| 研究生: |
鄭富吉 Cheng, Fu-Chi |
|---|---|
| 論文名稱: |
以過錳酸鉀改質鐵氧化物對砷吸附之研究 Study on the Adsorption of Arsenic by Using Iron Oxide Modified by KMnO4 |
| 指導教授: |
黃耀輝
Huang, Yao-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 鐵氧化物 、吸附 、三價砷 |
| 外文關鍵詞: | iron oxide, adsorption, arsenite |
| 相關次數: | 點閱:101 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以KMnO4改質鐵氧化物(BT4),製備出吸附材(MBT4),對三價砷(As(III))進行吸附研究,藉由觀察水中的錳離子和砷離子濃度變化來推倒MBT4對三價砷的吸附機制。
對鐵氧化物(BT4)顆粒進行鑑定與分析,由XRD的鑑定BT4為含微量結晶的α-FeOOH,粒徑為0.125~0.25mm,由BET分析出比表面積為154m2/g。
吸附材改質實驗結果顯示,MBT材料上的錳負載量隨著進料鐵/錳莫耳比(FeCl2/KMnO4)的增加而下降,並發現BT4本身即可與MnO4-反應,不需外加FeCl2 ,反應24小時後,MBT4的錳負載量可達1.24 mg/g。
吸附砷實驗結果顯示,MBT4對As(III)吸附量為12.82 mg/g大於未改質BT4對As(III)吸附量(10.87 mg/g)。在吸附動力方面,以一階動力模式、擬二階動力模式和二階動力模式來模擬,發現MBT4對As(III)的吸附較符合擬二階動力模式和二階動力模式。在等溫吸附實驗方面,以Langmuir Model與Freundlich Model來討論,發現較符合Freundlich Model。最後,討論陰離子對MBT4吸附As(III)的干擾,以磷酸鹽的影響最大,硫酸鹽次之,硝酸鹽影響很小。在MBT4對As(III)的吸附機制的探討上,本研究推測為As(III) 先與MBT4的含錳有效活性座進行氧化反應,將As(III)被氧化為As(V),MBT4再將As(V)吸附移除,故提高近二成的As吸附量。
In this study, we modified iron oxide (BT4) by using KMnO4 to prepare a new adsorbent-MBT4 which was used to removal arsenite (As(III)) from water solution. We detected the concentration variation of As(III) and Mn in the solution to investigate the adsorption mechanism.
We take appraisement and analysis for iron oxide (BT4). The result of XRD showed that BT4 contained lots of amorphous goethite (α-FeOOH). The particle size range was 0.125~0.25 mm.The Specific surface area of BT4 was 154 m2/g by using BET analysis.
When the feed Fe/Mn molar ratio (FeCl2/KMnO4) increased, the capacity of Mn loading on MBT4 decreased. We also found that BT4 could react with MnO4- by itself. The capacity of Mn loading on MBT4 was 1.24 mg/g after 24 hours of the reaction.
The As adsorption capacity of MBT4 was 12.82 mg/g which is higher than that of BT4 (10.87 mg/g). Three models were used to describe the adsorption kinetics. Pseudo-second-order rate equation and the second-order rate equation were more suitable than the first-order Lagergren equation . For adsorption isotherm, Freundlich Model was better than Langmuir Model. The competition of nitrate, sulfate and phosphate with arsenate was also studied. Phosphate and sulfate decreased the arsenate removal efficiency. Nitrate had no obvious effect on the adsorption of arsenite. The mechanism of removal As(III) by MBT4 was proposed. Intially, As(III) was oxidateed by Mn oxide on MBT4. As(III) was transformed into As(V).Finally, MBT4 adsorbed As(V).
Benjamin M.M.,Hayes K.F.,Leckie J.O.,“Removal of toxic
metals from power-generation waste streams by adsorption
and coprecipitation”,Jour. Water Pollut. Control Fed.,
54, 1472, 1982.
Bhumbla, D.K., Keefer, R.F., “Arsenic mobilization and
bioavailability in soils”, In:Jerome O. Nriagu
(Eds.) ”Arsenic in the Environment, PartI:Cycling and
Characterization”, John Wiley & Sons,Inc.,51-82,1994.
Borum DR and Abernathy CO. “Human oral exposure to
inorganic arsenic. In Arsenic Exposure and Health”, ed.
