研究生: |
高弘任 Kao, Hung-Jen |
---|---|
論文名稱: |
檸檬酸法製備鋁酸鍶鈣螢光粉體及其光性質研究 Preparation and Luminescence of Strontium-Calcium aluminate Phosphors by Citric Acid Method |
指導教授: |
黃啟祥
Hwang, Chii-Shyang |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 129 |
中文關鍵詞: | 白光 、鋁酸鍶鈣 、螢光粉 |
外文關鍵詞: | white light, strontium-calcium aluminate, phosphor |
相關次數: | 點閱:70 下載:6 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為提高鋁酸鍶鈣螢光粉體之發光效率,並獲得具不同色度座標之白光螢光粉,本研究以二種檸檬酸法製備粉體,檢討下列實驗變因對螢光粉體之合成及發光性質之影響:包括(1) 檸檬酸錯合物法(檸檬酸/金屬陽離子之莫耳比vs.酸鹼值)、(2) 檸檬酸凝膠法(檸檬酸/金屬離子之莫耳比vs.乙二醇/檸檬酸之莫耳比)、(3) Eu3+¬ 離子之取代量、(4)錳離子之取代量。
以檸檬酸/金屬陽離子之莫耳比≧2、pH=2或檸檬酸/金屬陽離子之莫耳比≧2、乙二醇/檸檬酸之莫耳比≧1的條件所製得的前驅物為非晶質,大部分前驅物經1000℃/ 8h煅燒即可成為含高溫相六方SrAl2O4和單斜CaAl2O4之鋁酸鍶鈣螢光粉體。當Eu2+進入此兩種主體晶格時,便會在PL圖譜形成綠光(λp=520nm)和藍光(λp=440nm)發射帶。在檸檬酸錯合物法中,1300℃及1400℃煅燒所合成之螢光粉體,其藍光發射帶之發射強度會隨pH值之增加而變大;而檸檬酸凝膠法中,經1400℃二階段煅燒所合成之螢光粉體,其PL積分強度會隨乙二醇添加量之增加而降低。在相同煅燒條件下,檸檬酸凝膠法所合成之螢光粉體,其PL積分強度較檸檬錯合物法所合成者強。
在製備摻Eu3+之鋁酸鍶鈣螢光粉體實驗中,螢光粉體主要由六方SrAl2O4、單斜CaAl2O4及EuCaAl3O7相所組成。此螢光粉體主要發出616nm、598nm及587nm之紅光,其發射強度隨Eu3+取代量之增加而增強,當在Eu3+ 取代量大於16 mol%後,由於濃度淬滅效應,紅光發射強度隨Eu2+取代量之增加而降低。藉由混合摻有Eu2+及Eu3+之二種螢光粉體可提升演色性。
在製備摻錳、銪離子之鋁酸鍶鈣螢光粉體實驗中,僅摻有Mn2+之粉體無法以383nm或350nm激發,同時摻有錳、銪離子之鋁酸鍶鈣螢光粉受383nm激發時則可發光,其發射峰各為Eu2+所發射之440nm、520nm及Mn2+所發出之480nm。摻Mn2+、Eu2+之鋁酸鍶鈣螢光粉,其PL積分強度較僅摻Eu2+者強。螢光粉體之整體PL積分強度、440nm及520nm兩發射峰強度隨Mn2+添加量之增加而降低,但480nm發射峰則會增加。
在1300℃~1400℃煅燒溫度範圍內,所有螢光粉之PL發射強度會隨煅燒溫度提升而增加,其中以Eu2+摻雜濃度為1 mol%、Mn2+摻雜濃度為0.5 mol%之前驅物,經1400℃二階段煅燒之樣品具有最大之PL積分強度;摻雜18 mol% Eu3+之螢光粉體與摻雜1 mol% Eu2+之螢光粉體依重量比2:1所混合之混合粉體,且有最佳之演色性,最接近白光。
In order to increase the emission intensity and gain the white light phosphor, strontium-calcium aluminate phosphors were synthesized by citric acid method in this study. Influence factors of synthesis & luminescence for phosphors were discussed : as (a) Citrate complex method (ratio of citric acid/metal ions vs. pH value), (b) Citrate gel method (ratio of citric acid/metal ions vs. ratio of ethylene glycol/citric acid), (c) Amount of Eu3+ ions, (d) Amount of Mn2+ ions
The precursors were amorphous when the ratio of citric acid/metal ion≧2, pH=2 or the ratio of citric acid/metal ion≧2, the ratio of ethylene glycol/ citric acid≧1. Strontium-calcium aluminate phosphors were obtained and composed of monoclinic CaAl2O4 and hexagonal SrAl2O4 after calcining ar 1000℃/8h for most precursors. It means citrate complex method and citrate gel method can lower the synthesis temperature about 300~400℃. When Eu2+ ions doped into these two host lattices, phosphors showed blue (λp=440nm) and green (λp=520nm) emission bands in PL spectra. The 440nm emission intensity increased with pH value increased in citrate complex method during 1300℃~1400℃ calcination temperature. The PL integral intensity decreased with the amount of ethylene glycol increased in citrate gel method at 1400℃ calcination temperature.. Phosphors synthesized by citrate gel method showed higher PL integral intensity than those synthesized by citrate complex method.
