簡易檢索 / 詳目顯示

研究生: 黃昺鈞
Hwang, Roger
論文名稱: 極音速噴嘴之共軛熱傳數值模擬分析
Numerical Analyses of Conjugate Heat Transfer in Hypersonic Nozzles
指導教授: 江滄柳
Jiang, Tsung-Leo
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 58
中文關鍵詞: 極音速噴嘴冷卻水套共軛熱傳
外文關鍵詞: hypersonic nozzle, water jacket, conjugate heat transfer
相關次數: 點閱:75下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是以數值計算模擬之方式進行極音速噴嘴之共軛熱傳分析。本研究已成功利用數值模擬軟體將固體、液體與氣體三相之共軛熱傳進行分析討論,並將其應用至極音速噴嘴之冷卻水套模擬分析上。同時設計兩種不同之冷卻水套,並將模擬結果與未使用水套之極音速噴嘴進行比較,以評估其冷卻效益。第一種冷卻水套參考冷卻碳同位素所使用的水套設計而成,冷卻水呈環狀包圍噴嘴壁面;第二種冷卻水套參考液態火箭再生冷卻之概念設計而成,冷卻水經由30個水道流經壁面,比較結果後發現極音速噴嘴使用水套可有效降低噴嘴喉部壁面之溫度,且對噴嘴內流場品質影響甚微,反觀熱損量卻隨出口全溫降低而有所增加。而第二種水套之冷卻效益遠高於第一種水套,此研究結果可供地面風洞測試設備參考。

    The conjugate heat transfer of a hypersonic nozzle is analyzed by using the numerical simulation. The numerical method for the conjugate heat transfer between the three phases of solid, liquid, and gas is developed, and then applied to the analyses of a hypersonic nozzle using a water jacket for the thermal protection. Two types of cooling water jacket are designed and the simulation results are compared with those without using the water jacket. The first type of water jacket is refered to carbon-11 target cooling system where cooling water circulate around nozzle outer wall. The second type of water jacket is refered to regenerative cooling which is employed for liquid rocket combustion chamber where cooling water pass through 30 channels in nozzle wall. It is found that the inner wall temperature of a hypersonic nozzle using the water jacket is much lower than the one without the water jacket. However, the heat loss is increased, since the total temperature decreases at the nozzle exit. The cooling efficiency of the second type water jacket is much better than the first type. The results of the present study are beneficial to the design of the hypersonic wind tunnel test facility.

    摘要 I Abstract II 誌謝 IV 目錄 VI 表目錄 VIII 圖目錄 IX 符號說明 XI 第一章 導論 - 1 - §1-1 前言 - 1 - §1-2文獻回顧 - 4 - §1-3 研究動機 - 14 - 第二章 數學及物理模式 - 16 - §2-1基本假設 - 16 - §2-2 流場統御方程式 - 17 - §2-3固相之統御方程式 - 19 - §2-4紊流模式 - 19 - §2-5 邊牆函數(Wall Function) - 21 - §2-6界面之統御方程式 - 22 - 第三章 數值方法 - 25 - §3-1雷諾傳輸定理(Reynolds Transport Theorem) - 25 - §3-2 Pressure-Based之SIMPLE運算法則 - 26 - §3-3鬆弛係數 - 27 - §3-4收斂標準 - 28 - 第四章 結果與討論 - 29 - §4-1二維軸對稱極音速噴嘴全區段內流場模擬結果 - 29 - §4-2二維軸對稱極音速噴嘴喉部附近區域之模擬結果 - 35 - §4-3極音速噴嘴喉部附近區域結合冷卻水套之模擬 - 39 - §4-4極音速噴嘴喉部附近區域結合再生冷卻之模擬 - 43 - §4-5不同冷卻水套之熱損分析結果 - 48 - 第五章 結論與未來工作 - 50 - §5-1結論 - 50 - §5-2未來工作 - 51 - 參考文獻 - 53 - 自述 - 57 - 著作權聲明 - 58 -

