簡易檢索 / 詳目顯示

研究生: 高弘任
Kao, Hung-Jen
論文名稱: 檸檬酸法製備鋁酸鍶鈣螢光粉體及其光性質研究
Preparation and Luminescence of Strontium-Calcium aluminate Phosphors by Citric Acid Method
指導教授: 黃啟祥
Hwang, Chii-Shyang
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 129
中文關鍵詞: 白光鋁酸鍶鈣螢光粉
外文關鍵詞: white light, strontium-calcium aluminate, phosphor
相關次數: 點閱:70下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為提高鋁酸鍶鈣螢光粉體之發光效率,並獲得具不同色度座標之白光螢光粉,本研究以二種檸檬酸法製備粉體,檢討下列實驗變因對螢光粉體之合成及發光性質之影響:包括(1) 檸檬酸錯合物法(檸檬酸/金屬陽離子之莫耳比vs.酸鹼值)、(2) 檸檬酸凝膠法(檸檬酸/金屬離子之莫耳比vs.乙二醇/檸檬酸之莫耳比)、(3) Eu3+¬ 離子之取代量、(4)錳離子之取代量。
    以檸檬酸/金屬陽離子之莫耳比≧2、pH=2或檸檬酸/金屬陽離子之莫耳比≧2、乙二醇/檸檬酸之莫耳比≧1的條件所製得的前驅物為非晶質,大部分前驅物經1000℃/ 8h煅燒即可成為含高溫相六方SrAl2O4和單斜CaAl2O4之鋁酸鍶鈣螢光粉體。當Eu2+進入此兩種主體晶格時,便會在PL圖譜形成綠光(λp=520nm)和藍光(λp=440nm)發射帶。在檸檬酸錯合物法中,1300℃及1400℃煅燒所合成之螢光粉體,其藍光發射帶之發射強度會隨pH值之增加而變大;而檸檬酸凝膠法中,經1400℃二階段煅燒所合成之螢光粉體,其PL積分強度會隨乙二醇添加量之增加而降低。在相同煅燒條件下,檸檬酸凝膠法所合成之螢光粉體,其PL積分強度較檸檬錯合物法所合成者強。
    在製備摻Eu3+之鋁酸鍶鈣螢光粉體實驗中,螢光粉體主要由六方SrAl2O4、單斜CaAl2O4及EuCaAl3O7相所組成。此螢光粉體主要發出616nm、598nm及587nm之紅光,其發射強度隨Eu3+取代量之增加而增強,當在Eu3+ 取代量大於16 mol%後,由於濃度淬滅效應,紅光發射強度隨Eu2+取代量之增加而降低。藉由混合摻有Eu2+及Eu3+之二種螢光粉體可提升演色性。
    在製備摻錳、銪離子之鋁酸鍶鈣螢光粉體實驗中,僅摻有Mn2+之粉體無法以383nm或350nm激發,同時摻有錳、銪離子之鋁酸鍶鈣螢光粉受383nm激發時則可發光,其發射峰各為Eu2+所發射之440nm、520nm及Mn2+所發出之480nm。摻Mn2+、Eu2+之鋁酸鍶鈣螢光粉,其PL積分強度較僅摻Eu2+者強。螢光粉體之整體PL積分強度、440nm及520nm兩發射峰強度隨Mn2+添加量之增加而降低,但480nm發射峰則會增加。
    在1300℃~1400℃煅燒溫度範圍內,所有螢光粉之PL發射強度會隨煅燒溫度提升而增加,其中以Eu2+摻雜濃度為1 mol%、Mn2+摻雜濃度為0.5 mol%之前驅物,經1400℃二階段煅燒之樣品具有最大之PL積分強度;摻雜18 mol% Eu3+之螢光粉體與摻雜1 mol% Eu2+之螢光粉體依重量比2:1所混合之混合粉體,且有最佳之演色性,最接近白光。

    In order to increase the emission intensity and gain the white light phosphor, strontium-calcium aluminate phosphors were synthesized by citric acid method in this study. Influence factors of synthesis & luminescence for phosphors were discussed : as (a) Citrate complex method (ratio of citric acid/metal ions vs. pH value), (b) Citrate gel method (ratio of citric acid/metal ions vs. ratio of ethylene glycol/citric acid), (c) Amount of Eu3+ ions, (d) Amount of Mn2+ ions
    The precursors were amorphous when the ratio of citric acid/metal ion≧2, pH=2 or the ratio of citric acid/metal ion≧2, the ratio of ethylene glycol/ citric acid≧1. Strontium-calcium aluminate phosphors were obtained and composed of monoclinic CaAl2O4 and hexagonal SrAl2O4 after calcining ar 1000℃/8h for most precursors. It means citrate complex method and citrate gel method can lower the synthesis temperature about 300~400℃. When Eu2+ ions doped into these two host lattices, phosphors showed blue (λp=440nm) and green (λp=520nm) emission bands in PL spectra. The 440nm emission intensity increased with pH value increased in citrate complex method during 1300℃~1400℃ calcination temperature. The PL integral intensity decreased with the amount of ethylene glycol increased in citrate gel method at 1400℃ calcination temperature.. Phosphors synthesized by citrate gel method showed higher PL integral intensity than those synthesized by citrate complex method.
