簡易檢索 / 詳目顯示

研究生: 楊萬華
Yang, Wan-Hua
論文名稱: 製備和鑑定螺旋槳形狀的α相三氧化二鐵 奈米結構
Fabrication and Characterization of α-Fe2O3 Nanopropellers
指導教授: 葉晨聖
Yeh, Chen -Sheng
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 93
中文關鍵詞: 赤鐵礦磁鐵礦奈米螺旋槳.γ相三氧化二鐵α相三氧化二鐵
外文關鍵詞: hematite, maghemite, α-Fe2O3, γ-Fe2O3, nanopropeller.
相關次數: 點閱:111下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 運用二氯化鐵為前驅物伴隨著甘氨酸和尿素經由低溫迴流方法來製備螺旋槳形狀的α相三氧化二鐵奈米結構,加入甘氨酸的量對形成螺旋槳形狀的α相三氧化二鐵奈米結構有重大的影響,因為甘氨酸在此實驗中扮演著保護劑和緩衝溶液pH值的重要角色(pH值2到5為最佳條件),而這兩因素決定二價鐵離子(Fe2+)的氧化速度,此反應產物為動力學產物,所以氧化速度決定最後產物的形狀和大小。螺旋槳形狀的α相三氧化二鐵奈米結構形成機制是經由先溶解然後再結晶的過程。經由電子繞射結果得知螺旋槳形狀的α相三氧化二鐵奈米結構是由六方最密堆積的中間柱子部分和六組對稱的葉片所組成,而六方最密堆積的中間柱子六個側面是{1100},六組對稱葉片的成長方向為±[100],±[1010],和 ±[0110]。最後再經由先還原再氧化的固態轉換法將弱鐵磁性的α相三氧化二鐵轉變為強鐵磁性的γ相三氧化二鐵而其螺旋槳形狀仍然保持。

    The α-Fe2O3 (hematite) nanopropellers were synthesized via a low temperature solution-based method using FeCl2 as a precursor in the presence of urea and glycine hydrochloride. The formation of α-Fe2O3 nanopropellers is strongly depended on the addition of glycine hydrochloride, which serves as a pH modulator and affects the oxidation rate of Fe2+. The structural evolution of the propeller-structured hematite was found to follow dissolution and recrystallization processes. For the structural conformation, each nanopropeller presents a hexagonal central column closed by six equivalent surfaces of {1100} and the six arrays of the nanopropeller structure are a result of growth along ± [1100], ± [1010], and ± [0110]. Preliminary results show that the magnetic maghemite (γ-Fe2O3) nanopropellers could also be prepared by a reduction and re-oxidation process from the α-Fe2O3 (hematite) nanopropeller precursors.

    誌謝…………………………………………………………………Ⅲ 中文摘要…………………………………………………………Ⅳ 英文摘要………………………………………………………………Ⅴ 目錄……………………………………………………………………Ⅵ 圖目錄…………………………………………………………………Ⅸ 第一章 緒論…………………………………………………………1 1.1 奈米材料及其應用……………………………………………1 1.2 製備不同形狀和大小的奈米結構……………………………3 1.2.1 製備方法……………………………………………3 1.2.2 雷射剝削法…………………………………………4 1.2.3 化學氣相沉積法(CVD)……………………………6 1.2.4 氧化還原法…………………………………………8 1.2.5 水熱合成法…………………………………………9 1.3 不同形狀奈米結構的成長機制…………………………10 1.3.1 成核和粒子成長……………………………………10 1.3.2 化學氣相沉積法成長機制…………………………12 1.4 決定奈米結構形狀的重要參數……………………………13 1.4.1 晶種的結晶相影響奈米結構的形狀………………14 1.4.2 晶種結晶相的表面能影響奈米結構的形狀………15 1.4.3 控制其成長方式:動力學或熱力學成長………17 1.5 α相三氧化二鐵簡介………………………………………18 1.6 螺旋槳形狀奈米結構簡介…………………………………20 第二章 實驗部分……………………………………………………26 2.1 研究動機和目的…………………………………………26 2.2 實驗藥品和儀器………………………………………27 2.2.1 藥品………………………………………………27 2.2.2 儀器………………………………………………27 2.2 實驗步驟…………………………………………………32 2.3.1 製備螺旋槳形狀α相三氧化二鐵奈米結構……32 2.3.2 分離及純化螺旋槳形狀α相三氧化 二鐵奈米結構………………………………………33 2.3.3 螺旋槳形狀α相三氧化二鐵奈米結構形 成機制探討…………………………………………33 2.3.4 把螺旋槳形狀的α相三氧化二鐵轉相成 γ相三氧化二鐵……………………………………36 第三章 結果與討論…………………………………………………37 3.1 鑑定螺旋槳形狀α相三氧化二鐵奈米結構……………37 3.1.1 掃描式電子顯微鏡(SEM)分析…………………38 3.1.2 薄膜X光繞射儀(Film-XRD)分析…………………42 3.1.3 穿透式電子顯微鏡(TEM)分析……………………44 3.1.4 選區電子繞射(SAED)分析…………………45 3.1.5 高解析穿透式電子顯微鏡(HR-TEM)分析………49 3.1.6 能量分散光譜儀(EDS)分析………………………50 3.2 螺旋槳形狀α相三氧化二鐵奈米結構成長機制………53 3.2.1 時間變因……………………………………………53 3.2.2 甘氨酸(glycine hydrochloride)變因……………61 3.2.3 尿素(urea)變因…………………………………70 3.3 把螺旋槳形狀α相三氧化二鐵奈米結構轉相成γ相三氧化二鐵………………………………………………………73 3.3.1 掃描式電子顯微鏡(SEM)分析……………………74 3.3.2 穿透式電子顯微鏡(TEM)分析……………………75 3.3.3 薄膜X光繞射儀(Film-XRD)分析…………………77 3.3.4 超導量干涉磁量儀(SQUID)分析……………79 第四章 結論………………………………………………………82 參考文獻…………………………………………………………83

