| 研究生: |
古雁寧 Gu, Yan-Ning |
|---|---|
| 論文名稱: |
設計治療腎臟纖維化之抗乙型轉化生長因子及抗纖維黏蛋白雙特異性抗體 Design of Bispecific anti-TGF-β and Fibronectin EDA Antibody Targeting Renal Fibrosis |
| 指導教授: |
莊偉哲
Chuang, Woei-Jer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 48 |
| 中文關鍵詞: | 纖維化 、慢性腎臟性疾病 、乙型轉化生長因子 、纖連蛋白 、細胞外基質 、整合素 |
| 外文關鍵詞: | Fibrosis, Chronic kidney disease(CKD), TGF-β, ECM, Fibronectin, Integrin |
| 相關次數: | 點閱:111 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1. Herrera, J., C.A. Henke, and P.B. Bitterman, Extracellular matrix as a driver of progressive fibrosis. Journal of Clinical Investigation, 2018. 128(1): p. 45-53.
2. Philp, C.J., et al., Extracellular Matrix Cross-Linking Enhances Fibroblast Growth and Protects against Matrix Proteolysis in Lung Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2018. 58(5): p. 594-603.
3. Tai, Y., et al., Myofibroblasts: Function, Formation, and Scope of Molecular Therapies for Skin Fibrosis. Biomolecules, 2021. 11(8): p. 1095.
4. Black, L.M., J.M. Lever, and A. Agarwal, Renal Inflammation and Fibrosis: A Double-edged Sword. Journal of Histochemistry & Cytochemistry, 2019. 67(9): p. 663-681.
5. Ruiz-Ortega, M., et al., Targeting the progression of chronic kidney disease. Nature Reviews Nephrology, 2020. 16(5): p. 269-288.
6. Massagué, J., TGFβ signalling in context. Nature Reviews Molecular Cell Biology, 2012. 13(10): p. 616-630.
7. Meng, X.-M., D.J. Nikolic-Paterson, and H.Y. Lan, TGF-β: the master regulator of fibrosis. Nature Reviews Nephrology, 2016. 12(6): p. 325-338.
8. Frangogiannis, N.G., Transforming growth factor–β in tissue fibrosis. Journal of Experimental Medicine, 2020. 217(3).
9. Gu, Y.-Y., et al., Diverse Role of TGF-β in Kidney Disease. Frontiers in Cell and Developmental Biology, 2020. 8(123).
10. Isaka, Y., Targeting TGF-β Signaling in Kidney Fibrosis. International Journal of Molecular Sciences, 2018. 19(9): p. 2532.
11. Hyaluronan, Transforming Growth Factor β, and Extra Domain A-Fibronectin: A Fibrotic Triad. Advances in Wound Care, 2021. 10(3): p. 137-152.
12. Efthymiou, G., et al., Shaping Up the Tumor Microenvironment With Cellular Fibronectin. Frontiers in Oncology, 2020. 10(641).
13. Klingberg, F., et al., The ED-A domain enhances the capacity of fibronectin to store latent TGF-β binding protein-1 in the fibroblast matrix. Journal of Cell Science, 2018. 131(5): p. jcs201293.
14. Kohan, M., et al., EDA-containing cellular fibronectin induces fibroblast differentiation through binding to alpha4beta7 integrin receptor and MAPK/Erk 1/2-dependent signaling. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2010. 24(11): p. 4503-4512.
15. Pozzi, A. and R. Zent, Integrins in Kidney Disease. Journal of the American Society of Nephrology, 2013. 24(7): p. 1034-1039.
16. Cook, H.T., et al., Treatment with an antibody to VLA-1 integrin reduces glomerular and tubulointerstitial scarring in a rat model of crescentic glomerulonephritis. The American journal of pathology, 2002. 161(4): p. 1265-1272.
17. Conroy, K.P., L.J. Kitto, and N.C. Henderson, αv integrins: key regulators of tissue fibrosis. Cell and Tissue Research, 2016. 365(3): p. 511-519.
18. Schnittert, J., et al., Integrins in wound healing, fibrosis and tumor stroma: High potential targets for therapeutics and drug delivery. Advanced Drug Delivery Reviews, 2018. 129: p. 37-53.