    In experimental of synthesizing strontium-calcium aluminate phosphors with Eu3+, phosphors were composed of monoclinic CaAl2O4, hexagonal SrAl2O4, and EuCaAl3O7. These phosphors emitted 616nm, 598nm and 587nm red light, and and the PL emission intensity increased with amount of Eu3+ increased during Eu3+ = 1~16 mol%. Them, because of concentration quehching, PL emission intensity decreased with amount of Eu3+ increased when Eu3+>16 mol%. By mixing red phosphors with blue-greed phosphors, color rendering index were increased.
    In experimental of synthesizing strontium-calcium aluminate phosphors with Mn2+, Mn2+-doped powder didn’t emit, and Eu2+ & Mn2+-doped phosphors showed 440nm、520nm emission band from Eu2+ and 480nm emission band from Mn2+. For all the Eu2+, Mn2+-doped phosphors, PL integral intensity were large then phosphors only doped Eu2+.When increasing the amount of Mn2+, PL integral intensity, 440nm and 520nm emission intensity decreased, but 480nm emission intensity increased.
    For all these phosphors calcinated during 1300℃~1400℃, 1 mol% Eu2+ & 0.5 mol% Mn2+-doped phosphor showed the maximum PL integral intensity, and mixing powder of twice 18 mol% Eu3+-doped phosphor and 1 mol% Eu2+-doped phosphor showed the best color rendering and closest to white light center.

    摘要 I Abstract II 誌謝 IV 目錄 V 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 研究動機、構想與目的 2 1.3 論文架構 2 第二章 理論基礎與文獻回顧 5 2.1發光(Luminescence) 5 2.1.1 發光原理與機制(Principle and mechanism of luminescence) 5 2.1.2 能階與電子躍遷(Energy level & electronic transition) 8 2.1.3 色彩學(Chromatology) 12 2.2 無機光致發光材料(Inorganic photoluminescent phosphor) 15 2.2.1 本質發光(Intrinsic Luminescence) 15 2.2.2 異質發光(Extrinsic Luminescence) 15 2.2.3 無機螢光材料之組成(Composition of inorganic phosphor ) 17 2.2.4影響無機螢光材料發光之因素(Factors of luminescence of inorganic phosphor) 21 2.3 鑭系元素之性質(Characters of lanthanides) 22 2.3.1 電子躍遷之數學模型(Mathematic model of electron transition) 23 2.3.2 鑭系元素之能帶結構與發光機制(Band structure & luminescent mechanism of lanthanides) 23 2.3.3 晶體場分裂(Crystal field splitting, c.f.s.) 29 2.4 鋁酸鍶和鋁酸鈣螢光粉(SrAl2O4 & CaAl2O4 phosphors) 32 2.5 螢光粉體合成方法(Synthesis method of phosphor) 34 2.6 單一白光螢光粉文獻回顧(Paper review of single white light phosphors) 39 2.7 無機螢光材料之應用(Application of inorganic phosphor) 41 第三章 實驗步驟 43 3.1 實驗原料 43 3.2 實驗方法 44 3.2.1 檸檬酸錯合物法 (Citrate complex method) 44 3.2.4 摻錳離子之鋁酸鍶鈣螢光粉體 47 