簡易檢索 / 詳目顯示

研究生: 周俊諺
Juo, Jun-Yen
論文名稱: 不同膠體製備十八烷整體管柱應用於毛細管電層析之研究
The influences of different sol-gel matrices for the preparation of monolithic column applied to capillary electrochromatography
指導教授: 桂椿雄
Kuei, Chun-Xiong
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 116
中文關鍵詞: 溶膠-凝膠整體管柱毛細管電層析
外文關鍵詞: sol gel matrices, monolithic column, capillary electrochromatography
相關次數: 點閱:121下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
      本研究以溶膠-凝膠(sol-gel)方法製備十八烷整體管柱(ODS particle fixed monothilic column),以毛細管電層析進行管柱分離效能測試,探討改變管柱膠體基質(sol-gel matrices)對管柱分離解析、分離效率及管柱壽命的影響,本研究使用TMOS為主要膠而ETMOS 、OTMOS、GPTMOS為共聚合膠體,製備的三種管柱其膠體比率固定為11 %,使用的管柱內徑有50μm、100μm。用九種多環芳香族化合物評估,膠體對管柱分離解析、分離效率、管柱壽命的影響;以不對稱合成產物及16種多環芳族化合物進行管柱定性分離的應用。
      於動相條件部分,本研究以內徑100μm ODS/GPTMOS管柱在改變動相條件如氰甲烷比例(70%、80%、90%),緩衝溶液離子濃度(2.5 mM、5 mM、10 mM),實驗結果發現80%氰甲烷比率,5 mM緩衝溶液離子濃度,因電滲流穩定(約0~3 μA),且總分離時間可縮短在十分鐘完成因此為較佳動相條件。而分離七種多環芳香族化合物其滯留時間相對標準偏差( R.S.D)值為1.15~1.94 %;滯留因子(k) 相對標準偏差值為0.42~2.17 % 顯示該管柱有良好再現性。
      本研究以內徑50μm毛細管製備整體管柱,比較不同種類(A : ETMOS、GPTMOS、OTMOS)同比率膠體(TMOS : A = 1:3)及同種類(OTMOS)不同比率膠(TMOS:OTMOS = 1;3 及1:1.5)實驗結果發現,膠體官能基對管柱電滲流遷移速率是有影響的,其中GPTMOS膠體因epoxide 官能基和管柱內Si-OH官能基作用,產生Si-O-C鍵結降低了管內Si-OH官能基之數目,相較於其它管柱(ODS/ETMOS)在相同操作條件下其電滲流遷移速率是變慢的;另外將膠體比率(OTMOS/TMOS)由1:3調整為1.5:1,發現TMOS膠體含量較低時電滲流遷移速率會較慢。於膠體對管柱分離解析的影響,GPTMOS管柱及OTMOS管柱在高線性流速下(1.9~2.6 mm/sec)有較高的解析度,將管柱應用於分離16種多環芳香族化合物,ODS/OTMOS管柱於75 %氰甲烷動相條件下18分鐘可分離14種多環芳香族化合物於管柱壽命部分,以不同內徑(100μm、50μm) 並固定膠體種類比較管柱壽命,結果證實內徑100μm毛細管整體管柱具有較長壽命;並比較相同內徑、不同種類膠體的整體管柱,實驗結果證實三種膠體當以GPTMOS膠體具有最長管柱壽命可達97次分離。

    Abstract
      The subject of this study is prepared octadecylsilylated particle fixed monolithic column with different sol gel matrices and applicated in separate polycyclic-aromatic hydrocarbons by electro-chromatography. Column has beeen prepared by hydrolysis and polycondensation of tetramethoxysilane and three kinds of sol gel matrices ethyltrimethoxysilane Octyltrimethoxysilane and 3-Glycidoxypropyltrimethoxysilane as con-percosur . The silanes molar ratio is 1: 3 to tetramethoxysilane and concentration of the sol gel is 11% (v/v) prepared in metrhanol . The column prepared with two internal diameter 50μm and 100μm .The nine PAHs for testing column efficiency and life time .The sixteen PAHs mixs also been used. Than asymmetry synthesis products been used as the real sample application .