19. Millard, M., S. Odde, and N. Neamati, Integrin Targeted Therapeutics. Theranostics, 2011. 1: p. 154-188.
20. Park, E.J., et al., Integrin-Ligand Interactions in Inflammation, Cancer, and Metabolic Disease: Insights Into the Multifaceted Roles of an Emerging Ligand Irisin. Frontiers in Cell and Developmental Biology, 2020. 8.
21. Zhang, J., et al., Discovery of a new class of integrin antibodies for fibrosis. Scientific Reports, 2021. 11(1): p. 2118.
22. Nishimura, S.L., Integrin-Mediated Transforming Growth Factor-β Activation, a Potential Therapeutic Target in Fibrogenic Disorders. The American Journal of Pathology, 2009. 175(4): p. 1362-1370.
23. Munger, J.S. and D. Sheppard, Cross Talk among TGF- Signaling Pathways, Integrins, and the Extracellular Matrix. Cold Spring Harbor Perspectives in Biology, 2011. 3(11): p. a005017-a005017.
24. Annes, J.P., et al., Integrin αVβ6-mediated activation of latent TGF-β requires the latent TGF-β binding protein-1. Journal of Cell Biology, 2004. 165(5): p. 723-734.
25. Reed Nilgun, I., et al., The αvβ1 integrin plays a critical in vivo role in tissue fibrosis. Science Translational Medicine, 2015. 7(288): p. 288ra79-288ra79.
26. Song, K.-H., S.-J. Cho, and J.-Y. Song, αvβ1 integrin as a novel therapeutic target for tissue fibrosis. Annals of Translational Medicine, 2016. 4(20): p. 411-411.
27. Hahm, K., et al., αvβ6 Integrin Regulates Renal Fibrosis and Inflammation in Alport Mouse. The American Journal of Pathology, 2007. 170(1): p. 110-125.
28. Katsumoto, T.R., S.M. Violette, and D. Sheppard, Blocking TGFβvia Inhibition of theαvβ6 Integrin: A Possible Therapy for Systemic Sclerosis Interstitial Lung Disease. International Journal of Rheumatology, 2011. 2011: p. 1-7.
29. Puthawala, K., et al., Inhibition of Integrin αvβ6, an Activator of Latent Transforming Growth Factor-β, Prevents Radiation-induced Lung Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2008. 177(1): p. 82-90.
30. Negri, A.L., Prevention of progressive fibrosis in chronic renal diseases: antifibrotic agents. J Nephrol, 2004. 17(4): p. 496-503.
31. Sato, M., et al., Targeted disruption of TGF-β1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. Journal of Clinical Investigation, 2003. 112(10): p. 1486-1494.
32. Teixeira, A.F., P. ten Dijke, and H.-J. Zhu, On-Target Anti-TGF-β Therapies Are Not Succeeding in Clinical Cancer Treatments: What Are Remaining Challenges? Frontiers in Cell and Developmental Biology, 2020. 8(605).
33. Wu, C.-F., et al., Transforming Growth Factor β-1 Stimulates Profibrotic Epithelial Signaling to Activate Pericyte-Myofibroblast Transition in Obstructive Kidney Fibrosis. The American Journal of Pathology, 2013. 182(1): p. 118-131.
34. Siani, A., Pharmacological Treatment of Fibrosis: a Systematic Review of Clinical Trials. SN Comprehensive Clinical Medicine, 2020. 2(5): p. 531-550.
35. McGaraughty, S., et al., Targeting Anti–TGF-β Therapy to Fibrotic Kidneys with a Dual Specificity Antibody Approach. Journal of the American Society of Nephrology, 2017. 28(12): p. 3616-3626.
36. Haller, H., et al., Monocyte chemoattractant protein-1 and the kidney. Current Opinion in Nephrology and Hypertension, 2016. 25(1): p. 42-49.
37. Glassock, R.J., Urinary Chemoattractant Protein 1: A New Biomarker of Renal Fibrosis. American Journal of Nephrology, 2016. 43(6): p. 451-453.
38. Xu, L., D. Sharkey, and L.G. Cantley, Tubular GM-CSF Promotes Late MCP-1/CCR2-Mediated Fibrosis and Inflammation after Ischemia/Reperfusion Injury. Journal of the American Society of Nephrology, 2019. 30(10): p. 1825-1840.
39. Martínez-Klimova, E., et al., Unilateral Ureteral Obstruction as a Model to Investigate Fibrosis-Attenuating Treatments. Biomolecules, 2019. 9(4): p. 141.
校內:2027-02-06公開