    1. L. Carbone, S. Kudera, E. Carlino, W. J. Parak, C. Giannini, R. Cingolani, L. Manna, J. Am. Chem. Soc. 2006, 128, 748-755.

    2.H. Jin, Z. Liu, T. Ohsuan, O. Terasaki, Y. Inoue, K. Sakamoto, K. Ariga, S. Che, Adv. Mater. 2006, 18, 593-596.

    3.N. Zhao, L. Qi, Adv. Mater. 2006, 18, 359-362.

    4.A. G.. Kanaras, C. Sonnichsen, H. Liu, A. P. Alivisators, Nano. Lett. 2005, 5, 2164-2167.

    5.N. Zettsu, J. M. Mclellan, B. Wiley, Y. Yin, Z. Y. Li, Y. Xia, Angew. Chem. Int. Ed. 2006, 45, 1288-1292.

    6.A. Vinu, M. Miyahara, V. Sivamurugan, T. Mori, K. Ariga, J. Mater. Chem. 2005, 15, 5122-5127.

    7.Y. C. Liu, P. I. Lin, Y. T. Chen, M. D. Ger, K. L. Lan, C. L. Lin, J. Phys. Chem. B. 2004, 108, 14897-14900.

    8.R. Venugopal, P. I. Lin, C. C. Liu, Y. T. Chen, J. Am. Chem. Soc. 2005, 127, 11262-11268.

    9.C. Y. Chen, C. T. Lai, C. W. Hu, Y. H. Chou, P. T. Chou, Y. H. Chiu, H. Tian, Small. 2005, 1, 1215-1220.

    10.J. M. Hsien, M. L. Ho, P. W. Wu, P. T. Chou, T. T. Tsai, Y. Chi, Chem. Commun. 2006, 6, 615-617.

    11.(a) F. Y. Chang, Y. S, Yang, W. H. Huang, C. S. Yeh, C. Y. Tsai, C. L. Wu, Biomaterials. 2005, 26, 729-738. (b) D. B. Shieh, F. Y. Chang, C. H. Su, C. S. Yeh, M. T. Wu, C. Y. Tasi, C. L. Wu, Biomaterials. 2005, 26, 7183-7191.

    12.(a) Y. Y. Ou, M. H. Huang, J. Phys, Chem. B. 2006, 110, 2031-2036.(b) H. C. Chu, C. H. Kuo, M. H. Huang, Inorg. Chem. 2006, 45, 808-813.(c) H. Y. Wu, H. C. Chu, T. J. Kuo, C. L. Kuo, M. H. Huang, Chem. Mater. 2005, 17, 6447-6451.(d) C. L. Kuo, T. J. Kuo, M. H. Huang, J. Phys. Chem. B. 2005, 109, 20115-20121.

    13.C. T. Yang, M. H. Huang, J. Phys. Chem. B. 2005, 109, 17842-17847.

