研究生: |
林瑜慧 Lin, Yu-Hui |
---|---|
論文名稱: |
利用溶膠凝膠法在316L不鏽鋼表面製備氧化鋯鍍膜並評估與血管內皮細胞之作用 Zirconia coating on 316L stainless steel prepared by sol-gel method and assessed by interacting with vascular endothelial cells |
指導教授: |
廖峻德
Liao, Jiunn-Der |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 87 |
中文關鍵詞: | 溶膠凝膠法 、氧化鋯 、刮痕測試 、血管內皮細胞 、發炎反應 |
外文關鍵詞: | sol-gel, zirconia, scratch test, vascular endothelial cells, inflammation |
相關次數: | 點閱:71 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用溶膠凝膠法,嘗試在低溫製程下(< 400 °C)在醫用316L不鏽鋼上製備出氧化鋯鍍層,探討不同退火溫度、溶液組成、鍍層層數等參數對物性、化性及機械性質的影響,分析係藉由掃描式電子顯微鏡以及原子力顯微鏡分析薄膜表面形貌;以X光光電子能譜儀分析薄膜表面化學組成;並使用奈米壓痕試驗機的側向力及刮痕模組探討奈米尺度鍍層抵抗側向施力的能力。最後與人類臍靜脈內皮細胞共同培養以評估材料的生物相容性。經24、48小時候使用免疫螢光染色觀察細胞貼附形貌,並使用MTT assay分析在不同材料上細胞的增生活性,最後搭配酵素免疫分析法評估不同材料的促發炎潛在性。
結果顯示,使用烷氧化物做為起始反應物的水溶液仍需要一定後處理升溫才能將鍍膜中的溶劑去除,適當的熱處理對鍍膜的機械性質也有一定程度的提升,但熱處理卻會造成表面粗糙度的提升以及覆蓋率的降低。
生物相容性的評估部分則發現塗佈氧化鋯後對細胞增生活性並無顯著影響,但比起不鏽鋼,氧化鋯薄膜確實在促發炎反應的測試中出現優勢,顯示本研究建立之氧化鋯鍍層能降低對細胞之刺激性,未來可用於注射針、手術刀等不銹鋼醫材之表面改質。
In this research, sol-gel process was utilized to prepare ceramic coating on medical grade 316L stainless steel and different experimental parameters’ influence on physical, chemical and mechanical properties, such as annealing temperature, different solution constitute and coating layers were discussed. Coating characterizations were done by AFM and SEM (surface topography and morphology), XPS (surface chemical structures) and Nanoindentation-lateral force and scratch mode. Then human umbilical vein endothelial cells were cultured on specimens to evaluate their biocompatibility, with fluorescence staining to observe the morphology of cells, and MTT assay to evaluate the proliferation activity of cells on different materials. Finally, the proinflammatory response of cells on different specimens was assessed by enzyme-linked immunosorbent assay (ELISA) in order to see its potential for the final use in biomedical applications.
Results showed that annealing is needed to remove the solvents and additives out, and to improve mechanical properties. But its main drawback is the decreasing of surface coverage.
According to the bio-evaluation results, HUVECs didn’t show significant difference on proliferation activity on ZrO2 coatings compared to 316L stainless steel, but they do show difference on proinflammation response test. This means that ceramic coating is indeed less aggressive than stainless steel to cells, which show potential for future application in surface treatment of stainless steel as for scalpels and indwelling needle.
1. D.F. Williams, "The Williams dictionary of biomaterials", Liverpool University Press, pp. 42, 1999.
2. L.-Y. Huang, "The study of cell behavior on the mixed zwitterionic self-assembled monolayer", Department of Chemical Engineering, National Cheng-Kung University, Tainan City, pp. 1-10, 2011.
3. C.-W. Huang, "The Effects of Cell's Proliferation on Ta, TaN and Ta2O5 Surfaced Vascular stent", Institute of Mechatronic Engineering, National Taipei University of Technology, Taipei City, pp. 1-5, 2003.
4. R. Koster, D. Vieluf, M. Kiehn, M. Sommerauer, J. Kahler, S. Baldus, T. Meinertz, and C. Hamm, "Nickel and molybdenum contact allergies in patients with coronary in-stent restenosis", The Lancet, Vol. 356, pp. 1895-1897, 2000.
