope glycoprotein promote infectivity of immature dengue virus serotype 2. PLoS ONE 7, e29957 (2012).
    de Wispelaere M., Yang, P.L. Mutagenesis of the DI/DIII linker in dengue virus envelope protein impairs viral particle assembly. J. Virol. 86, 7072-7083 (2012).
    Dejnirattisai W., Jumnainsong A., Onsirisakul N., Fitton P., Vasanawathana S., Limpitikul W., Puttikhunt C., Edwards C., Duangchinda T., Supasa S., Chawansuntati K.,
    Malasit P., Mongkolsapaya J., Screaton G. Cross-reacting antibodies enhance dengue virus infection in humans. Science 328, 745-748 (2010).
    Devignot S., Tolou H., Couissinier-Paris P. Dengue shock syndrome: decoding the pathophysiology. Med. Trop. (Mars) 70, 288-301 (2010).
    Dupont N., Jiang S., Pilli M., Ornatowski W., Bhattacharya D., Deretic V. Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1beta. EMBO J. 30, 4701-4711 (2011).
    Fader C.M., Colombo, M.I. Autophagy and multivesicular bodies: two closely related partners. Cell Death Differ. 16, 70-78 (2009).
    Fader C.M., Aguilera M.O., Colombo M.I. ATP is released from autophagic vesicles to the extracellular space in a VAMP7-dependent manner. Autophagy 8, 1741-1756 (2012).
    Feng Z., Hensley L., McKnight K.L., Hu F., Madden V., Ping L., Jeong S.H., Walker C.,Lanford R.E., Lemon S.M. A pathogenic picornavirus acquires an envelope by
    hijacking cellular membranes. Nature 496, 367-371 (2013).
    Flamand M., Megret F., Mathieu M., Lepault J., Rey F.A., Deubel V. Dengue virus type 1 nonstructural glycoprotein NS1 is secreted from mammalian cells as a soluble
    hexamer in a glycosylation-dependent fashion. J. Virol. 73, 6104-6110 (1999).
    Fujita N., Hayashi-Nishino M., Fukumoto H., Omori H., Yamamoto A., Noda T., Fujita, N., Yoshimori, T. Ubiquitination-mediated autophagy against invading bacteria. Curr. Opin. Cell Biol. 23, 492-497 (2011).
    Fujita N., Hayashi-Nishino M., Fukumoto H., Omori H., Yamamoto A., Noda T., Yoshimori T. An Atg4B mutant hampers the lipidation of LC3 paralogues and causes
    defects in autophagosome closure. Mol. Biol. Cell 19, 4651-4659 (2008).
    Ganley I.G., Wong P.M., Gammoh N., Jiang X. Distinct autophagosomal-lysosomal fusion
    mechanism revealed by thapsigargin-induced autophagy arrest. Mol. Cell 42, 731-743 (2011).
    Gebhard L.G., Kaufman S.B., Gamarnik A.V. Novel ATP-independent RNA annealing activity of the dengue virus NS3 helicase. PLoS ONE 7, e36244 (2012).
    Gessner B.D., Wilder-Smith A. Estimating the public health importance of the CYD-tetravalent dengue vaccine: Vaccine preventable disease incidence and numbers needed to vaccinate. Vaccine 34, 2397-2401 (2016).
    Green A.M., Beatty P.R., Hadjilaou A., Harris E. Innate immunity to dengue virus infection and subversion of antiviral responses. J. Mol. Biol. 426, 1148-1160 (2014).
    Guabiraba R., Ryffel B. Dengue virus infection: current concepts in immune mechanisms and lessons from murine models. Immunology 141, 143-156 (2014). Gupta P., Balachandran R., Ho M., Enrico A., Rinaldo C. Cell-to-cell transmission of human immunodeficiency virus type 1 in the presence of azidothymidine and neutralizing antibody. J. Virol. 63, 2361-2365 (1989).
    Guy B., Briand O., Lang J., Saville M., Jackson N. Development of the Sanofi Pasteur tetravalent dengue vaccine: One more step forward. Vaccine 33, 7100-7111 (2015).
    Guzman M.G., Alvarez M., Halstead S.B. Secondary infection as a risk factor for dengue hemorrhagic fever/dengue shock syndrome: an historical perspective and role of antibody-dependent enhancement of infection. Arch. Virol. 158, 1445-1459 (2013).