    14.(a) C. H. Kuo, M. H. Huang, Langmuir. 2005, 21, 2012-2016. (b) C. H. Kuo, T. F. Chiang, M. H. Huang, Langmuir. 2004, 20, 7820-7824. (c) C. H. Su, P. L. Wu, C. S. Yeh, J. Phys. Chem. B. 2003, 107, 14240-14243. (d) C. H. Su, P. L. Wu, C. S. Yeh, Bull. Chem. Soc. Jpn. 2004, 77, 189-193. (e) Y. C. Kuo, C. P. Jen, Y. H. Chen, C. H. Su, S. H. Tsai, C. S. Yeh, J. Nanosci. Nanotech. 2006, 6, 1-4. (f) C. Y. Tsai, A. L. Shiau, P. C, D. B. Shieh, D. H. Chen, C. H. Chou, C. S. Yeh, C. L. Wu, Nano. Letters. 2004, 4, 1209-1212.

    15.(a) Y. L. Tung, S. W. Lee, Y. Chi, L. S. Chen, C. F. Shu, F. I Wu, Adv. Mater. 2005, 17, 1059-1064. (b) C. P. Li, K. H. Wei, J. Y. Huang, Angew. Chem. Int. Ed. 2006, 118, 1477-1481.

    16.(a) K. W. Chang, J. J. Wu, Adv. Mater. 2005, 17, 241-254. (b) T. C. Wong, C. C. Yu, J. J. Wu, Adv.Funct. Mater. 2005, 15, 1440-1444.

    17.(a) M. K. Leung, M. B. Viswanath, P. T. Chou, S. C. Pu, H. J. Lin, B. Y. Jin, J. Org. Chem. 2005, 3560-3568. (b) C. C. Chao, M. K. Leung, Y. O. Su, K. Y. Chiu, T. T. Lin, S. J. Hsieh, S. C. Lin, J. Org. Chem. 2005, 4323-4331. (c) Y. W. Jun, J. S. Choi, J. W. Cheou, Angew. Chem. Int. Ed. 2006, 45, 3414-3439. (d) 川合知二, “圖解奈米科技”,全華科技圖書公司, 2002.

    18.J. S. Jeon, C. S. Yeh, J. Chin. Chem. Soc. 1998, 45, 721-731

    19.Y. H. Yeh, M. S. Yeh, Y. P. Lee, C. S. Yeh, Chem. Lett. 1998, 1183-1190.

    20.M. S. Yeh, Y. S. Yang, Y. P. Lee, H. F, Y. H. Yeh, C. S. Yeh, J. Phys. Chem. B. 1999. 103, 6851-6857.

    21.Y. P. Lee, Y. H. Liu, C. S. Yeh, Phys. Chem. Chem. Phys. 1999, 1 4681-4686.

    22.H. M. Kao, R. R. Wu, T. H. Chen, Y. H. Chen, C. S. Yeh, J. Mater. Chem. 2000, 10, 2802-2809.

    23.Y. H. Chen, C. S. Yeh, Chem. Comm. 2001, 371-375.

    24.(a) Y. H. Chen, C. S. Yeh, Colloids. And. Surfaces A: Physicochemical and Engineering Aspects. 2002, 197, 133-138. (b) Y. H. Chen, Y. H. Tseng, C. S. Yeh, J. Mater. Chem. 2002, 14, 1419-1425. (c) T. Y. Chen, S. F. Chen, H. S. Sheu, C. S. Yeh, J. Phys. Chem. B. 2002, 106, 9717-9724. (d) S. H. Tasi, Y. H. Liu, P. L. Wu, C. S. Yeh, J. Mater. Chem. 2003, 13, 978-980. (e) C. C. Huang, C. S. Yeh, C. J. Ho, J. Phys. Chem. B. 2004, 108, 4940-4945. (f) M. T. Hsiao, S. F. Chen, D. B. Shieh, C. S. Yeh, J. Phys. Chem. B. 2006, 110, 205-211.

    25.Z. R. Dai, Z. W. Pan, Z. L. Wang, Adv. Funct. Mater. 2003, 13, 9-24.

    26.Z. L. Wang, Materialstoday. 2004, 26-33.

    27.S. Chen, Z. L. Wang, J. Ballato, S. H. Foulger, D. L. Carroll, J. Am. Chem. Soc. 2003, 15, 16186-16187.

    28.Y. Sun, Y. Xia, J. Am. Chem. Soc. 2004, 3892-3901.

    29.T. K. Sau, C. T. Murphy, J. Am. Chem. Soc. 2004, 126, 8648-8649.