      The ID 100μm monolithic column with 3-GPTMOS as the sol gel matrices been used to test the seperation for PAHs . The mobile phase composed of three acetonitrile concentration(70%、80% 、90%) and the buffer concentration( 2.5mM、5mM 、10mM ) . The result show that acetonitrile concentration could enhance column efficiency than exchange buffer concentration. The result also obtain that 80% acetonitrile concentration 5mM buffer solution were the best conditions for test column efficiency. The operation condition with steady current ( 3 ~ 4μA )and with long time stability more than two hours. The relative standard deviation of the retention time for the seven tested PAHs standards from 1.15% to 1.94% . The retention factor run to run R.S.D is 0.42% to 2.17% and the plate per meter up to 98000 N/m .
      The ID 50μm ODS monolithic columns were used to compare the column performance with different sol gel matrices and components. First fixed the sol gel components adjust ratio from OTMOS: TMOS = 1: 3 to 1:1.5 (v/v). The result that different sol – gel matrices functional group could influence the electroosmotic flow velocity in the same operated conditions .Because of the GPTMOS gel with epoxide functional groups reactive to silional functional groups than slow down the electroosmotic flow velocity . we also observed that high TMOS concentration in sol gel matrices could enhanced electroosmotic flow velocity .The sol gel matrix also influence separation resolution especially in high flow rate (up to 2mm/min) for the ODS monolithic column . The GPTMOS to ETMOS and OTMOS to ETMOS show the same result that sol- gel matrices with long chain functional group had the better resolution to the nine PAHs standards. The results also find 16 PAHs for OTMOS/TMOS ID 50μm column . Fourteen PAHs cloud baseline resolute at eighteen minutes in 75% ACN condition (isocratic).
      The life of the column with wider internal diameter (100μm) had long lifetime than narrow internal diameter (50μm) for OTMOS/TMOS column . Our result also show monolithic column with different sol gel matrices functional group had disagree life time .The three types sol gel matrices GPTMOS seen had long life time than other .The column with GPTMOS/TMOS life time cloud up to 97 runs .

    目錄 中文摘要-------------------------------------------------------------------------(I) 英文摘要-----------------------------------------------------------------------(III) 目錄------------------------------------------------------------------------------(V) 表目錄--------------------------------------------------------------------------(IX) 圖目錄--------------------------------------------------------------------------(XI) 第一章 緒論--------------------------------------------------------------------(1) 1-1 毛細管電層析歷史及演進-------------------------------------------(1) 1-2 毛細分離管柱簡介----------------------------------------------------(2) 1-2.1 開管式毛細管柱--------------------------------------------------(2) 1-2.2 充填式毛細管柱--------------------------------------------------(3) 1-2.3 毛細管整體管柱--------------------------------------------------(4) 1-2.3.1 多孔性高分子連續分離床---------------------------------(4) 1-2.3.2 多孔性矽膠連續分離床------------------------------------(5) 1-2.3.3 粒子包附型連續分離床------------------------------------(7) 1-3管柱充填技術簡介-----------------------------------------------------(8) 1-3.1 灌漿式充填法-----------------------------------------------------(8) 1-3.2 CO2超臨界流體充填法-----------------------------------------(10) 1-3.3 電動力充填法----------------------------------------------------(11) 1-3.4 離心力充填法----------------------------------------------------(13) 1-4 溶膠-凝膠--------------------------------------------------------------(14) 1-4.1 溶膠-凝膠技術的優點----------------------------------------(15) 1-4.2 溶膠-凝膠歷史-------------------------------------------------(15) 1-4.3 溶膠-凝膠製備---------------------------------------------------(16) 