    Hagedorn M., Rohde K.H., Russell D.G., Soldati T. Infection by tubercular mycobacteria is spread by nonlytic ejection from their amoeba hosts. Science 323, 1729-1733 (2009).
    Hailey D.W., Rambold A.S., Satpute-Krishnan P., Mitra K., Sougrat R., Kim P.K., Halstead S.B. Comment on "Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity" and "Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination". Sci.
    Transl. Med. 7, 318le314 (2015).
    Halstead S.B., Venkateshan C.N., Gentry M.K., Larsen L.K. Heterogeneity of infection enhancement of dengue 2 strains by monoclonal antibodies. J. Immunol. 132,
    1529-1532 (1984).
    Halstead S.B. Neutralization and antibody-dependent enhancement of dengue viruses. Adv. Virus Res. 60, 421-467 (2003).
    Halstead S.B., Mahalingam S., Marovich M.A., Ubol S., Mosser D.M. Intrinsic antibody-dependent enhancement of microbial infection in macrophages: disease regulation by immune complexes. Lancet Infect. Dis. 10, 712-722 (2010).
    Hamasaki M., Furuta N., Matsuda A., Nezu A., Yamamoto A., Fujita N., Oomori H., Noda T., Haraguchi T., Hiraoka Y., Amano A., Yoshimori T. Autophagosomes form at ER-mitochondria contact sites. Nature 495, 389-393 (2013).
    Hanada T., Noda N.N., Satomi Y., Ichimura Y., Fujioka Y., Takao T., Inagaki F., Ohsumi Y. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in
    autophagy. J. Biol. Chem. 282, 37298-37302 (2007).
    Harder L.M., Bunkenborg J., Andersen J.S. Inducing autophagy: a comparative phosphoproteomic study of the cellular response to ammonia and rapamycin.
    Autophagy 10, 339-355 (2014).
    Heaton N.S., Randall, G. Dengue virus-induced autophagy regulates lipid metabolism. Cell Host Microbe 8, 422-432 (2010).
    Hegedus K., Takats S., Kovacs A.L., Juhasz, G. Evolutionarily conserved role and physiological relevance of a STX17/Syx17 (syntaxin 17)-containing SNARE complex in autophagosome fusion with endosomes and lysosomes. Autophagy 9, 1642-1646 (2013).
    Henderson B.R., Saeedi B.J., Campagnola G., Geiss B.J. Analysis of RNA binding by the dengue virus NS5 RNA capping enzyme. PLoS ONE 6, e25795 (2011).
    Hidari K.I., Suzuki T. Dengue virus receptor. Trop. Med. Health 39, 37-43 (2011).
    Huang J.H., Su C.L., Yang C.F., Liao T.L., Hsu T.C., Chang S.F., Lin C.C., Shu P.Y. Molecular characterization and phylogenetic analysis of dengue viruses imported
    into Taiwan during 2008-2010. Am. J. Trop. Med. Hyg. 87, 349-358 (2012).
    Huang K.J., Yang Y.C., Lin Y.S., Huang J.H., Liu H.S., Yeh T.M., Chen S.H., Liu C.C., Lei H.Y. The dual-specific binding of dengue virus and target cells for the
    antibody-dependent enhancement of dengue virus infection. J. Immunol. 176, 2825-2832 (2006).
    Hussein I.T., Cheng E., Ganaie S.S., Werle M.J., Sheema S., Haque A., Mir M.A. Autophagic clearance of Sin Nombre hantavirus glycoprotein Gn promotes virus replication in cells. J. Virol. 86, 7520-7529 (2012).
    Imai K., Hao F., Fujita N., Tsuji Y., Oe Y., Araki Y., Hamasaki M., Noda T., Yoshimori T. Atg9A trafficking through the recycling endosomes is required for autophagosome formation. J. Cell Sci. 129, 3781-3791 (2016).
    Jiang S., Dupont N., Castillo E.F., Deretic V. Secretory versus degradative autophagy: unconventional secretion of inflammatory mediators. J. Innate Immun. 5, 471-479
    (2013).
    Junjhon J., Lausumpao M., Supasa S., Noisakran S., Songjaeng A., Saraithong P., Chaichoun K., Utaipat U., Keelapang P., Kanjanahaluethai A., Puttikhunt C.,
    Kasinrerk W., Malasit P., Sittisombut N. Differential modulation of prM cleavage, extracellular particle distribution, and virus infectivity by conserved residues at nonfurin consensus positions of the dengue virus pr-M junction. J. Virol. 82, 10776-10791 (2008).