    30.Y. Xiong, T. M. McLellan, J. Chen, Y. Yin, Z. Y. Li, Y. Xia, J. Am. Chem. Soc. 2005, 127, 17118-17127.

    31.J. Yuan, W. N. Gomez, S. L. Suib, J. Am. Chem. Soc. 2005, 127, 14184-14185.

    32.W. S. Chae, H. W. Shin, E. S. Lee, E. J. Jung, Y. R. Kim, J. Phys. Chem. B. 2005, 109, 6204-6209.

    33.Y. Chang, H. C. Zeng, Crystal Growth &. Design. 2004, 4, 273-278.

    34.X. Peng, J. Wickham, A. P. Alivisatos, J. Am. Chem. Soc. 1998, 120, 5343-5349.

    35.C. B. Murray, C. R. Kagan, M. G. Bawendi, Annu. Rev. Mater. Sci. 2000, 30, 545-549.

    36.B. R. Pamplin, Crystal Growth; pergamon. Press. New. York, 1975.

    37.(a) Y. Jiang, Z. L. Wang, Y. Liu, Z. Zhang, Forced Hydrolysis and Chemical Co-Precipitation : In Handbook of Nanophase and Nanostructured Materials New York. 2003, P59. (b) C. Buurda, X. B. Chen, R. Narayanan, M. A. El-Sayed, Chem. Rev. 2005, 105, 1025-1102.

    38.Y. Cheng, Y. S. Wang, D. Chen, F. Bao, J. Phys. Chem. B. 2005, 109, 794-798.

    39.R. Narayanan, M. A. El-Sayed, J. Phys. Chem. B. 2005, 109, 12663-12676.

    40.H. G. Yang, H. C. Zeng, Angew. Chem. Int. Ed. 2004, 43, 5930-5933.

    41.D. F. Zhang, L. D. Sun, J. L. Yin, C. H. Yan, R. M. Wang, J. Phys. Chem. B. 2005, 109, 8786-8790.

    42.Y. Xia, P. Yang, Y. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 2003, 15, 353-389.

    43.P. C. Chang, Z. Y. Fan, D. Wang, W. Y. Tseng, W. A. Chiou, J. G. Lu, Chem. Mater. 2004, 16, 5133-5137.

    44.楊明勳, “鐵磁性Zn1-XCoXO 奈米柱之成長與特性分析”,國立成功大學博碩士論文,化工,2004 P67.

    45.(a) Y. W. Jun, J. S. Choi, J. W. Cheon, J. Phys. Chem. B. 2005, 109, 14795-14806.

    46.Y. Jun, Y. Jung, J. Cheon, J. Am. Chem. Soc. 2002, 124, 615-621.

    47.Dictionary of Inorganic Compounds, 1St ed.; Macintre, J. E.,Ed.;Chapman & Hall: London, New. York, 1992.

    48.J. Lu, P. Qi, Y. Peng, Z. Meng, Z. Yang, Z. Yu, W. Yu, Y. Qin, Chem. Mater. 2001, 13, 2169-2174.

    49.X. Peng, L. Manna, W. Yang, J. Wickham, E. C. Scher, A. Kadavanich, A. P. Alivisatos, Nature. 2000, 404, 59-64.

    50.Z. A. Peng, X. Peng, J. Am. Chem. Soc. 2002, 124, 3343-3347.

    51.L. Manna, E. C. Scher, A. P. Alivisatos. J. Am. Chem. Soc. 2001, 123, 615-619.

    52.Z.A. Peng, X. Peng, J. Am. Chem. Soc. 2001, 123, 1389-1396.

    53.L. Manna, D. J. Million, A. Miesel, E. C. Scher, A. P. Alivisatos, Nature. Mater. 2003, 2, 382-386.

    54.P. D. Cozzoli, L. Manna, M. L. Curri, S. Kudera, C. Giannini, M. Striccdi, A. Agostiano, Chem. Mater. 2005, 17, 1296-1301.

    55.S. M. Lee, Y. Jun, S. N. Cho, J. Cheon, J. Am. Chem. Soc. 2002, 124, 11244-11249.

    56.T. J. Sugimoto, J. Phys. Chem. B .2000, 104,1153-1158.

    57.H. H. Kung, Transition Metal Oxides: Surface Chemical and Catalysis, Elsevier, New York 1989.

    58.L. Huo, W. Li, L. Lu, H. Cai, S. Xi, J. Wang, B. Zhao, Y. Shen, Z. Lu, Chem. Mater. 2000, 12, 790-797.