3.3 製程條件 48 3.3.1以檸檬酸錯合物法合成0.5Sr(1-x)Al2O4-0.5Ca(1-x)Al2O4:xEu2+螢光粉體 48 3.3.2 以檸檬酸凝膠法合成0.5Sr(1-x)Al2O4-0.5Ca(1-x)Al2O4:xEu2+螢光粉體 48 3.3.3 以檸檬酸凝膠法合成摻雜Eu3+之0.5Sr(1-x)Al2O4- 0.5Ca(1-x)Al2O4:xEu3+螢光粉體 48 3.3.4 以檸檬酸凝膠法合成摻雜Eu2+, Mn2+之0.5Sr(1-x)Al2O4- 0.5Ca(1-x)Al2O4:xEu2+, yMn2+,螢光粉體 48 3.4 樣品命名 50 3.5 量測與分析方法 51 3.5.1 相鑑定 51 3.5.2 熱重/熱差分析(TGA/DTA)分析 51 3.5.3 掃描式電子顯微鏡(SEM)分析 51 3.5.4 光致發光光譜(Photoluminescence spectrum)分析 51 3.5.5殘光時間(Decay time)與衰退曲線(decay curve) 52 3.5.6 Scherrer公式 52 第四章 結果與討論 53 4.1 檸檬酸錯合物法(Citrate complex method) 53 4.1.1 熱重/熱差(TGA/DTA)分析 53 4.1.2 X光繞射(XRD)分析 53 4.1.3 表面型態分析 55 4.1.4 光致發光(Photoluminescence, PL)圖譜分析 55 4.1.5 1931-CIE色度座標及演色性分析 57 4.2檸檬酸凝膠法(Citrate gel method) 72 4.2.1 熱重/熱差(TGA/DTA)分析 72 4.2.2 X光繞射(XRD)分析 72 4.2.3 表面型態分析 73 4.2.4 光致發光(Photoluminescence, PL)圖譜分析 73 4.2.5 1931-CIE色度座標及演色性分析 74 4.3.1 X光繞射(XRD)分析 92 4.3.2 表面型態分析 92 4.3.3 光致發光(Photoluminescence, PL)圖譜分析 92 4.3.4 1931-CIE色度座標及演色性分析 94 4.4 摻錳離子之鋁酸鍶鈣螢光粉體 104 4.4.1 X光繞射(XRD)分析 104 4.4.2 表面型態分析 104 4.4.3 光致發光(Photoluminescence, PL)圖譜分析 105 4.4.4 色度座標及演色性分析 107 4.4.5殘光時間圖譜(Decay time) 107 第五章 結論 122 參考文獻 124

    [1] Nakamura et al, United States Patent No. 5,578,839, November 26, 1996
    [2] E. F. Schubert, “Light-Emitting Diodes”, Cambridge University Press, 2006
    [3] M. Kendall, M. Scholand, Energy Savings Potential of Solid State Lighting in General
    Lighting Applications, US Department of Energy, Washington, DC, April 2001.
    [4] T. Drennen, R. Haitz, J. Tsao, "A Market Diffusion and Energy Impact Model for
    Solid-State Lighting," presented at the 21st Annual North American Conference of the
    US Association of Energy Economics and International Association for Energy
    Economics, Philadelphia, Setp. 2000.
    [5] T.P. Chen, “The Challenges to Reach 200 lm/W target”, 2007 固態照明研討會, 2007.
    [6] 盧慶儒,”爭食白光LED 市場各式螢光粉技術陸續出籠”, DigiTime 技術IT, Nov. 14th, 2005.
    [7] 許榮宗, “白光LED 製作技術”,工業材料雜誌, 220,148-151, 2005.
    [8] 康佳正、劉如熹、廖秋峰, “LED 趙明光源展望(六):可被UV LED 激發之螢光體介紹”, 工業材料雜誌, 232, 145, 2006.
    [9] 葉耀宗, “發光二極體之光轉換材料”, 化工技術, 12, 159, 2006.
    [10] T. Aitasalo, J. Holsa, H. Jungner, J. C. Krupa, M. Lahtinen, M. Lastusaari, J.
    Legendziewicz, J. Nittykoski, and J. Valkonen, “Spectroscopic and Structural Properties
    of Ca1-xSrxAl2O4:Eu2+, RE3+ Persistent Luminescence Materials”, Radiation Effects and
    Defects in solids, 158, 309-313, 2003.