    Kabeya Y., Mizushima N., Ueno T., Yamamoto A., Kirisako T., Noda T., Kominami E., Ohsumi Y., Yoshimori T. LC3, a mammalian homologue of yeast Apg8p, is localized
    in autophagosome membranes after processing. EMBO J. 19, 5720-5728 (2000).
    Kalayanarooj S., Vaughn D.W., Nimmannitya S., Green S., Suntayakorn S., Kunentrasai N., Viramitrachai W., Ratanachu-eke S., Kiatpolpoj S., Innis B.L., Rothman A.L., Nisalak A., Ennis F.A. Early clinical and laboratory indicators of acute dengue illness.
    J. Infect. Dis. 176, 313-321 (1997).
    Kamada Y., Funakoshi T., Shintani T., Nagano K., Ohsumi M., Ohsumi Y. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J. Cell Biol. 150,
    1507-1513 (2000).
    Khakpoor A., Panyasrivanit M., Wikan N., Smith D.R. A role for autophagolysosomes in dengue virus 3 production in HepG2 cells. J. Gen. Virol. 90, 1093-1103 (2009).
    Klionsky D.J., Cregg J.M., Dunn W.A. Jr, Emr S.D., Sakai Y., Sandoval I.V., Sibirny A., Subramani S., Thumm M., Veenhuis M., Ohsumi Y. A unified nomenclature for yeast
    autophagy-related genes. Dev. Cell 5, 539-545 (2003).
    Kmetzsch L., Joffe L.S., Staats C.C., de Oliveira D.L., Fonseca F.L., Cordero R.J., Casadevall A., Nimrichter L., Schrank A., Vainstein M.H., Rodrigues M.L. Role for
    Golgi reassembly and stacking protein (GRASP) in polysaccharide secretion and fungal virulence. Mol. Microbiol. 81, 206-218 (2011).
    Kraft C., Martens S. Mechanisms and regulation of autophagosome formation. Curr. Opin. Cell Biol. 24, 496-501 (2012).
    Kuan M.M., Chang F.Y. Airport sentinel surveillance and entry quarantine for dengue infections following a fever screening program in Taiwan. BMC Infect. Dis. 12, 182
    (2012).
    Lee Y.R., Hu H.Y., Kuo S.H., Lei H.Y., Lin Y.S., Yeh T.M., Liu C.C., Liu H.S. Dengue virus infection induces autophagy: an in vivo study. J. Biomed. Sci. 20, 65 (2013).
    Lee Y.R., Lei H.Y., Liu M.T., Wang J.R., Chen S.H., Jiang-Shieh Y.F., Lin Y.S., Yeh T.M., Liu C.C., Liu H.S. Autophagic machinery activated by dengue virus enhances virus replication. Virology 374, 240-248 (2008).
    Libraty D.H., Young P.R., Pickering D., Endy T.P., Kalayanarooj S., Green S., Vaughn D.W., Nisalak A., Ennis F.A., Rothman A.L. High circulating levels of the dengue
    virus nonstructural protein NS1 early in dengue illness correlate with the development of dengue hemorrhagic fever. J. Infect. Dis. 186, 1165-1168 (2002).
    Lin Y.S., Yeh T.M., Lin C.F., Wan S.W., Chuang Y.C., Hsu T.K., Liu H.S., Liu C.C., Anderson R., Lei H.Y. Molecular mimicry between virus and host and its
    implications for dengue disease pathogenesis. Exp. Biol. Med. 236, 515-523 (2011).
    Lippincott-Schwartz J. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141, 656-667 (2010).
    Lippincott-Schwartz J., Tooze S.A. Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J. Cell Sci. 119, 3888-3900 (2006).
    Lopez de Armentia, M.M., Amaya, C., Colombo, M.I. Rab GTPases and the Autophagy Pathway: Bacterial Targets for a Suitable Biogenesis and Trafficking of Their Own
    Vacuoles. Cells 5 (2016).
    Lu Q., Yang P., Huang X., Hu W., Guo B., Wu F., Lin L., Kovács A.L., Yu L., Zhang H. The WD40 repeat PtdIns(3)P-binding protein EPG-6 regulates progression of
    omegasomes to autophagosomes. Dev. Cell 21, 343-357 (2011).