    59.M. A. Gondal, A. Hameed, Z. H. Yamani, A. Suwaiyan, Chem. Phys. Lett. 2004, 385, 111-116.

    60.W. Huynh, X. G. Peng, A. P. Alivisatos, Adv. Mater. 1999, 11, 923-928.

    61.H. Mattoussi, L. H. Radzilowski, B. O. Dabbousi, E. L. Thomas, M. G Bawendi, M. F. Rubner, J. Appl. Phys. 1998, 83, 7965-7970.

    62.T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein, M. A. El Sayed, Science. 1996, 272, 1924-1928.

    63.A. S. S. Brown, J. S. J. Hargreaves, B. Rijniersce, Catal. Lett. 1998, 53, 7-15.

    64.R. M. Cornell, U. Schwertmann, The Iron Oxide. Structure, Properties, Rections, Occurrence and Uses, VCH, Weinheim, 1996, P. 464.

    65.H. T. Sun, C. Cantalini, M. Pelino, M. Catalano, L. Tapfer, J. Am. Chem. Soc. 1996, 79, 927-1003.

    66.J. Chen, L. Xu, W. Y. Li, X. L. Gou, Adv. Mater. 2005, 17, 582-587.

    67.Z. Y. Sun, H. Yuan, Z. M. Liu, B. X. Han, X. R. Zhang, Adv. Mater. 2005, 17, 2993-2998.

    68.Z. Zhang, H. J. Jiang, Z. Xing, X. Zhang, Sensors and Actuators B. 2004, 102, 155-161.

    69.C. J. Jia, L. D. Sun, Z. G. Yan, L. P. You, F. Luo, X. D. Han, Y. C. Pang, Z. Zhang, C. H. Yan, Angew. Chem. Int. Ed. 2005, 44, 4328-4333.

    70.J. Chen, L. Xu, W. Y. Li, X. L. Gou, Adv. Mater. 2005, 17, 582-586.

    71.Z. Y. Sun, H. Yuan, Z. M. Liu, B. X. Han, X. R. Zhang, Adv. Mater. 2005, 17, 2993-2997.

    72.M. H. Cao, T. F. Liu, S. Gao, G. B. Sun, X. L. Wu, C. W. Hu, Z. L. Wang, Angew. Chem. Int. Ed. 2005, 44, 4197-4201.

    73.L. Vayssieres, C. Sathe, S. M. Butorin, D. K. Shuh, J. Nordgren, J. H. Guo, Adv. Mater. 2005, 17, 2320-2323.

    74.T. Brezesinski, M. Groenewolt, M. Antonietti, B. Smarsly, Angew. Chem. Int. Ed. 2006, 45, 781-784.

    75.Y. Xiong, Z. Li, X. Li, B. Hu, Y. Xie, Chem. Eur. J. 2003, 9, 4991-4994.

    76.Y. Xiong, Z. Li, X. Li, B. Hu, Y. Xie, Inorg. Chem. 2004, 43, 6540-6542.

    77.P. X. Gao, Z. L. Wang, Appl. Phys. Lett. 2004, 84, 2883-2885.

    78.X. P. Gao, Z. F. Zheng, H. Y. Zhu, G. L. Pan, J. L. Bao, F. Wu, D. Y. Song, Chem. Commun. 2004, 1428-1429.

    79.T. L. Sounart, J. Liu, J. A. Voigt, J. W. P. Hsu, E. D. Spoerke, Z. Tian, Y. B Jiang, Adv. Funct. Mater. 2006, 16, 335-344.

    80.C. X. Xu, X. W. Sun, Z. L. Dong, G. P. Zhu, Y. P. Cui, Appl. Phys. Lett. 2006, 88, 093101.

    81.D. Zitoun, N. Pinna, N. Frolet, C. Belin, J. Am. Chem. SOC. 2005, 127, 15034-15035.

    82.D. F. Zhang, L. D. Sun, C. J. Jia, Z. G. Yan, L. P. You, C. H. Yan, J. Am. Chem. Soc. 2005, 127, 13492-13493.

    83.Y. S. Ding, X. F. Shen, S. Gomez, H. Luo, M. Aindow, S. L. Suib, Adv. Funct. Mater. 2006, 16, 549-555.

    84.C. L. Nehl, H. W. Liao, J. H. Hafner, Nano. Lett. 2006, 6, 683-688.

    下載圖示 校內:立即公開
    校外:2006-07-05公開
    QR CODE