In experimental of synthesizing strontium-calcium aluminate phosphors with Eu3+, phosphors were composed of monoclinic CaAl2O4, hexagonal SrAl2O4, and EuCaAl3O7. These phosphors emitted 616nm, 598nm and 587nm red light, and and the PL emission intensity increased with amount of Eu3+ increased during Eu3+ = 1~16 mol%. Them, because of concentration quehching, PL emission intensity decreased with amount of Eu3+ increased when Eu3+>16 mol%. By mixing red phosphors with blue-greed phosphors, color rendering index were increased.
In experimental of synthesizing strontium-calcium aluminate phosphors with Mn2+, Mn2+-doped powder didn’t emit, and Eu2+ & Mn2+-doped phosphors showed 440nm、520nm emission band from Eu2+ and 480nm emission band from Mn2+. For all the Eu2+, Mn2+-doped phosphors, PL integral intensity were large then phosphors only doped Eu2+.When increasing the amount of Mn2+, PL integral intensity, 440nm and 520nm emission intensity decreased, but 480nm emission intensity increased.
For all these phosphors calcinated during 1300℃~1400℃, 1 mol% Eu2+ & 0.5 mol% Mn2+-doped phosphor showed the maximum PL integral intensity, and mixing powder of twice 18 mol% Eu3+-doped phosphor and 1 mol% Eu2+-doped phosphor showed the best color rendering and closest to white light center.
[1] Nakamura et al, United States Patent No. 5,578,839, November 26, 1996
[2] E. F. Schubert, “Light-Emitting Diodes”, Cambridge University Press, 2006
[3] M. Kendall, M. Scholand, Energy Savings Potential of Solid State Lighting in General
Lighting Applications, US Department of Energy, Washington, DC, April 2001.
[4] T. Drennen, R. Haitz, J. Tsao, "A Market Diffusion and Energy Impact Model for
Solid-State Lighting," presented at the 21st Annual North American Conference of the
US Association of Energy Economics and International Association for Energy
Economics, Philadelphia, Setp. 2000.
[5] T.P. Chen, “The Challenges to Reach 200 lm/W target”, 2007 固態照明研討會, 2007.
[6] 盧慶儒,”爭食白光LED 市場各式螢光粉技術陸續出籠”, DigiTime 技術IT, Nov. 14th, 2005.
[7] 許榮宗, “白光LED 製作技術”,工業材料雜誌, 220,148-151, 2005.
[8] 康佳正、劉如熹、廖秋峰, “LED 趙明光源展望(六):可被UV LED 激發之螢光體介紹”, 工業材料雜誌, 232, 145, 2006.
[9] 葉耀宗, “發光二極體之光轉換材料”, 化工技術, 12, 159, 2006.
[10] T. Aitasalo, J. Holsa, H. Jungner, J. C. Krupa, M. Lahtinen, M. Lastusaari, J.
Legendziewicz, J. Nittykoski, and J. Valkonen, “Spectroscopic and Structural Properties
of Ca1-xSrxAl2O4:Eu2+, RE3+ Persistent Luminescence Materials”, Radiation Effects and
Defects in solids, 158, 309-313, 2003.