1-4.4 前趨物質水解----------------------------------------------------(16) 1-4.5 膠體縮合----------------------------------------------------------(18) 1-4.6 催化劑pH值對溶膠-凝膠影響-------------------------------(20) 1-4.7 酸鹼複合催化(two-step catalysis)---------------------------(20) 1-4.8 膠體添加劑(sol-gel additive)----------------------------------(21) 第二章 研究動機及研究架構----------------------------------------------(22) 2-1 研究動機---------------------------------------------------------------(22) 2-2 研究架構---------------------------------------------------------------(22) 2-2.1 管柱壽命及數據處理-------------------------------------------(23) 2-2.2 較理想化動相條件----------------------------------------------(23) 2-2.3 管柱於分離的應用----------------------------------------------(23) 2-3 管柱壽命及數據處理------------------------------------------------(26) 2-3.1 影響管柱壽命的原因-------------------------------------------(26) 2-3.2 如何定義管柱壽命----------------------------------------------(29) 第三章 實驗設備、藥品及實驗步驟-------------------------------------(32) 3-1 實驗設備---------------------------------------------------------------(32) 3-1.1 管柱充填設備----------------------------------------------------(32) 3-1.2 管柱推膠設備----------------------------------------------------(34) 3-1.3 管柱清洗設備----------------------------------------------------(35) 3-1.4 管柱測試及條件化設備----------------------------------------(36) 3-1.5 測試管柱分離效能設備----------------------------------------(37) 3-2 實驗藥品---------------------------------------------------------------(37) 3-2.1 測試管柱分離效能藥品----------------------------------------(38) 3-2.2 緩衝液藥品-------------------------------------------------------(39) 3-2.3 製備膠體藥品----------------------------------------------------(39) 3-3 實驗步驟---------------------------------------------------------------(42) 3-3.1 管柱製備----------------------------------------------------------(42) 3-3.2 動相溶液配置----------------------------------------------------(45) 3-3.3 分析樣品配製----------------------------------------------------(45) 3-4 開立偵測視窗---------------------------------------------------------(46) 3-5管柱條件化-------------------------------------------------------------(46) 第四章.結果與討論-----------------------------------------------------------(48) 4-1 比較有機修飾劑比率對ODS管柱分離效率及分離解析的影響-------------------------------------------------------------(48) 4-2 有機修飾劑比率對電泳遷移率影響------------------------------(51) 4-3 緩衝溶液離子濃度對管柱電泳遷移率之影響------------------(53) 4-4 不同膠體基質對整體管柱板高的影響(100 μm)----------------(56) 4-5 內徑100μm ODS整體管柱之應用--------------------------------(59) 4-6 比較膠體對管柱分離效能影響------------------------------------(68) 4-7 膠體對分析物半帶寬影響------------------------------------------(76) 4-8比較膠體種類、膠體比例對動相流速影響----------------------(79) 4-9比較膠體對分析物板高的影響(50μm)---------------------------(81) 4-10 ODS/GPTMOS管柱壽命-------------------------------------------(84) 4-11 ODS/ETMOS管柱壽命---------------------------------------------(90) 4-12 ODS/OTMOS管柱壽命---------------------------------------------(94) 第五章 結論及未來展望---------------------------------------------------(102) 5-1 結論--------------------------------------------------------------------(102) 5-2 未來展望--------------------------------------------------------------(104) 參考文獻 ---------------------------------------------------------------------(106)

    參考文獻
    【1】A.-M. Siouffi, J. Chromatogr. A, 1000 (2003) ,801.
    【2】C.Yan, R. Dadoo, H. Zhao, R.N. Zare and D.J. Rakestraw, Anal. Chem. 67 (1995), 2026.
    【3】B. Behnke, E. Grom and E. Bayer, J. Chromatogr. A 716 (1995)207
    【4】C.G. Bailey and C. Yan, Anal. Chem. 70 (1998) ,3275.
    【5】H.H. Strain, J. Am. Chem. Soc. 61,(1939),1292 .
    【6】D.L. Mould and R.L.M. Synge, Biochem. J. 58, (1954),571.
    【7】V. Pretorius, B.J. Hopkins, and J.D. Schiecke, J.Chromatogr.99, (1974),23.
    【8】J.W.Jorgenson and K.D. Lukacs, J. Chromatogr_. 208, (1981)209 .
    【9】Mark M.Robson,1997 John Wiley & Sons, Inc. J Micro Sep 9
    (1997),357.