5. J.S. Temenoff and A.G. Mikos, "Biomaterials : the Intersection of biology and materials science". Pearson Prentice Hall bioengineering., Pearson/Prentice Hall, 2008.
6. R. Hauert, "A review of modified DLC coatings for biological applications", Diamond and Related Materials, Vol. 12, pp. 583-589, 2003.
7. R.K. Roy and K.R. Lee, "Biomedical applications of diamond-like carbon coatings: A review", Journal of Biomedical Materials Research Part B-Applied Biomaterials, Vol. 83B, pp. 72-84, 2007.
8. S. Windecker, R.D. Simon, M. Lins, V. Klauss, F.R. Eberli, M. Roffi, G. Pedrazzini, T. Moccetti, P. Wenaweser, M. Togni, D. Tuller, R. Zbinden, C. Seiler, J. Mehilli, A. Kastrati, B. Meier, and O.M. Hess, "Randomized comparison of a titanium-nitride-oxide coated stent with a stainless steel Stent for coronary revascularization", Circulation, Vol. 111, pp. 2617-2622, 2005.
9. C. Di Mario, E. Grube, Y. Nisanci, N. Reifart, A. Colombo, J. Rodermann, R. Muller, S. Umman, F. Liistro, M. Montorfano, and E. Alt, "MOONLIGHT: a controlled registry of an iridium oxide-coated stent with angiographic follow-up", International Journal of Cardiology, Vol. 95, pp. 329-331, 2004.
10. R.H. Doremus, "Review Bioceramics", Journal of Materials Science, Vol. 27, pp. 287-297, 1992.
11. S. Nagarajan and N. Rajendran, "Sol-gel derived porous zirconium dioxide coated on 316L SS for orthopedic applications", Journal of Sol-Gel Science and Technology, Vol. 52, pp. 188-196, 2009.
12. M. Hisbergues, S. Vendeville, and P. Vendeville, "Zirconia: Established facts and perspectives for a biomaterial in dental implantology", Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 88B, pp. 519-529, 2009.
13. Y. Josset, Z. Oum'Hamed, A. Zarrinpour, M. Lorenzato, J.J. Adnet, and D. Laurent-Maquin, "In vitro reactions of human osteoblasts in culture with zirconia and alumina ceramics", Journal of Biomedical Materials Research, Vol. 47, pp. 481-493, 1999.
14. P.N. Nanbu, T. Hosoe, Y. Hamai, and A. Shigematsu, "Stem cell renewal and contraction of the tunica media caused by a damaged blood vessel following a thick needle stab", European Journal of Drug Metabolism and Pharmacokinetics, Vol. 32, pp. 149-162, 2007.
15. M.J. Paterson, D.G. McCulloch, P.J.K. Paterson, and B. Ben-Nissan, "The morphology and structure of sol-gel derived zirconia films on stainless steel", Thin Solid Films, Vol. 311, pp. 196-206, 1997.
16. A. Mehner, W. Datchary, N. Bleil, H.W. Zoch, M.J. Klopfstein, and D.A. Lucca, "The influence of processing on crack formation, microstructure, density and hardness of sol-gel derived zirconia films", Journal of Sol-Gel Science and Technology, Vol. 36, pp. 25-32, 2005.
17. C. Martinez, M. Sancy, J.H. Zagal, F.M. Rabagliati, B. Tribollet, H. Torres, J. Pavez, A. Monsalve, and M.A. Paez, "A zirconia-polyester glycol coating on differently pretreated AISI 316L stainless steel: corrosion behavior in chloride solution", Journal of Solid State Electrochemistry, Vol. 13, pp. 1327-1337, 2009.
18. M.A. Dominguez-Crespo, A. Garcia-Murillo, A.M. Torres-Huerta, F.J. Carrillo-Romo, E. Onofre-Bustamante, and C. Yanez-Zamora, "Characterization of ceramic sol-gel coatings as an alternative chemical conversion treatment on commercial carbon steel", Electrochimica Acta, Vol. 54, pp. 2932-2940, 2009.
19. H. Fischer, M. Luk, B. Oedekoven, R. Telle, and K. Mottaghy, "Hemocompatibility of high strength oxide ceramic materials: An in vitro study", Journal of Biomedical Materials Research Part A, Vol. 81A, pp. 982-986, 2007.