W.R. Chappell,C.O.Abernathy and C.R. Cothern,p.21-29.1994
Bissen M., Vieillard-Baron M.M., Schindelin A.J., Frimmel
F.H.“TiO2-catalyzed photooxidation of arsenite to
arsenate in aqueous samples”. Chemosphere 44,751–757,
2001.
Cornell R.M. and Schwertmann U., “The iron oxides : structure,
properties, reactions, occurrence and uses”, Wiley-VCH, New York,
1996.
Driehaus W., Seith R., Jekel M., “ Oxidation of arsenite
(III) with manganese oxides in water treatment”. Water
Res. 29 (1), 297–305,1994
Edwards M., “ Chemistry of arsenic removal during
coagulation and Fe–Mn oxidation”. J. Am. Water Works
Assoc. 86 , 64–78, 1994
Frank P. and Clifford D., “ Arsenic(III) oxidation and
removal from drinking water”. US-EPA/600/S2-86/021,
Washington, DC, 1986
Hayes K.F. and Leckie J.O., “ Modeling ionic strength
effects on cation adsorption at hydrous oxide/solution
interfaces”, Colloid and Interface Science, 115, 564,
1987.
Hayes K.F., Papelis C.P. and Leckie J.O., “Modeling ionic
strength effects on anion adsorption at hydrous
oxide/solution interfaces”, Colloid and Interface
Science, 125, 717, 1988.
Hering J.G., Chen P.Y., Wilkie J.A., Elimelech M., Liang
S., “Arsenic Removal by Ferric Chloride”, J. AWWA., , 88,
155-167, 1996.
Horng L.L., and Clifford D., “The Behavior of Polyprotic
Anions in Ion-Exchange Resins”, Reactive and Functional"
Polymers, 35,41-54,1997.
Hug S.J., Canonica L.,Wegelin M., Gechter D., Gunten
U.V., “Solar oxidation and removal of arsenic at
circumneutral pH in iron containing waters”, Environ.
Sci. Technol. 35, 2114–2121, 2001
Hsu J.C., Lin C.J., Liao C.H., Chen S.T., Removal of As(V)
and As(III) by reclaimed iron-oxide coated sands, Journal
of Hazardous Materials, 153, 817–826, 2008
Juang R.S. and Wu W.L., “Adsorption of sulfate and copper
(II) on goethite inrelation to the changes of zeta
potentials”, Jour. Colloid and Interface Sci.,249, 22,
2002.
Kang M., Kawasaki M., Tamada S., Kamei T., Magara
Y. “Effect of pH on the emoval of arsenic and antimony
using reverse osmosis membranes” ,Desalination, 131, 293-
298, 2000.
Kim M.J. and Nriagu J., “ Oxidation of arsenite in
groundwater using ozone and oxygen”,Sci. Total Environ.
247, 71–79, 2000.
Kaushik G., Shyamal S., Uday C.G., “Synthesis and
characterization of nanostructure hydrous iron–titanium
binary mixed oxide for arsenic sorption”, Nanopart
Res,10, 1361–1368, 2008
Lai C.H., Lo S.L., Chiang H.L., “Adsorption/desorption
properties of copper ions on the surface of iron-coated
sand using BET and EDAXanalyses”, Chemosphere, 41, 1249,
2000.
Matthew J. DeMarco, Arup K. SenGupta*, John E.
Greenleaf, “Arsenic removal using a polymeric/inorganic
hybrid sorbent”, Water Research 37, 164–176, 2003.
Nesbitt H.W., Canning G.W., Bancroft G.M., “XPS study of
reductive dissolution of 7 A° -birnessite by H3AsO3 with
constraints on reaction mechanism”., Geochim. Cosmochim.
Acta 62 (12), 2097–2110, 1998
Oscarson D.W., Huang P.M., Defosse C.,
Herbillon,A., “Oxidative power of Mn(IV) and Fe(III)
oxides with respect to As(III) in terrestrial and
aquatic environments”, Nature 291, 50–51, 1981.
Pettine M., Campanella L., Millero F.J., “Arsenite
oxidation by H2O2 in aqueous solutions. Geochim.
Cosmochim.”,Acta 63 (18), 2727–2735, 1999.
Sahai N., and Sverjensky D.A., “Evaluation of internally
consistent parameters for the triple-layer model by the
systematic analysis of oxide surface titration data”,
Geochimica et Cosmochimica Acta, 61, 14, 2801-2826, 1997.
Scott M.J., and Morgan J.J., “Reactions at oxide surfaces.