    【10】Y. Guo, and L.A. Colon, Anal. Chem. 67 (1995) 2511.
    【11】Stephane Constantin and Ruth Freitag .J. Chromatogr. A , 887 (2000) 253.
    【12】Stphane Constantin and Ruth Freitag.J. Sep. Sci., 25, (2002) 1245.
    【13】Helen C , Chao James and E. Hanson .J. Sep. Sci., 25, (2002) 345.
    【14】G.A. Lord, D.B. Gordon, P.Myers and B.W. King, J. Chromatogr. A, 768,(1997) 9..
    【15】R. Stol , M. Mazereeuw , U.R. Tjaden and J. van der Greef .J. Chromatogr. A, 873 (2000) 293.

    【16】Peter D.A. Angus , Charles W. Demarest , Tom Catalano and John F. Stobaugh, J. Chromatogr. A 887 (2000) 347.
    【17】Qinglin Tang , Baomin Xin and Milton L. Lee. J. Chromatogr. A , 837 (1999) 35.
    【18】A.-M. Siouffi ,J. Chromatogr. A, 1000 (2003) 801.
    【19】Qinglin Tang and Milton L. Lee .J. Chromatogr. A,, 887 (2000) 265.
    【20】Tsuda,T and J.W. Lakacs.,J. Chromatogr,248(1982),241.
    【21】Joseph J.Pesek and Maria T .Matyska .J. Chromatogr.A,736 (1996),255.
    【22】M.T. Matyaka , J.J.Pesek and R.I.Boysen., Anal. Chem.,73,(2001),
    5116.
    【23】Zhen Liu , Koji Otsuka and Shigeru Terabe ,J. Chromatogr A, 961(2002) 285.
    【24】Young Juo and Luis A. Colón, Anal. Chem.67(1995).2511.
    【25】Stephane Constantin, Ruth Freitag , J. Chromatogr.A 887 (2000) 253.
    【26】Xinjie Wu , Hongxia Liu and Hong Liu., Analytica Chimica Acta 478 (2003) 191.
    【27】Li Xu , Yu-Qi Feng , Zhi-Guo Shi and Shi-Lu Da, J. Chromatogr.A, 1033 (2004) 161.
    【28】S.E.van den Bosch , S. Heemstra , J.C. Kraak and H. Hoppe, J. Chromatogr. A, 755 (1996) 165.
    【29】G.A. Lord, D.B. Gordon, P. Myers and B.W. King, J. Chromatogr. A 1997, 768, 9.
    【30】B. Behnke , E. Grom and E. Bayer, J. Chromatogr. A 716(1995) 207
    【31】Xiangmin Zhang and Shuang Huang J. Chromatogr. A 910 (2001) 13.
    【32】Qinglin Tang , Baomin Xin and Milton L. Lee, J. Chromatogr. A , 837 (1999) 35.
    【33】A.M. Siouffi ,J. Chromatogr. A, 1000 (2003) 801.
    【34】J.H. Knox and I.H. Grant, Chromatographia 32,(1991) 317
    【35】C. Fujimoto , J. Kino and H. Sawada, J. Chromatogr. A 716 (1995) 107.
    【36】C. Fujimoto , J.Y. Fujise and E. Matsuzawa, Anal. Chem. 68 (1996) 2753.
    【37】C. Ericson , J. Liao , K. Nakazato and S. Hjerten, J. Chromatogr. A ,767 (1997) 33.
    【38】A. Palm and M.V. Novotny, Anal. Chem. 69 (1997) 4499.
    【39】E.C. Peters , M. Petro , F. Svec and J.M. Frehet, Anal. Chem. 69(1997) 3646.
    【40】E.C. Peters , M. Petro , F. Svec and J.M. Frechet, Anal. Chem. 70(1998) 2288.
    【41】E.C. Peters , M. Petro , F. Svec and J.M. Frechet, Anal. Chem. 70(1998) 2296.
    【42】S.M. Fields, Anal. Chem. 68 (1996) 2709.
    【43】H. Minakuchi , K. Nakanishi , N. Soga , N. Ishizuka and N.Tanaka, Anal. Chem. 68 (1996) 3498.