20. L. Mikhalovska, N. Chorna, O. Lazarenko, P. Haworth, A. Sudre, and S. Mikhalovsky, "Inorganic coatings for cardiovascular stents: In vitro and in vivo studies", Journal of Biomedical Materials Research Part B, Vol. 96B, pp. 333-341, 2011.
21. C.W. Turner, "Sol-Gel Process - Principles and Applications", American Ceramic Society Bulletin, Vol. 70, pp. 1487-1490, 1991.
22. C.J. Brinker and G.W. Scherer, "Sol-gel science : the physics and chemistry of sol-gel processing", Academic Press, pp. 788-796, 1990.
23. E. Lokensgard, "Industrial plastics : theory and applications", Delmar, 2010.
24. L.E. Scriven, "Physics and Applications of DIP Coating and Spin Coating", MRS Proceedings, 1988.
25. J.D. Mackenzie, "Glasses From Melts and Glasses From Gels, A Comparison", Journal of Non-Crystalline Solids, Vol. 48, pp. 1-10, 1982.
26. M. Ohring, "Materials science of thin films : deposition and structure", Academic Press, pp. 764-775, 2002.
27. K.L. Mittal, "Adhesion measurement of films & coatings", VSP, 2001.
28. S. Schoenfelder, M. Ebert, C. Landesberger, K. Bock, and J. Bagdahn, "Investigations of the influence of dicing techniques on the strength properties of thin silicon", Microelectronics Reliability, Vol. 47, pp. 168-178, 2007.
29. P.J. Burnett and D.S. Rickerby, "The Scratch Adhesion Test - An Elastic-Plastic Indentation Analysis", Thin Solid Films, Vol. 157, pp. 233-254, 1988.
30. P.J. Burnett and D.S. Rickerby, "The Relationship Between Hardness and Scratch Adhesion", Thin Solid Films, Vol. 154, pp. 403-416, 1987.
31. L. Shih-Jung, "Biomaterials", Tsang Hai Book Publishing Co., pp. 44-51, 2010.
32. W.M. Kriven, "Martensitic Tougherning of Ceramics", Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, Vol. 127, pp. 249-255, 1990.
33. Y.-m. Chiang, "Physical ceramics : principles for ceramic science and engineering ", John Wiley, pp. 522, 1997.
34. R.H.J. Hannink, P.M. Kelly, and B.C. Muddle, "Transformation toughening in zirconia-containing ceramics", Journal of the American Ceramic Society, Vol. 83, pp. 461-487, 2000.
35. J.Y. Thompson, B.R. Stoner, J.R. Piascik, and R. Smith, "Adhesion/cementation to zirconia and other non-silicate ceramics: Where are we now?", Dental Materials, Vol. 27, pp. 71-82, 2011.
36. J.M. Anderson, "Biological responses to materials", Annual Review of Materials Research, Vol. 31, pp. 81-110, 2001.
37. Y.-T. Huang, "Investigation on Cellular Stimulations That Regulate Leukocyte Adhesion and ROS Production in Human Vascular Endothelial cells", Department of Microbiology & Immunology, National Cheng Kung University, Tainan City, pp. 1-4, 2003.
38. G. Thorgeirson, "Structural and morphological features of vascular endothelium", Elsevier Science Publishers, 1989.
39. U.S. Ryan, "Endothelial cells", CRC Press, 1988.
40. M.G. Davies and P.O. Hagen, "The Vascular Endothelium - A New Horizon", Annals of Surgery, Vol. 218, pp. 593-609, 1993.
41. G.J. Tortora, "Principles of Human Anatomy", John Wiley & Sons, 2005.
42. V. Kumar, R.S. Cotran, and S.L. Robbins, "Basic pathology", W.B. Saunders, 1997.
43. L.-F. Shen, "PAL31 may play an important role as inflammatory modulator in the repair process of the spinal cord injury", Institute of Biochemistry and Molecular Biology, National Rang-Ming University, Taipei city, pp. 7-8, 2008.
44. G.C. Li, P. Yang, X. Guo, N. Huang, and R. Shen, "An in vitro evaluation of inflammation response of titanium functionalized with heparin/fibronectin complex", Cytokine, Vol. 56, pp. 208-217, 2011.