1. oxidation of As(III) by synthetic birnessite”,
Environ. Sci. Technol. 29, 1898–1905, 1995
Su Chunming, and ANDROBERT W., “Arsenate and Arsenite
Removal by Zerovalent Iron: Kinetics, Redox
Transformation, and Implications for in Situ Groundwater
Remediation”, Environ. Sci. Technol., 35, 1487-1492, 2001
Smedley, P. L., and Kinniburgh. D. G., “A Review of Source,
Behavior and Distribution of Arsenic in Natural Waters”,
Applied Geochemistry, 17, 517-568, 2002.
Stumm, W., and Morgan, J.J., Aquatic Chemistry. Wiley,New
York,1981.Yamauchi, H., and Bruce A. Fowler, “Toxicity
and metabolism of inorganic and methylated arsenicals”,
In:Jerome O. Nriagu (Eds.) ” Arsenic in the
environment , Part II:Human Health and Ecosystem
Effetcs”, John Wiley & Sons, Inc.,35-54, 1994
Zelazny, L.M., Baligar, V.C., Ritchey, K.D., Martens,
D.C., “Ion strength effects on sulfate and phosphate
adsorption on γ-alumina and kaolinite:Triple-Layer
Model”, J. Soil Sci. Am., 61, 784-793, 1997.
Zhang G.S., Qu J.H., Liu H.J., Liu R.P., Wu
R.C. "Preparation and Evaluation of a Novel Fe-Mn Binary
Oxide Adsorbent for Effective Arsenite Removal", Water
Research 41, no. 9 (2007): 1921-28.
Zhang G.S., Qu J.H., Liu H.J., Liu R.P., Li G.T., “Removal
Mechanism of As(III) by a Novel Fe-Mn Binary Oxide
Adsorbent: Oxidation and Sorption”Environ. Sci. Technol.,
41, 4613-4619, 2007
Zhang S.W., Liu C.G., Luan Z.K., Peng X.J., Ren H.J., Wang
J., “Arsenate removal from aqueous solutions using
modified red mud”,Journal of Hazardous Materials, 152,
486–492, 2008
王成財,”砷As(V)在水化鐵、鋁氧化物表面吸附特性之研究”,國立成功大學環境
工程學系碩士論文,1990
李俊德、何鴻哲,”逆滲透法對含砷地下水處理可行性研究”,成大環工系,1991
林財富,”淨水廠砷去除技術之選擇”,自來水會刊,19,82-104,2000
金映君,”檸檬酸鹽/Fe(III)、矽酸鹽/Fe(III)合成氧化鐵吸附砷之研究”,國
立中山大學海洋環境及工程學系碩士論文,2006
黃互慶,”氧化鐵覆膜濾砂吸附處理水中As(V)、HA 之研究”,輔英科技大學環境
工程與科學系碩士論文,2005
彭晴玉,”烏腳病區地下水中砷之微細結構研究”,國立成功大學環境工程學系碩士
論文,2000
楊瑩文,”台灣嘉南平原西海沿岸烏腳病地區地下水砷之氧化還原反應”,國立成功
大學地球科學研究所碩士論文,2006
劉振宇,林高弘 ,”台灣地區地下水砷之生態遷移”,地質=Ti-Chih,第24卷,第
2期,第61-68頁,2005
郭廷瑜,連興隆,”奈米級四氧化三鐵磁性顆粒吸附水中砷金屬之研究”,第七屆環
境保護與奈米科技學術研討會論文集,pp.200~203, 2010
孫嘉福,駱尚廉 ”氧化鐵之特性與應用”,自來水會刊雜誌,第49 期,pp. 47-
56,1994。
賴進興,”氧化鐵覆膜濾砂吸附過濾水中銅離子之研究”,國立台灣大學環境工程研
究所博士論文,1995。
袁如馨,”活性鋁去除地下水中砷之研究”,自來水會刊雜誌,第25卷,pp. 38-
51,1998
盧郁文,”高效率流體化床結晶技術除鐵之研究”,國立成功大學化學工程學系碩士
論文,2006
鄭旭惠、林明炤,”孟加拉的飲用水砷污染事件”,環境檢驗季刊,46,35-38,
2003
薛光展,”嘉南地區地下水含砷濃度對稻米含砷量之風險評估”,國立成功大學資源
學系碩士論文,2007
蘇亮誌,”鐵氧化物吸附與鐵氧磁體法處理重金屬溶液之研究”,國立成功大學化學
學系碩士論文,2004
校內:2012-08-09公開