    【44】Knox, J. H. J . Chromatogr A, 680,( 1994),3.
    【45】Maria T.Dulay , Rajan P. Kulkarni and Richard N. Zare , Anal. Chem, 70,(1998),5103.
    【46】Y.S. Li , B. Li , N.Y. Han and B.J. Xu. J Chromatogr A, 1021 (2003) 183.
    【47】K . Nakanishi , H. Minakuchi , N. Soga and N. Tanaka, J. Sol-Gel Sci. Technol. 13 (1998) ,163.
    【48】P . Judenstein , J. Titman , M. Stamm and H. Schmidt, Chem Mater. 6 (1994) 127.
    【49】A. Venkateswara Rao and Manish M.Kulkarni ,Materi Chem and Phy 77 (2002) 819.
    【50】Lingyi Zhang , Guichen Ping , Lihua Zhang and Weibing Zhang, J. Sep. Sci., 26(2003) 331.
    【51】Zhi-Guo Shi , Yu-Qi Feng and Li Xu., Microporous and Mesoporous Materials 68 (2004) 55
    【52】Qinglin Tang , Naijun Wu and Milton L. Lee_. J. Microcolumn Separations, 12 (1), (2000),612
    【53】Xiangmin Zhang and Shuang Huang., J .Chromatogr .A, 910 (2001) 13.
    【54】Luis A. Colon , Todd D. Maloney and Adam M. Fermier,c.
    J. Chromatogr. A 887 (2000) 43.
    【55】Todd D. Maloney and Luis A. Colon, J. Sep. Sci. 2002, 25, 1215.
    【56】Peter D.A. Angus , Charles W. Demarest and John F. Stobaugh ,J. Chromatogr. A .,887 (2000) 347.

    【57】Stephanie Roulin , Richard Dmoch and Richard Carney ,J. Chromatogr. A, 887 (2000) 307.
    【58】J.H. Knox, Anal. Chem. 15, (1977) 353
    【59】Zimina T , Smith RM , Highfield JC , Myers P and King BW, J.Chromatogr. A, 728 .( 1996)33.
    【60】Vissers JPC , Hoeben MA , Laven J , Claessens HA and Cramers CA , J. Chromatogr. A ,883, ( 2000) 11.
    【61】Peter D.A. Angus .,Charles W.Demarest.,John F. Stobaugh
    J.Chromatogr , A,887, (2000) 347.
    【62】Shen YF , Zhao R , Berger SJ , Anderson GA and Smith R.D Anal. Chem. 74 (16): (2002), 4235.
    【63】Shen YF , Yang YJ and Lee ML , Anal. Chem 69 (4).,1997., 628.
    【64】Shen YF and Lee ML , Anal. Chem, 69 (13): 2541-2549 JUL 1 1997
    【65】Lippert JA, Xin BM, Wu NJ, Lee ML J. Microcolumn Separations 11 (9): 631-643 1999
    【66】Planeta J , Karasek P and Vejrosta , J. Sep. Sci.,26 (6-7),( 2003)525.
    【67】C.Yan , U.S. Patent No. 5,453,163, Sept. 26, 1995; Appl. No. 142, 917 Oct. 29, 1993.
    【68】Stol R , Mazereeuw M , Tjaden UR and van der Greef , J.Chromatogr. A .,873 (2),( 2000) 293.
    【69】E.V. Piel, Anal. Chem. 38, (1966) 670.
    【70】Adam M. Fermier and Luis A. Colon , J. Microcolumn Separations, 10(5), (1998),439.
    【71】Maloney TD and Colon LA., Electrophoresis., 20 (12):(1999)2360.
    【72】Ishizuka N , Minakuchi H , Nakanishi K , Soga N and Tanaka , J. Chromatogr. A , 72 (6):(2000),1275.
    【73】Ishizuka N , Minakuchi H , Nakanishi K , Soga N and Tanaka N., J. Chromatogr. A .,797(1-2):(1998),133.