    [11] Li-Te Chen, Chii-Shyang Hwang, I-Lei Sun ,In-Gann Chen, “ Luminescence and Chromaticity of Alkaline Earth Aluminate MxSr1-xAl2O4:Eu2+ (M: Ca, Ba) ”, Journal of Luminescence, 118, 12-20, 2006.
    [12] 李啟瑋, ”鋁酸鍶鈣螢光粉體之製備及其光性質研究”, 國立成功大學材料科學及工程學系碩士論文, 2006.
    [13] Yiqing Lu, Yongxiang Li, Yuhong Xong, Dong Wang, Qingrui Yin, “SrAl2O4:Eu2+, Dy3+ Phosphors derived from a New Sol-Gel Route”, Microelectronics Journal, 35, 379, 2004.
    [14] 詹逸民、秦正元、吳明勳、楊智偉, “半導體固態照明用螢光粉簡介”, 電子資訊, 11,23, 2005.
    [15] G. Blasse, B. C. Grabmaier, “Luminescent Materials”, Springer-Verlag, New York, 1995.
    [16] J. A. Deluca, ’’An Introduction to Luminescence in Organic Solids’’, Journal of Chemical Education, 8, 57, 541-585, 1980.
    [17] P. Atkins, D. de Paula, “Physical Chemistry”, Oxford university press, 7th Edition, 1997.
    [18] S.W.S. McKeever, “Thermoluminescence of Solids”, Cambridge, New York, 1985.
    [19] http://micro.magnet.fsu.edu/optics/timeline/people/jablonski.html.
    [20] 劉如熹、紀喨勝, ’’紫外光發光二極體用螢光粉介紹’’, 全華圖書, 臺灣臺北, 2005.
    [21] IUPAC, “Compendium of Chemical Terminology”, 2nd Edition, 1997.
    [22] 劉如熹、林益山、廖秋峰, ’’LED 照明光源展望(一):從藍光紫外光到白光’’, 220, 138-140, 2005.
    [23] J. Friedrich and D. Haarer, "Photochemical Hole Burning: A Spectroscopic Study of Relaxation Processes in Polymers and Glasses”. Angewandte Chemie International Edition in English 23, 113-140, 1984.
    [24] R. C. Ropp, ’’Luminescence and the Solid State’’, Elsevier Science Publisher, Chapter 8,
    1991.
    [25] 羅俊仁, ’’白光LED 螢光粉’’, 工業材料雜誌, 208, 2004.
    [26] 楊宗勳、許梓恂、陳建成、陳正岳‚ ’’白光LED的色彩特性調制’’, 光學工程, 90, 76-81, 2005.
    [27] D. R. Vij, ’’Luminescence of solids’’, Plenum, New York, 1998.
    [28] W.M. Yen, S. Shionoya, H. Yamamoto, ”Phosphor Handbook”, 2nd Edition, CRC Press,
    Boca Raton, FL, USA, , 35-36, 1999.
    [29] 陳俞仲, ’’錫酸鹽M2SnO4(M= Sr, Ca, Zn)螢光粉之合成與螢光特性研究’’, 國立成功大學材料科學及工程學系博士論文, 2005.
    [30] P. Dorenbos, “Relation between Eu2+ and Ce3+ f-d transition energies in inorganic compounds”, J. Phys: Condens. Matter 15, 4797-4807, 2003
    [31] P. Dorenbos,”f-d transition energies of divalent lanthanides in inorganic compounds”, J.
    Phys.: Condens. Matter, 15, 575-594, 2003
    [32] P. Dorenbos, “Energy of the first 4f7-4f65d transition of Eu2+ in inorganic compounds”, J. Lumin., 104, 239-260, 2003
    [33] Martin W C, Zalubas R and Hagan L, “ Atomic Energy levels—The Rare-Earth Elements NBS Circular, (Washington, DC: US Government Printing Office), 1978.
    [34] P. Dorenbos, “Systematic behaviour in trivalent lanthanide charge transfer energies”, J. Phys.: Condens. Matter 15, 8417–8434, 2003.
    [35] P. Dorenbos, “The Eu3+ charge transfer energy andthe relation with the band gap of compounds”, Journal of Luminescence, 111, 89–104, 2005.
