| 研究生: |
陳博榕 Chen, Po-Jung |
|---|---|
| 論文名稱: |
神經壞死病毒所誘導之活性氧分子對於自噬作用的調節 The effects of RGNNV-induced reactive oxygen species production on autophagic processing regulation |
| 指導教授: |
洪健睿
Hong, Jiann-Ruey |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技研究所 Institute of Biotechnology |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 神經壞死病毒 、活性氧分子 、自噬作用 、抗氧化藥劑 、mTOR 、病毒複製 |
| 外文關鍵詞: | Betanodavirus (RGNNV), reactive oxygen species, autophagy, antioxidants, mammalian target of rapamycin (mTOR), viral replication |
| 相關次數: | 點閱:156 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自噬作用為細胞內維持恆定的代謝機制,可將老舊或受損胞器分解回收,以提供能量合成新的胞器或其他用途。而當細胞面臨壓力或病原入侵時也會誘導發生。實驗室先前研究證實神經壞死病毒(RGNNV)感染石斑魚鰭細胞株(GF-1)會產生由活性氧分子(O2-, H2O2)所介導的自噬作用。因此本研究想要探討在病毒感染下所誘導之活性氧分子如何調節自噬作用。首先由蛋白質表現分析結果顯示,病毒感染使自噬作用上游分子mTOR活性上升,並由AMPK及Akt所調控。若添加抗氧化劑DPI(Diphenylene iodonium)抑制O2-生成能減少mTOR活性,而添加GSH(Glutathione)促H2O2代謝則無法降低mTOR活性。接著進一步由穩定表現mRFP-LC3細胞株及MDC染色觀察病毒感染所誘導之自噬作用,結果發現,抑制O2-生成或促進H2O2代謝均能降低自噬作用,其中又以抑制O2-能降低的效果最為明顯,且由蛋白質表現分析也觀察到抑制O2-能降低Class III PI3K(Vps34)的表現量。在病毒效價及細胞存活方面,抑制O2-能降低病毒效價並提高細胞存活。 此外抗氧化轉錄因子Nrf2,近來文獻顯示會和自噬作用中的sequestosome 1/p62 (SQSTM1/p62)蛋白具有交互作用以調節細胞中氧化壓力。在我們系統中亦發現,若降低病毒感染所誘導的活性氧分子,Nrf2及p62的表現會減少。若進一步利用Nrf 2抑制劑RA(Retinoic Acid)或p62 siRNA,顯示 Nrf2和p62在RGNNV感染下有交互作用。總結以上結果可知,O2-為病毒感染所誘導的主要活性氧分子,並藉由調節mTOR活性及Class III PI3K(Vps34)之表現,參與病毒誘發的自噬作用及細胞死亡,另外也調節Nrf2及抗氧化酵素的表現。
Autophagy is a cellular metabolic process to degrade and recycle the older or damaged organelle that autophagic also induces under the stress or virus infection. In this study, we found that (1) antioxidant DPI (for blocking superoxide production) treatment with RGNNV-infected GF-1 cells can block mTOR activity, but did not blocked by GSH (for reducing hydrogen oxide production) treatment; (2) with MDC staining in mRFP-LC3 cells, we found that antioxidant DPI treatment can reduce O2- production and that can significantly reduce virus-induced autophagy and enhance cell viability; (3) we found that Class III PI3K(Vps34) also participates in virus-induced autophagy by reactive oxygen species. Finally, we have found that antioxidant transcription factor Nrf2 can interact with p62 by using specific inhibitor retinoic acid or p62 siRNA treatment in GF-1 cells with RGNNV infection. Taken together our results suggest that RGNNV-induced ROS (O2-) signals can regulate the autophagic process for enhancing viral replication and host cell death. Then, the autophagic process is regulated by mTOR and class III PI3K signals. Then, the mTOR signal is regulated by either AKT, or AMPK activities. Our finding provided insight into RNA virus molecular mechanism.
李昂融. (2014). 抗凋亡家族蛋白Bcl-2與Bcl-xL對野田病毒所誘導魚類 宿主細胞死亡與自噬作用之研究. 碩士論文.
周信佑. (2006). 石斑魚健康種苗之建立與疫苗開發策略. 農業生技產業 季刊, 頁 47-50.
涂堅. (2004). 魚類野田病毒之疫情及控制. 農政與農情(139).
張芝瑋. (2009). 神經壞死病毒誘發石斑魚細胞氧化壓力與病毒蛋白B1影 響氧化壓力之探討. 碩士論文.