    Manjithaya R., Anjard C., Loomis W.F., Subramani S. Unconventional secretion of Pichia pastoris Acb1 is dependent on GRASP protein, peroxisomal functions, and
    autophagosome formation. J. Cell Biol. 188, 537-546 (2010).
    Mateo R., Nagamine C.M., Spagnolo J., Méndez E., Rahe M., Gale M. Jr., Yuan J., Kirkegaard K. Inhibition of cellular autophagy deranges dengue virion maturation. J.
    Virol. 87, 1312-1321 (2013).
    Mijaljica D., Prescott M., Devenish, R.J. V-ATPase engagement in autophagic processes. Autophagy 7, 666-668 (2011).
    Mizushima N., Yamamoto A., Hatano M., Kobayashi Y., Kabeya Y., Suzuki K., Tokuhisa T., Ohsumi Y., Yoshimori T. Dissection of autophagosome formation using
    Apg5-deficient mouse embryonic stem cells. J. Cell Biol. 152, 657-668 (2001).
    Mizushima N., Ohsumi Y., Yoshimori T. Autophagosome formation in mammalian cells. Cell Struct. Funct. 27, 421-429 (2002).
    Modhiran N., Watterson D., Muller D.A., Panetta A.K., Sester D.P., Liu L., Hume D.A., Stacey K.J., Young P.R. Dengue virus NS1 protein activates cells via Toll-like
    receptor 4 and disrupts endothelial cell monolayer integrity. Sci Transl. Med. 7, 304ra142 (2015).
    Monastyrska I., Rieter E., Klionsky D.J., Reggiori F. Multiple roles of the cytoskeleton in autophagy. Biol. Rev. Camb. Philos. Soc. 84, 431-448 (2009).
    Monteleone M., Stow J.L., Schroder, K. Mechanisms of unconventional secretion of IL-1 family cytokines. Cytokine 74, 213-218 (2015).
    Muller D.A., Young P.R. The flavivirus NS1 protein: molecular and structural biology, immunology, role in pathogenesis and application as a diagnostic biomarker.
    Antiviral Res. 98, 192-208 (2013).
    Nair U., Yen W.L., Mari M., Cao Y., Xie Z., Baba M., Reggiori F., Klionsky D.J. A role for Atg8-PE deconjugation in autophagosome biogenesis. Autophagy 8, 780-793 (2012).
    Oliveira E.R., Mohana-Borges R., de Alencastro R.B., Horta, B.A. The flavivirus capsid protein: Structure, function and perspectives towards drug design. Virus Res. 227, 115-123 (2016).
    Orsi A., Razi M., Dooley H.C., Robinson D., Weston A.E., Collinson L.M., Tooze S.A. Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy. Mol. Biol. Cell 23, 1860-1873 (2012).
    Panyasrivanit M., Khakpoor A., Wikan N., Smith D.R. Co-localization of constituents of the dengue virus translation and replication machinery with amphisomes. J. Gen. Virol. 90, 448-456 (2009).
    Pfeffer S.R. Unconventional secretion by autophagosome exocytosis. J. Cell Biol. 188, 451-452 (2010).
    Ponpuak M., Mandell M.A., Kimura T., Chauhan S., Cleyrat C., Deretic V. Secretory autophagy. Curr. Opin. Cell Biol. 35, 106-116 (2015).
    Rabinowitz J.D., White E. Autophagy and metabolism. Science 330, 1344-1348 (2010).
    Ramakrishnaiah V., Thumann C., Fofana I., Habersetzer F., Pan Q., de Ruiter P.E., Willemsen R., Demmers J.A., Stalin Raj V., Jenster G., Kwekkeboom J., Tilanus
    H.W., Haagmans B.L., Baumert T.F., van der Laan L.J. Exosome-mediated transmission of hepatitis C virus between human hepatoma Huh7.5 cells. Proc. Natl.
    Acad. Sci. USA 110, 13109-13113 (2013).
    Reggiori F., Tucker K.A., Stromhaug P.E., Klionsky, D.J. The Atg1-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure.
    Dev. Cell 6, 79-90 (2004).
    Reyes-Del Valle J., Chávez-Salinas S., Medina F., Del Angel R.M. Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in
    human cells. J. Virol. 79, 4557-4567 (2005).
    Rigau-Pérez J.G., Clark G.G., Gubler D.J., Reiter P., Sanders E.J., Vorndam A.V. Dengue and dengue haemorrhagic fever. Lancet 352, 971-977 (1998).