[11] Li-Te Chen, Chii-Shyang Hwang, I-Lei Sun ,In-Gann Chen, “ Luminescence and Chromaticity of Alkaline Earth Aluminate MxSr1-xAl2O4:Eu2+ (M: Ca, Ba) ”, Journal of Luminescence, 118, 12-20, 2006.
[12] 李啟瑋, ”鋁酸鍶鈣螢光粉體之製備及其光性質研究”, 國立成功大學材料科學及工程學系碩士論文, 2006.
[13] Yiqing Lu, Yongxiang Li, Yuhong Xong, Dong Wang, Qingrui Yin, “SrAl2O4:Eu2+, Dy3+ Phosphors derived from a New Sol-Gel Route”, Microelectronics Journal, 35, 379, 2004.
[14] 詹逸民、秦正元、吳明勳、楊智偉, “半導體固態照明用螢光粉簡介”, 電子資訊, 11,23, 2005.
[15] G. Blasse, B. C. Grabmaier, “Luminescent Materials”, Springer-Verlag, New York, 1995.
[16] J. A. Deluca, ’’An Introduction to Luminescence in Organic Solids’’, Journal of Chemical Education, 8, 57, 541-585, 1980.
[17] P. Atkins, D. de Paula, “Physical Chemistry”, Oxford university press, 7th Edition, 1997.
[18] S.W.S. McKeever, “Thermoluminescence of Solids”, Cambridge, New York, 1985.
[19] http://micro.magnet.fsu.edu/optics/timeline/people/jablonski.html.
[20] 劉如熹、紀喨勝, ’’紫外光發光二極體用螢光粉介紹’’, 全華圖書, 臺灣臺北, 2005.
[21] IUPAC, “Compendium of Chemical Terminology”, 2nd Edition, 1997.
[22] 劉如熹、林益山、廖秋峰, ’’LED 照明光源展望(一):從藍光紫外光到白光’’, 220, 138-140, 2005.
[23] J. Friedrich and D. Haarer, "Photochemical Hole Burning: A Spectroscopic Study of Relaxation Processes in Polymers and Glasses”. Angewandte Chemie International Edition in English 23, 113-140, 1984.
[24] R. C. Ropp, ’’Luminescence and the Solid State’’, Elsevier Science Publisher, Chapter 8,
1991.
[25] 羅俊仁, ’’白光LED 螢光粉’’, 工業材料雜誌, 208, 2004.
[26] 楊宗勳、許梓恂、陳建成、陳正岳‚ ’’白光LED的色彩特性調制’’, 光學工程, 90, 76-81, 2005.
[27] D. R. Vij, ’’Luminescence of solids’’, Plenum, New York, 1998.
[28] W.M. Yen, S. Shionoya, H. Yamamoto, ”Phosphor Handbook”, 2nd Edition, CRC Press,
Boca Raton, FL, USA, , 35-36, 1999.
[29] 陳俞仲, ’’錫酸鹽M2SnO4(M= Sr, Ca, Zn)螢光粉之合成與螢光特性研究’’, 國立成功大學材料科學及工程學系博士論文, 2005.
[30] P. Dorenbos, “Relation between Eu2+ and Ce3+ f-d transition energies in inorganic compounds”, J. Phys: Condens. Matter 15, 4797-4807, 2003
[31] P. Dorenbos,”f-d transition energies of divalent lanthanides in inorganic compounds”, J.
Phys.: Condens. Matter, 15, 575-594, 2003
[32] P. Dorenbos, “Energy of the first 4f7-4f65d transition of Eu2+ in inorganic compounds”, J. Lumin., 104, 239-260, 2003
[33] Martin W C, Zalubas R and Hagan L, “ Atomic Energy levels—The Rare-Earth Elements NBS Circular, (Washington, DC: US Government Printing Office), 1978.
[34] P. Dorenbos, “Systematic behaviour in trivalent lanthanide charge transfer energies”, J. Phys.: Condens. Matter 15, 8417–8434, 2003.