楊玉婷、陳葦芋、陳政忻. (2009). 石斑魚產業概況及趨勢. 農業生技產業 季刊, 19, 頁 24-29.
廖浤鈞. (2012). 神經壞死病毒所誘導細胞內氧化壓力能影響細胞自噬體 吞噬作用及病毒複製之研究. 碩士論文.
齊肖琪. (2006). 病毒性神經壞死症對養殖魚苗的影響與防疫策略.
蔡佳錚. (2011). 魚類神經壞死病毒症研究近狀. 獸醫專訓(4), 頁 18-26.
黎孝韻、曾國慶. (2008). 自由基及抗氧化物功能的探討. 藥學雜誌, 24(2), 頁 95-103.
賴威延、許仁弘、陳添進、吳金洌. (2011). 台灣石斑魚研發能量與優勢. 農 業生技產業季刊, 26, 頁 51-57.
譚健民. (2009). 粒線體與細胞凋亡. 生物醫學, 2(3), 250-268.
Alessi, D. R., Sakamoto, K., Bayascas, J. R. (2006). LKB1-dependent signaling pathways. Annu Rev Biochem, 75, 137-163.
Azad, M. B., Chen, Y., Gibson, S. B. (2009). Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment. Antioxid Redox Signal, 11(4), 777-790.
Ballou, L. M., Lin, R. Z. (2008). Rapamycin and mTOR kinase inhibitors. J Chem Biol, 1(1-4), 27-36.
Chang, C. W., Su, Y. C., Her, G. M., Ken, C. F., Hong, J. R. (2011). Betanodavirus Induces Oxidative Stress-Mediated Cell Death That Prevented by Anti-Oxidants and Zfcatalase in Fish Cells. Plos One, 6(10), e25853.
Chen, L. J., Su, Y. C., Hong, J. R. (2009). Betanodavirus non-structural protein B1: A novel anti-necrotic death factor that modulates cell death in early replication cycle in fish cells. Virology, 385(2), 444-454.
Chen, S. P., Wu, J. L., Su, Y. C., Hong, J. R. (2007). Anti-Bcl-2 family members, zfBcl-x(L) and zfMcl-1a, prevent cytochrome c release from cells undergoing betanodavirus-induced secondary necrotic cell death. Apoptosis, 12(6), 1043-1060.
Chen, Y., Azad, M. B., Gibson, S. B. (2009). Superoxide is the major reactive oxygen species regulating autophagy. Cell Death and Differentiation, 16(7), 1040-1052.
Chen, Y. Q., Gibson, S. B. (2008). Is mitochondrial generation of reactive oxygen species a trigger for autophagy? Autophagy, 4(2), 246-248.
Chen, Y. Q., McMillan-Ward, E., Kong, J. M., Israels, S. J., Gibson, S. B. (2007). Mitochondrial electron-transport-chain inhibitors of complexes I and II induce autophagic cell death mediated by reactive oxygen species. Journal of Cell Science, 120(23), 4155-4166.
Chi, S. C., Shieh, J. R., Lin, S. J. (2003). Genetic and antigenic analysis of betanodaviruses isolated from aquatic organisms in Taiwan. Diseases of Aquatic Organisms, 55(3), 221-228.
Chiang, G. G., Abraham, R. T. (2005). Phosphorylation of mammalian target of rapamycin (mTOR) at ser-2448 is mediated by p70S6 kinase. Journal of Biological Chemistry, 280(27), 25485-25490.
Chiramel, A. I., Brady, N. R., Bartenschlager, R. (2013). Divergent roles of autophagy in virus infection. Cells, 2(1), 83-104.
Clark, S. L. (1957). Cellular Differentiation in the Kidneys of Newborn Mice Studied with the Electron Microscope. Journal of Biophysical and Biochemical Cytology, 3(3), 349-362.
D'Autreaux, B., Toledano, M. B. (2007). ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nature Reviews Molecular Cell Biology, 8(10), 813-824.
den Boon, J. A., Ahlquist, P. (2010). Organelle-Like Membrane Compartmentalization of Positive-Strand RNA Virus Replication Factories. Annual Review of Microbiology, Vol 64, 2010, 64, 241-256.
Edinger, A. L., Thompson, C. B. (2004). Death by design: apoptosis, necrosis and autophagy. Current Opinion in Cell Biology, 16(6), 663-669.
Esclatine, A., Chaumorcel, M., Codogno, P. (2009). Macroautophagy Signaling and Regulation. Autophagy in Infection and Immunity, 335, 33-70.