45. T.T. Ding, J. Sun, and P. Zhang, "Study on MCP-1 related to inflammation induced by biomaterials", Biomedical Materials, Vol. 4, 2009.
46. C.M. Wang, "Materials analysis ", pp. 73-82, 2001.
47. A.C. Fischer-Cripps, "Nanoindentation", Springer, 2004.
48. S.M. Chang and R.A. Doong, "Chemical-composition-dependent metastability of tetragonal ZrO2 in sol-gel-derived films under different calcination conditions", Chemistry of Materials, Vol. 17, pp. 4837-4844, 2005.
49. A.V. Chadwick, G. Mountjoy, V.M. Nield, I.J.F. Poplett, M.E. Smith, J.H. Strange, and M.G. Tucker, "Solid state NMR and X-ray studies of the structural evolution of nanocrystalline zirconia", Chemistry of Materials, Vol. 13, pp. 1219-1229, 2001.
50. R. Srinivasan, C.R. Hubbard, O.B. Cavin, and B.H. Davis, "Factors Determining The Crystal Phases Of Zirconia Powers - A New Outlook", Chemistry of Materials, Vol. 5, pp. 27-31, 1993.
51. M. Picquart, T. Lopez, R. Gomez, E. Torres, A. Moreno, and J. Garcia, "Dehydration and crystallization process in sol-gel zirconia - Thermal and spectroscopic study", Journal of Thermal Analysis and Calorimetry, Vol. 76, pp. 755-761, 2004.
52. R. Brenier and A. Gagnaire, "Densification and aging of ZrO2 films prepared by sol-gel", Thin Solid Films, Vol. 392, pp. 142-148, 2001.
53. M. Atik, S.H. Messaddeq, F.P. Luna, and M.A. Aegerter, "Zirconia sol-gel coatings deposited on 304 and 316L stainless steel for chemical protection in acid media", Journal of Materials Science Letters, Vol. 15, pp. 2051-2054, 1996.
54. M. Atik, C.R. Kha, P.D. Neto, L.A. Avaca, M.A. Aegerter, and J. Zarzycki, "Protection Of 316L Stainless Steel By Zirconia Sol-Gel Coatings in 15% H2SO4 Solutions", Journal of Materials Science Letters, Vol. 14, pp. 178-181, 1995.
55. J. Voelkel, "Improvement in quality of sol-gel derived zirconia multilayer coatings by polymeric additive", Molecular Crystals and Liquid Crystals, Vol. 354, pp. 1091-1097, 2000.
56. C.K. Lin, C.M. Zhang, and J. Lin, "Phase transformation and photoluminescence properties of nanocrystalline ZrO2 powders prepared via the Pechini-type sol-gel process", Journal of Physical Chemistry C, Vol. 111, pp. 3300-3307, 2007.
57. S. Zhang, D. Sun, Y.Q. Fu, and H.J. Du, "Toughness measurement of thin films: a critical review", Surface & Coatings Technology, Vol. 198, pp. 74-84, 2005.
58. S.J. Bull and E.G. Berasetegui, "An overview of the potential of quantitative coating adhesion measurement by scratch", Tribology International, Vol. 39, pp. 99-114, 2006.
59. H.B. Li, K.M. Liang, L.F. Mei, S.R. Gu, and S.X. Wang, "Oxidation protection of mild steel by zirconia sol-gel coatings", Materials Letters, Vol. 51, pp. 320-324, 2001.
60. M.J. Dalby, M.O. Riehle, H. Johnstone, S. Affrossman, and A.S.G. Curtis, "In vitro reaction of endothelial cells to polymer demixed nanotopography", Biomaterials, Vol. 23, pp. 2945-2954, 2002.
61. J.C. Wataha, P.E. Lockwood, M. Marek, and M. Ghazi, "Ability of Ni-containing biomedical alloys to activate monocytes and endothelial cells in vitro", Journal of Biomedical Materials Research, Vol. 45, pp. 251-257, 1999.
62. A.R. Anand, R. Bradley, and R.K. Ganju, "LPS-induced MCP-1 expression in human microvascular endothelial cells is mediated by the tyrosine kinase, Pyk2 via the p38 MAPK/NF-κB-dependent pathway", Molecular Immunology, Vol. 46, pp. 962-968, 2009.