[35] P. Dorenbos, “The Eu3+ charge transfer energy andthe relation with the band gap of compounds”, Journal of Luminescence, 111, 89–104, 2005.
[36] Sugar J and Spector N, “Analysis of the fourth spectrum of terbium (Tb IV)” ,J. Opt. Soc.
Am., 64, 1484, 1979.
[37] 王列松, ’’噴霧熱解法製備Eu3+摻雜的球形發粉’’, 中國科學院長春應用化學研究所碩士論文, 2004.
[38] G. Blasse, ’’Handbook on the Physics and Chemistry of Rare Earths’’, North Holland, 4,
237, 1979.
[39] G.Huber, K. Syassen, and W. B. Holzapfel, ’’Pressure dependences of 4f levels in europium pentaphosphate up to 400kbar’’, Physical Review B, 15, 5123, 1977.
[40] William W. Porterfield, “Inorganic Chemistry” 2nd Edition, Academic Press, San Diego
California, 1993.
[41] B. Henderson, G. G. Imbush, “Optical Spectroscopy of Inorganic Solids”, Clarendon, Oxford, 1989.
[42] Blasse, G., Material science of the luminescence of inorganic solids, “Luminescence of Inorganic Solids", Dibartolo, B., Ed., Plenum Press, 457, 1978.
[43] M.W. Dougill, Nature 180, p292, 1957.
[44] W Horkner, H Muller-Buschbaum, ”The Crystal Structure of CaAl2O4”, J. Inorg. Nucl. Chem., 983, 1976.
[45] F. C. Palilla, M. R. Tomkus, M. R. Tomkus, "Fluorescence properties of SrAl2O4:Eu2+
sputtered films with long phosphorescence", J. of the Electrochemical Soc, 115, 642-645, 1968.
[46] M. L. Ruiz-Gonzalez, J. M. Gonzalez-Calbet, M. Vallet-Regi, E. Cordoncillo, P. Escribano, J. B. Carda, and M. Marchal, ’’Planar Defects in a Precursor for Phosphor
Materials:SrAl2-xBxO4(x<0.2)’’, Journal of Materials Chemistry, 12, 1128-1131, 2002.
[47] W. S. Shi, H. Yamada, K. Nishikubo, H. Kusaba, and C. N. Xu, ’’Novel Structural Behavior of Strontium Aluminate Doped with Europium’’, Journal of Electrochemical Society, 151, 5 , H97-H100, 2004.
[48] A. K. Prodjosantoso and B. J. Kennedy, ’’Synthesis and Evolution of the Crystalline Crystalline Phases in Ca1-xSrxAl2O4’’, Journal of Solid State Chemistry, 168, 229-236, 2002.
[49] S.X. Wang, L.M. Wang, R.C. Ewing, ”Ion irradiation-induced amorphization of CaAl2O4”,
Nucl. Instr. and Meth. in Phys. Res. B, 141 ,509-513, 1998.
[50] Y. Pan, M. Wu, Q. Su, ‚’’Comparative Investigation on Synthesis and Photoluminescence of YAG:Ce Phosphor’’, Materials Science and Engineering B, 106, 251-256, 2004.
[51] H. S. Lai, B. J. Chen, W. Xu, X. J. Wang, Y. M. Wang, Q. Y. Meng, ’’Photoluminescence Characteristics of (Y,Gd)P0.5V0.5O4:Tm3+ Phosphor Particles Prepared by coprecipitation
reaction’’, Journal of Alloys and Compounds, 1-2, 395, 181, 2005.
[52] Y. Pan et al., "Hydrothermally-mediated prepatation and photoluminescent properties of Sr3Al2O6:Eu3+ phosphor", Materials Research Bulletin, 41, 225-231, 2006.
[53] Li Zhihua, Zeng, Jinghui, Chen Chen, Li Yadong, ’’Hydrothermal Synthesis and Luminescent Properties of YBO3:Tb3+ Uniform Ultrafine Phosphor’’, Journal of Crystal Growth, 2, 286, 2006.
[54] Z, Qi, C. Shi, ’’Local structure and Luminescence of nanocrystalline Y2O3:Eu’’, Applied Physics Letters, 81(15), 2857, 2002.