Finkel, T. (2003). Oxidant signals and oxidative stress. Current Opinion in Cell Biology, 15(2), 247-254.
Furuya, N., Yu, F., Byfield, M., Pattingre, S., Levine, B. (2005). The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function. Autophagy, 1(1), 46-52.
Hahn-Windgassen, A., Nogueira, V., Chen, C. C., Skeen, J. E., Sonenberg, N., Hay, N. (2005). Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. Journal of Biological Chemistry, 280(37), 32081-32089.
Halliwell, B., Chirico, S. (1993). Lipid-Peroxidation - Its Mechanism, Measurement, and Significance. American Journal of Clinical Nutrition, 57(5), S715-S725.
Hamanaka, R. B., Chandel, N. S. (2010). Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends in Biochemical Sciences, 35(9), 505-513.
Ichimura, Y., Waguri, S., Sou, Y., Kageyama, S., Hasegawa, J., Ishimura, R., et al. (2013). Phosphorylation of p62 Activates the Keap1-Nrf2 Pathway during Selective Autophagy. Molecular Cell, 51(5), 618-631.
Jackson, W. T., Giddings, T. H., Taylor, M. P., Mulinyawe, S., Rabinovitch, M., Kopito, R. R., Kirkegaard, K. (2005). Subversion of cellular autophagosomal machinery by RNA viruses. Plos Biology, 3(5), 861-871.
Jain, A., Lamark, T., Sjottem, E., Larsen, K. B., Awuh, J. A., Overvatn, et al. (2010). p62/SQSTM1 Is a Target Gene for Transcription Factor NRF2 and Creates a Positive Feedback Loop by Inducing Antioxidant Response Element-driven Gene Transcription. Journal of Biological Chemistry, 285(29), 22576-22591.
Jung, C. H., Ro, S. H., Cao, J., Otto, N. M., Kim, D. H. (2010). mTOR regulation of autophagy. Febs Letters, 584(7), 1287-1295.
Kerr, J. F. R., Wyllie, A. H., Currie, A. R. (1972). Apoptosis - Basic Biological Phenomenon with Wide-Ranging Implications in Tissue Kinetics. British Journal of Cancer, 26(4), 239-257.
Kongara, S., Karantza, V. (2012). The interplay between autophagy and ROS in tumorigenesis. Front Oncol, 2, 171.
Kudchodkar, S. B., Levine, B. (2009). Viruses and autophagy. Reviews in Medical Virology, 19(6), 359-378.
Li, L., Ishdorj, G., Gibson, S. B. (2012). Reactive oxygen species regulation of autophagy in cancer: Implications for cancer treatment. Free Radical Biology and Medicine, 53(7), 1399-1410.
Loewith, R., Jacinto, E., Wullschleger, S., Lorberg, A., Crespo, J. L., Bonenfant, et al. (2002). Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Molecular Cell, 10(3), 457-468.
Miller, S., Krijnse-Locker, J. (2008). Modification of intracellular membrane structures for virus replication. Nature Reviews Microbiology, 6(5), 363-374. doi: Doi 10.1038/Nrmicro1890
Mizushima, N. (2004). Methods for monitoring autophagy. International Journal of Biochemistry & Cell Biology, 36(12), 2491-2502.
Mori, K. I., Nakai, T., Muroga, K., Arimoto, M., Mushiake, K., Furusawa, I. (1992). Properties of a New Virus Belonging to Nodaviridae Found in Larval Striped Jack (Pseudocaranx-Dentex) with Nervous Necrosis. Virology, 187(1), 368-371.
Munday, B. L., Kwang, J., Moody, N. (2002). Betanodavirus infections of teleost fish: a review. Journal of Fish Diseases, 25(3), 127-142.
Nagai, T., Nishizawa, T. (1999). Sequence of the non-structural protein gene encoded by RNA1 of striped jack nervous necrosis virus. Journal of General Virology, 80, 3019-3022.
Nguyen, T., Nioi, P., Pickett, C. B. (2009). The Nrf2-Antioxidant Response Element Signaling Pathway and Its Activation by Oxidative Stress. Journal of Biological Chemistry, 284(20), 13291-13295.
Nishizawa, T., Furuhashi, M., Nagai, T., Nakai, T., Muroga, K. (1997). Genomic classification of fish nodaviruses by molecular phylogenetic analysis of the coat protein gene. Applied and Environmental Microbiology, 63(4), 1633-1636.