    Sekito T., Kawamata T., Ichikawa R., Suzuki K., Ohsumi Y. Atg17 recruits Atg9 to organize the pre-autophagosomal structure. Genes Cells 14, 525-538 (2009).
    Sharma M., Bhattacharyya S., Nain M., Kaur M., Sood V., Gupta V., Khasa R., Abdin M.Z., Vrati S., Kalia M. Japanese encephalitis virus replication is negatively regulated by autophagy and occurs on LC3-I- and EDEM1-containing membranes. Autophagy 10, 1637-1651 (2014).
    Shi J., Luo H. Interplay between the cellular autophagy machinery and positive-stranded RNA viruses. Acta. Biochim. Biophys. Sin. (Shanghai) 44, 375-384 (2012).
    Singh R., Cuervo A.M. Autophagy in the cellular energetic balance. Cell Metab. 13, 495-504 (2011).
    Sir D., Kuo C.F., Tian Y., Liu H.M., Huang E.J., Jung J.U., Machida K., Ou J.H. Replication of hepatitis C virus RNA on autophagosomal membranes. J. Biol. Chem.
    287, 18036-18043 (2012).
    Srikiatkhachorn A., Krautrachue A., Ratanaprakarn W., Wongtapradit L., Nithipanya N., Kalayanarooj S., Nisalak A., Thomas S.J., Gibbons R.V., Mammen M.P. Jr., Libraty
    D.H., Ennis F.A., Rothman A.L., Green S. Natural history of plasma leakage in dengue hemorrhagic fever: a serial ultrasonographic study. Pediatr. Infect. Dis. J. 26,
    283-290 (2007).
    Srikiatkhachorn A., Krautrachue A., Ratanaprakarn W., Wongtapradit L., Nithipanya Suzuki K., Kirisako T., Kamada Y., Mizushima N., Noda T., Ohsumi Y. The
    pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J. 20, 5971-5981 (2001).
    Tomlinson S.M., Watowich S.J. Use of parallel validation high-throughput screens to reduce false positives and identify novel dengue NS2B-NS3 protease inhibitors.
    Antiviral Res. 93, 245-252 (2012).
    Valli M.B., Serafino A., Crema A., Bertolini L., Manzin A., Lanzilli G., Bosman C., Iacovacci S., Giunta .S, Ponzetto A., Clementi M., Carloni G. Transmission in vitro of hepatitis C virus from persistently infected human B-cells to hepatoma cells by cell-to-cell contact. J. Med. Virol. 78, 192-201 (2006).
    Webber J.L., Tooze S.A. New insights into the function of Atg9. FEBS Lett. 584, 1319-1326 (2010).
    Welsch S., Miller S., Romero-Brey I., Merz A., Bleck C.K., Walther P., Fuller S.D., Antony C., Krijnse-Locker J., Bartenschlager R. Composition and three-dimensional
    architecture of the dengue virus replication and assembly sites. Cell Host Microbe 5, 365-375 (2009).
    Wesolowski J., Paumet, F. SNARE motif: a common motif used by pathogens to manipulate membrane fusion. Virulence 1, 319-324 (2010).
    Yamamoto H., Kakuta S., Watanabe T.M., Kitamura A., Sekito T., Kondo-Kakuta C., Ichikawa R., Kinjo M., Ohsumi Y. Atg9 vesicles are an important membrane source
    during early steps of autophagosome formation. J. Cell Biol. 198, 219-233 (2012).
    Yang C.F., Tu C.H., Lo Y.P., Cheng C.C., Chen W.J. Involvement of tetraspanin C189 in cell-to-cell spreading of the dengue virus in C6/36 cells. PLoS Negl. Trop. Dis. 9, e0003885 (2015).
    Yauch L.E., Shresta, S. Dengue virus vaccine development. Adv. Virus Res. 88, 315-372 (2014).
    Yoshimoto K. Beginning to understand autophagy, an intracellular self-degradation system in plants. Plant Cell Physiol. 53, 1355-1365 (2012).
    Young A.R., Chan E.Y., Hu X.W., Köchl R., Crawshaw S.G., High S., Hailey D.W. Zavodszky, E., Vicinanza, M., Rubinsztein D.C. Biology and trafficking of ATG9 and
    ATG16L1, two proteins that regulate autophagosome formation. FEBS Lett. 587, 1988-1996 (2013).

    下載圖示 校內:2021-09-01公開
    校外:2021-09-01公開
    QR CODE