    [1] Sutton, G. P., Biblarz, O., “Rocket propulsion elements,”7th Ed., John-Wiley & Sons, 2000
    [2] http://en.wikipedia.org/wiki/De_Laval_nozzle
    [3] 李峻溪、厲復霖,“雙模式極超音速衝壓引擎進氣道之數值研究,” 中正嶺學報,vol.35, no.1, 2006。
    [4] http://www.aeronautics.nasa.gov/atp/facilities/htt/index.html
    [5] 徐子圭,“電腦數值模擬設計於航太科技之應用,” 航太工業通訊雜誌,vol.64, 2007.
    [6] 郭兆林翻譯,“極音速太空噴射機,”科學人,vol.55, pp.70-77, 2006
    [7] 楊植凱,“反射式震波風洞設計,”碩士論文,台南:國立成功大學航空太空工程研究所,2010
    [8] http://www.anu.edu.au/aldir/Canberra_Hypersonics/t3-hypersonic-wind-tunnel.htm
    [9] Robinson, M. J., Rowan, S. A. and Odam, J. S. “T4 free piston shock tunnel operator's manual,” St Lucia: Division of Mechanical Engineering, The University of Queensland, 2003.
    [10] Paull, A. and R.J. Stalker. “Scramjet testing in the T3 and T4 hypersonic impulse facilities," in Scramjet Propulsion, AIAA Progress in Astronautics and Aeronautics, vol. 189, pp. 1-46, 2001.
    [11] Neely A. J., Riley C., Boyce R. R., Mudford N. R., “Hydrocarbon and hydrogen-fuelled scramjet cavity flameholder performance at high flight Mach numbers,” 12th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, AIAA 2003-6989, 2003.
    [12] Zhang, X., “Coupled simulation of heat transfer and temperature of the composite rocket nozzle wall,” Aerospace Science and Technology, vol.15, pp.402-408, 2011.
    [13] http://www.diic.com.tw/comment/9406/940610.htm
    [14] Stewart, D. A., Leiser, D. B., Smith, M., and Kolodziej, P. “Thermal response of integral, multicomponent composite thermal protection systems,” Journal of Spacecraft & Rockets, vol. 23, pp.420-427, 1986.
    [15] Kourtides, D. A., “Thermal performance of composite flexible blanket insulations for hypersonic aerospace vehicles,” Composites Engineering, vol. 3, issues 7–8, pp.805–813, 1993.
    [16] Ferraiuolo, M., and Manca, O., “Heat transfer in a multi-layered thermal protection system under aerodynamic heating,” International Journal of Thermal Sciences, vol. 53, pp. 56–70, 2012.
    [17] Frederick, L. S., “Conjugate condition convection heat transfer with a high-speed boundary,”Journal of Thermophysics and Heat Transfer, vol.8, no.2, pp.275-281, 1994.
    [18] Li, T.Q., Xu, Z. H., and Yang, X.G., “Application of a high thermal conductivity C/C composite in a heat-redistribution thermal protection system,” Carbon, vol. 48, pp.912-928, 2010.
    [19] Chen, X. and Han, P., “A note of solution of conjugate heat transfer problem using SIMPLE-like algorithms”, International Journal of Heat and Fluid Flow, vol. 21, pp. 463-467, 2000.
    [20] Bilgen. E., and Yamane, T., “Conjugate heat transfer in enclosures with openings for ventilation”, Heat and Mass Transfer, vol. 40, pp. 401-411, 2004.
    [21] Zaharnah. I. T., “Entropy analysis in pipe flow subjected to external heating”, Entropy, vol.5, pp. 391-403, 2003.
    [22] Yapıcı. H., and Albayrak. B., “Numerical solution of conjugate heat transfer and thermal stresses in a circular pipe externally heated with non-uniform heat flux”, Energy Conversion and Management, vol. 45, pp.927-937, 2004.
    [23] Menter, F. R., “Two equation eddy viscosity turbulence models for engineering applications”, AIAA Journal, vol. 32, no. 8, 1994.
    [24] Min G. H., Jeung H. P. , In J. K., Seung D. Y., Cheol K. J. , Goung J. L. , Sang W. K., “Design and evaluation of a carbon-11 gas target having auxiliary cooling fins in the target cavity for the stable production of carbon-11”, Nuclear Instruments and Methods in Physics Research , A 655108–110, 2011
    [25] Hill, Philip, G., and Peterson, Carl, R.,“Mechanics and thermodynamics of propulsion”2nd Ed.,Addison -Wesley,1992
    [26] Bartosiewicz, Y., Aidoun, Z., Desevaux, P., and Mercadier, Y., “Numerical and experiment investigation on supersonic ejector”, International Journal of Heat and Fluid Flow, Vol. 26, pp.56-70, 2005.
    [27] Wilcox, D.C., “Turbulence modeling for CFD,” DCW Industries, Inc., La Canada, California, 1998.
    [28] Launder, B. E., and Spalding, D. B., “The numerical computation of turbulent flows,”Computer Methods in Applied Mechanics and Engineering, pp.269-289, 1974.
    [29] Kassab, A., Divo, E., Heidmann, J., Steinthorsson, E., and Rodriguez, F., “BEM/FVM conjugate heat transfer analysis of a three-dimensional film cooled turbine blade,” Int. J. Numer. Methods Heat Fluid Flow, 13, pp.581–610, 2003
    [30] Fluent 6.3 User’s Guide, 2006.
    [31] Dieter, K. Huzel, and David, H. Huang, “Modern engineering for design of liquid-propellant rocket engines, Progress in Astronautics and Aeronautics,”AIAA, vol.147, p. 20.Washington, DC, 1992.

    下載圖示 校內:2015-08-26公開
    校外:2015-08-26公開
    QR CODE