Ouyang, L., Shi, Z., Zhao, S., Wang, F. T., Zhou, T. T., Liu, B., Bao, J. K. (2012). Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Proliferation, 45(6), 487-498.
Raught, B., Gingras, A. C., Sonenberg, N. (2001). The target of rapamycin (TOR) proteins. Proceedings of the National Academy of Sciences of the United States of America, 98(13), 7037-7044.
Sabatini, D. M. (2006). mTOR and cancer: insights into a complex relationship. Nature Reviews Cancer, 6(9), 729-734.
Scherz-Shouval, R., Elazar, Z. (2011). Regulation of autophagy by ROS: physiology and pathology. Trends in Biochemical Sciences, 36(1), 30-38.
Scherz-Shouval, R., Shvets, E., Elazar, I. (2007). Oxidation as a post-translational modification that regulates autophagy. Autophagy, 3(4), 371-373.
Scherz-Shouval, R., Weidberg, H., Gonen, C., Wilder, S., Elazar, Z., Oren, M. (2010). p53-dependent regulation of autophagy protein LC3 supports cancer cell survival under prolonged starvation. Proceedings of the National Academy of Sciences of the United States of America, 107(43), 18511-18516.
Seo, G., Kim, S. K., Byun, Y. J., Oh, E., Jeong, S. W., Chae, G. T., Lee, S. B. (2011). Hydrogen peroxide induces Beclin 1-independent autophagic cell death by suppressing the mTOR pathway via promoting the ubiquitination and degradation of Rheb in GSH-depleted RAW 264.7 cells. Free Radical Research, 45(4), 389-399.
Shaw, R. J., Kosmatka, M., Bardeesy, N., Hurley, R. L., Witters, L. A., DePinho, R. A., Cantley, L. C. (2004). The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proceedings of the National Academy of Sciences of the United States of America, 101(10), 3329-3335.
Sir, D., Chen, W. L., Choi, J., Wakita, T., Yen, T. S. B., Ou, J. H. J. (2008). Induction of incomplete autophagic response by hepatitis C virus via the unfolded protein response. Hepatology, 48(4), 1054-1061.
Su, Y. C., Hong, J. R. (2010). Betanodavirus B2 Causes ATP Depletion-induced Cell Death via Mitochondrial Targeting and Complex II Inhibition in Vitro and in Vivo. Journal of Biological Chemistry, 285(51), 39801-39810.
Su, Y. C., Wu, J. L., Hong, J. R. (2009). Betanodavirus non-structural protein B2: A novel necrotic death factor that induces mitochondria-mediated cell death in fish cells. Virology, 385(1), 143-154.
Su, Y. C., Wu, J. L., Hong, J. R. (2011). Betanodavirus up-regulates chaperone GRP78 via ER stress: roles of GRP78 in viral replication and host mitochondria-mediated cell death. Apoptosis, 16(3), 272-287.
Tee, A. R., Fingar, D. C., Manning, B. D., Kwiatkowski, D. J., Cantley, L. C., Blenis, J. (2002). Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proceedings of the National Academy of Sciences of the United States of America, 99(21), 13571-13576.
Thomson, A. W., Turnquist, H. R., Raimondi, G. (2009). Immunoregulatory functions of mTOR inhibition. Nature Reviews Immunology, 9(5), 324-337.
Vernon, P. J., Tang, D. L. (2013). Eat-Me: Autophagy, Phagocytosis, and Reactive Oxygen Species Signaling. Antioxid Redox Signal, 18(6), 677-690.
Wang, X. J., Hayes, J. D., Henderson, C. J., Wolf, C. R. (2007). Identification of retinoic acid as an inhibitor of transcription factor Nrf2 through activation of retinoic acid receptor alpha. Proceedings of the National Academy of Sciences of the United States of America, 104(49), 19589-19594.
Wells, W. (2005). Autophagy unveiled. Journal of Cell Biology, 168(5), 676-677.
Wu, H. C., Chiu, C. S., Wu, J. L., Gong, H. Y., Chen, M. C., Lu, M. W., Hong, J. R. (2008). Zebrafish anti-apoptotic protein zfBcl-X-L can block betanodavirus protein alpha-induced mitochondria-mediated secondary necrosis cell death. Fish & Shellfish Immunology, 24(4), 436-449.
Yoshikoshi, K., Inoue, K. (1990). Viral Nervous Necrosis in Hatchery-Reared Larvae and Juveniles of Japanese Parrotfish, Oplegnathus-Fasciatus (Temminck and Schlegel). Journal of Fish Diseases, 13(1), 69-77.
校內:2019-08-25公開