    [36] Sugar J and Spector N, “Analysis of the fourth spectrum of terbium (Tb IV)” ,J. Opt. Soc.
    Am., 64, 1484, 1979.
    [37] 王列松, ’’噴霧熱解法製備Eu3+摻雜的球形發粉’’, 中國科學院長春應用化學研究所碩士論文, 2004.
    [38] G. Blasse, ’’Handbook on the Physics and Chemistry of Rare Earths’’, North Holland, 4,
    237, 1979.
    [39] G.Huber, K. Syassen, and W. B. Holzapfel, ’’Pressure dependences of 4f levels in europium pentaphosphate up to 400kbar’’, Physical Review B, 15, 5123, 1977.
    [40] William W. Porterfield, “Inorganic Chemistry” 2nd Edition, Academic Press, San Diego
    California, 1993.
    [41] B. Henderson, G. G. Imbush, “Optical Spectroscopy of Inorganic Solids”, Clarendon, Oxford, 1989.
    [42] Blasse, G., Material science of the luminescence of inorganic solids, “Luminescence of Inorganic Solids", Dibartolo, B., Ed., Plenum Press, 457, 1978.
    [43] M.W. Dougill, Nature 180, p292, 1957.
    [44] W Horkner, H Muller-Buschbaum, ”The Crystal Structure of CaAl2O4”, J. Inorg. Nucl. Chem., 983, 1976.
    [45] F. C. Palilla, M. R. Tomkus, M. R. Tomkus, "Fluorescence properties of SrAl2O4:Eu2+
    sputtered films with long phosphorescence", J. of the Electrochemical Soc, 115, 642-645, 1968.
    [46] M. L. Ruiz-Gonzalez, J. M. Gonzalez-Calbet, M. Vallet-Regi, E. Cordoncillo, P. Escribano, J. B. Carda, and M. Marchal, ’’Planar Defects in a Precursor for Phosphor
    Materials:SrAl2-xBxO4(x<0.2)’’, Journal of Materials Chemistry, 12, 1128-1131, 2002.
    [47] W. S. Shi, H. Yamada, K. Nishikubo, H. Kusaba, and C. N. Xu, ’’Novel Structural Behavior of Strontium Aluminate Doped with Europium’’, Journal of Electrochemical Society, 151, 5 , H97-H100, 2004.
    [48] A. K. Prodjosantoso and B. J. Kennedy, ’’Synthesis and Evolution of the Crystalline Crystalline Phases in Ca1-xSrxAl2O4’’, Journal of Solid State Chemistry, 168, 229-236, 2002.
    [49] S.X. Wang, L.M. Wang, R.C. Ewing, ”Ion irradiation-induced amorphization of CaAl2O4”,
    Nucl. Instr. and Meth. in Phys. Res. B, 141 ,509-513, 1998.
    [50] Y. Pan, M. Wu, Q. Su, ‚’’Comparative Investigation on Synthesis and Photoluminescence of YAG:Ce Phosphor’’, Materials Science and Engineering B, 106, 251-256, 2004.
    [51] H. S. Lai, B. J. Chen, W. Xu, X. J. Wang, Y. M. Wang, Q. Y. Meng, ’’Photoluminescence Characteristics of (Y,Gd)P0.5V0.5O4:Tm3+ Phosphor Particles Prepared by coprecipitation
    reaction’’, Journal of Alloys and Compounds, 1-2, 395, 181, 2005.
    [52] Y. Pan et al., "Hydrothermally-mediated prepatation and photoluminescent properties of Sr3Al2O6:Eu3+ phosphor", Materials Research Bulletin, 41, 225-231, 2006.
    [53] Li Zhihua, Zeng, Jinghui, Chen Chen, Li Yadong, ’’Hydrothermal Synthesis and Luminescent Properties of YBO3:Tb3+ Uniform Ultrafine Phosphor’’, Journal of Crystal Growth, 2, 286, 2006.
    [54] Z, Qi, C. Shi, ’’Local structure and Luminescence of nanocrystalline Y2O3:Eu’’, Applied Physics Letters, 81(15), 2857, 2002.