    【74】Shchipunov YA , Burtseva YV and Zvyagintseva TN , J Biochem Bioph Meth 58 (1): (2004),25.
    【75】Akram M , Stuart MC and Wong DKY ,Anal Chim Acta 504 (2): (2004),243.
    【76】Ming M , Chen Y and Katz Langmuir 18 (22): (2002),8566.
    【77】Liu CQ , Lei FB and Economy Marer Chem 14 (7):(2004),1187.
    【78】Chen YC , Tsai CC and Lee YD.,J Polym Sci Pol Chem. A,42 (7):(2004)
    【79】Liu CQ , Lei FB and Economy J, J. Mater chem.., 14 (7): (2004) 1187.
    【80】Kim JD and Honma I,Electro.Chim Acta., 48 (24): (2003) 3633.
    【81】Li QF , He RH , Jensen JO and Bjerrum NJ, Chem Mater 15 (26): (2003) 4896.
    【82】Zhu JH , Zhang Y , Basu A , Lu ZG , Paranthaman M , Lee DF and Payzant EA , Surf. Coat. Tech 177: (2004) 65.
    【83】Shirley A , Rodrý´guez and Luis A. Colon, Chem. Mater., 11, (1999)754.

    【84】 R.F.S. Lenza and W.L.Vasconcelos, Materials Research, Vol. 4, No. 3, (2001),189.
    【85】Robson MM , Roulin S , Shariff SM , Raynor MW and Bartle KD, Chromatograpgia.,43 (5-6): (1996), 313..
    【86】C .J. Brinker , K.D. Keefer , D.W. Schaefer and R.A. Assink ,
    J. Non-Cryst. Solids 63 (1984) ,45.
    【87】Norio Ishizuka , Hiroyoshi Minakuchi and Kazuki Nakanishi,Colloids and Surfaces A, 273,(2001),187 .
    【88】P . Mezza , J. Phalippou and R. Sempere, J. Non-Cryst. Solids 243 (1999) 75.
    【89】K . Nakanishi , H. Minakuchi , N. Soga and N. Tanaka, J. Sol-Gel Sci. Technol. 13 (1998) 163.
    【90】P .Judenstein , J. Titman , M. Stamm and H. Schmidt, Chem. Mater. 6 (1994) 127.
    【91】J .Martin , B. Hosticka , C. Lattimer and P.M. Norris, J. Non-Cryst. Solids 288 (2001) ,222.
    【92】A.Venkateswara Rao and Manish M. Kulkarni, Materials Chemistry and Physics 77 (2002) 819..
    【93】M .T. Anderson , P.S. Sawyer and T. Rieker, Micropor. Mesopor. Mater. 20 (1998),53.

    【94】Xiaowen Shao , Yufeng Shen , Kim O’Neill and Milton Lee, J. Chromatogr A, 830. (1999), 415.

    【95】Norio Ishizuka , Hiroyoshi Minakuchi and Ken Hosoya, Anal. Chem, 72,( .2000),1275.
    【96】Lingyi Zhang , Guichen Ping , Weibing Zhang and Yukui Zhang , J. Sep. Sci., 26,( 2003),331.
    【97】Masaru Kato , Kumiko Sakai-Kato , Toshimasa Toyo’oka and Maria T. Dulay, J. Chromatogr A, 961 (2002), 45.
    【98】Masanori Motokawa , Hiroshi Kobayashi and Nobuo Tanaka , J. Chromatogr A, 961 (2002) ,53.
    【99】O.Soppera , C.Croutxe-Barghorn , C.Carre and D.Blanc, Applied Surface Sciences, 186.(2002),91.
    【100】Maria T. Dulay , Joselito P and Richard N. Zare, Anal. Chem, 73,(2001),3921.
    【101】Thomas Adam , Klaus K. Unger , Monika M. Dittmann and Gerard P. Rozing, J. Chromatogr A,887 (2000) ,327.
    【102】Chao Yan , Rajeev Dadoo , Hui Zhao and Richard N. are
    Anal. Chem. 67.(1995),2026.

    下載圖示 校內:立即公開
    校外:2004-07-08公開
    QR CODE