[55] Y. Xu, W. Peng, S. Wang, X. Xiang, P. Lu, ’’Synthesis of SrAl12O19 via citric acid
precursor’’, Materials Science and Engineering B, 123, 139-142, 2005.
[56] 郭晏瑱, ’’La1-xSrxMnO3 粉末之鑑定及催化CO+NO 反應之研究’’, 國立成功大學材料科學及工程學系碩士論文, 2002.
[57] Pechini M. P., “U.S. Pat., No.3 231 328”, Jan. 25, 1969.
[58] Jenq-qar Tsay, Tsang-tse Fang, “Effects of Molar Ratio of Citric Acid to Cations and of pH Value on the Formation and Thermal-Decomposition Behavior of Barium Titanium Citrate”, J. Am. Ceram. Soc., 82( 6), 1409-14, 1999.
[59] J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, S. I. Mho,and G.C. Kim, “Warm-white-light
emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphor”,
Appl. Phys. Lett., 84(15), 2931-2933, 2004.
[60] Jong Su Kim, Jin Su Kim, Tae Wan Kim, Hong Lee Park, Young Gook Kim, Soo Kyung Chang, and Sang Do Han, ’’Energy transfer among three luminescent centers in full-color emitting ZnGa2O4:Mn2+, Cr3+ phosphors’’, Solid State Communications, 131, 493-497, 2004.
[61] Jinyong Kuang and Yinglinag Liu, “White-emitting Long-Lasting Phosphor Sr2SiO4:
Dy3+”, Chemistry Letters, 34, 4, 598-599, 2005.
[62] Bo Liu, Chaoshu Shi, Zeming Qi, "Potential white-light long-lasting phosphor:
Dy3+-doped aluminate", Appl. Phys. Lett., 86, 191111, 2005.
[63] Yingliang Liu, Bingfu Lei, Chunshan Shi, “Luminescent Properties of a White Afterglow
Phosphor CdSiO3:Dy3+”, Chem. Mater., 17, 2108-2113, 2005.
[64] Wang Jen Yang, Liyang Luo, Teng Ming Chen, and Niann-Shia Wang, "Luminescence and energy of Eu and Mn coactivated CaAl2Si2O8 as a Potential Phosphor for White-Light UV LED", Chemistry Mater., 17, 3883-3888, 2005.
[65] N. Lakshminarasimhan, U. V. Varadaraju, White-Light Generation in Sr2SiO4:Eu2+, Ce3+
under Near-UV Excitation, Journal of The Electrochemical Society, 152, 9, H152-H156,
2005.
[66] J. A. Gonzalez-Ortego, E. M. Tejeda, N. Perea, G.. A. Hirata, E. J. Bosze, J. McKittrick, ’’White Light Emission from Rare Earth Activated Yttrium Silicate Nanocrystalline Powders and Thin Films ’’, Optical Materials, 27, 1221-1227, 2005.
[67] Bo Liu, Chaoshu Shi, Zeming Qi, “White-light long-lasting phosphorescence from Tb3+-activated Y2O2S phosphor”, Journal of Physics and Chemistry of Solids, 67, 1674–1677, 2006.
[68] Woan-Jen Yang, Teng-Ming Chen, "White-light generation and energy transfer in SrZn2(PO4)2 :Eu,Mn phosphor for ultraviolet light-emitting diodes ", Appl. Phys. Lett. 88, 101903, 2006.
[69] Jinyong Kuang, Yingliang Liu, Jianxian Zhang, “White-light-emitting long-lasting phosphorescence in Dy3+-doped SrSiO3”, Chemistry letter, 179, 266–269, 2006.
[70] Zhendong Hao, Jiahua Zhang, Xia Zhang, Xiaoyuan Sun, Yongshi Luo, and Shaozhe Lu,
"White light emitting diode by usingα-Ca2P2O7:Eu2+, Mn2+ phosphor", Appl. Phys. Lett.
90, 261113, 2007.
[71] 蔡濱祥, "尖晶石系(MgxZn1-x)(In2-yGay)O4:Eu3+, Tb3+螢光粉體製備及其光致發光特性研究", 國立成功大學材料科學及工程學系所博士論文, 2005.