    [55] Y. Xu, W. Peng, S. Wang, X. Xiang, P. Lu, ’’Synthesis of SrAl12O19 via citric acid
    precursor’’, Materials Science and Engineering B, 123, 139-142, 2005.
    [56] 郭晏瑱, ’’La1-xSrxMnO3 粉末之鑑定及催化CO+NO 反應之研究’’, 國立成功大學材料科學及工程學系碩士論文, 2002.
    [57] Pechini M. P., “U.S. Pat., No.3 231 328”, Jan. 25, 1969.
    [58] Jenq-qar Tsay, Tsang-tse Fang, “Effects of Molar Ratio of Citric Acid to Cations and of pH Value on the Formation and Thermal-Decomposition Behavior of Barium Titanium Citrate”, J. Am. Ceram. Soc., 82( 6), 1409-14, 1999.
    [59] J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, S. I. Mho,and G.C. Kim, “Warm-white-light
    emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphor”,
    Appl. Phys. Lett., 84(15), 2931-2933, 2004.
    [60] Jong Su Kim, Jin Su Kim, Tae Wan Kim, Hong Lee Park, Young Gook Kim, Soo Kyung Chang, and Sang Do Han, ’’Energy transfer among three luminescent centers in full-color emitting ZnGa2O4:Mn2+, Cr3+ phosphors’’, Solid State Communications, 131, 493-497, 2004.
    [61] Jinyong Kuang and Yinglinag Liu, “White-emitting Long-Lasting Phosphor Sr2SiO4:
    Dy3+”, Chemistry Letters, 34, 4, 598-599, 2005.
    [62] Bo Liu, Chaoshu Shi, Zeming Qi, "Potential white-light long-lasting phosphor:
    Dy3+-doped aluminate", Appl. Phys. Lett., 86, 191111, 2005.
    [63] Yingliang Liu, Bingfu Lei, Chunshan Shi, “Luminescent Properties of a White Afterglow
    Phosphor CdSiO3:Dy3+”, Chem. Mater., 17, 2108-2113, 2005.
    [64] Wang Jen Yang, Liyang Luo, Teng Ming Chen, and Niann-Shia Wang, "Luminescence and energy of Eu and Mn coactivated CaAl2Si2O8 as a Potential Phosphor for White-Light UV LED", Chemistry Mater., 17, 3883-3888, 2005.
    [65] N. Lakshminarasimhan, U. V. Varadaraju, White-Light Generation in Sr2SiO4:Eu2+, Ce3+
    under Near-UV Excitation, Journal of The Electrochemical Society, 152, 9, H152-H156,
    2005.
    [66] J. A. Gonzalez-Ortego, E. M. Tejeda, N. Perea, G.. A. Hirata, E. J. Bosze, J. McKittrick, ’’White Light Emission from Rare Earth Activated Yttrium Silicate Nanocrystalline Powders and Thin Films ’’, Optical Materials, 27, 1221-1227, 2005.
    [67] Bo Liu, Chaoshu Shi, Zeming Qi, “White-light long-lasting phosphorescence from Tb3+-activated Y2O2S phosphor”, Journal of Physics and Chemistry of Solids, 67, 1674–1677, 2006.
    [68] Woan-Jen Yang, Teng-Ming Chen, "White-light generation and energy transfer in SrZn2(PO4)2 :Eu,Mn phosphor for ultraviolet light-emitting diodes ", Appl. Phys. Lett. 88, 101903, 2006.
    [69] Jinyong Kuang, Yingliang Liu, Jianxian Zhang, “White-light-emitting long-lasting phosphorescence in Dy3+-doped SrSiO3”, Chemistry letter, 179, 266–269, 2006.
    [70] Zhendong Hao, Jiahua Zhang, Xia Zhang, Xiaoyuan Sun, Yongshi Luo, and Shaozhe Lu,
    "White light emitting diode by usingα-Ca2P2O7:Eu2+, Mn2+ phosphor", Appl. Phys. Lett.
    90, 261113, 2007.
    [71] 蔡濱祥, "尖晶石系(MgxZn1-x)(In2-yGay)O4:Eu3+, Tb3+螢光粉體製備及其光致發光特性研究", 國立成功大學材料科學及工程學系所博士論文, 2005.

    下載圖示 校內:2009-02-14公開
    校外:2009-02-14公開
    QR CODE