簡易檢索 / 詳目顯示

研究生: 薛勇瑋
Hsueh, Yung-Wei
論文名稱: 具共振效應之壓力式微型噴嘴霧化特性
Atomization Performance of Pressure Type Micro Atomizers with Resonant Effects
指導教授: 王覺寬
Wang, Muh-Rong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 116
中文關鍵詞: 共振效應
外文關鍵詞: resonant effects
相關次數: 點閱:95下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    本研究探討單流體微型噴嘴之霧化機制及其霧化特性,微型噴嘴孔口直徑為50 μm 、100 μm、150 μm及200 μm等,工作流體為純水。研究項目包括微液柱之暫態演變過程及其穩態破裂過程,並探討微液柱在高壓下,共振效應對其霧化特性之影響。所探討的參數包括噴嘴出口孔徑、共振腔高度、共振腔直徑、多孔噴頭孔數及孔距等。微液柱之暫態演變過程及其穩態破裂過程以IDT公司之高速攝影機拍攝,噴霧粒度及粒度分佈以Malvern公司雷射繞射式RT-Sizer粒徑分析儀量測。研究結果顯示,由於微流體表面張力之作用甚大,液體先在微噴嘴出口處形成半月型之液膜,此液膜隨時間成長,液體慣性力逐漸遞增,並與液體表面張力產生強烈交互作用,故液體從半月型之液膜演變為球狀體,再拉伸成為具錐體、頸部及頭部之複雜結構,最後產生破裂現象。在相同噴射壓力下,當微噴嘴之孔口直徑增大,液體之慣性力相對增加,液柱因為拉伸而變細,故不穩定拉伸變形及破裂過程之時間亦縮短。研究結果亦顯示,微液柱破裂長度及其破裂機制隨液體雷諾數而變。當液體出口雷諾數小於392時,微液柱之破裂機制主要為軸對稱不穩定模態,破裂長度隨雷諾數增加而遞增。當液體出口雷諾數392<Re<635時、微液柱之破裂機制從軸對稱不穩定模態轉變成為螺旋不穩定模態,此時液柱破裂長度隨雷諾數增加而遞減。另外,當液體出口雷諾數進ㄧ步增加到Re ≧ 635時,微液柱之破裂機制從螺旋不穩定模態再次轉變成液柱擺動模態。
    研究結果亦顯示,微型噴嘴之出口孔徑大小為噴霧產生率及噴霧粒度之主要控制參數。噴霧產生量之增加率與噴嘴出口孔徑成二次曲線關係。噴霧粒度隨噴嘴出口孔徑增加而遞增。例如在液體壓力125 bar下,噴嘴孔徑為100 μm、150 μm及200 μm時,噴霧產生率分別為3.95 kg/hr、8.4 kg/hr及12.33 kg/hr,而其噴霧平均粒徑則分別為6.65 μm、9.42 μm及11.53 μm。另外,多孔噴嘴之孔數為噴霧產生率之控制參數。在液體操作壓力為125 bar下,微型噴嘴孔徑為100 μm時,若從單孔變為雙孔時,噴霧產生率從3.95 kg/hr增至6.91 kg/hr,但是噴霧粒徑並未隨孔數增加而有太大之變化,故知此微型噴嘴可以在保持相同之噴霧品質下,以增加噴孔數來控制噴霧產生率。此外,多孔噴頭之孔距亦為改變噴霧特性之重要參數,以雙孔配置之多孔噴頭,噴孔孔距與噴嘴孔徑比為10時,可獲得較微細之噴霧,顯示在多孔微噴頭結構下,微噴霧間之交互作用,具有改善霚化特性之效果。

    Abstract
    Atomization performance of pressure type micro-atomizers with resonant effects is investigated in this research program. The evolution of the micro-jet during the transient break-up processes was studied using IDT-high speed video camera. The particle size distribution was measured by Malvern RT-Sizer. Results showed that the liquid first formed a meniscus around the outlet of the orifice because of the higher surface tension effects associated the micro-injector. The meniscus was transformed to the spherical shape when the inertia force was increased with time. The spherical shape was then stretched to a column as the inertia force was further increased. Finally, the liquid jet became quite unstable and formed a conical shape near the orifice, a cylindrical column as the neck and a spherical head in the down stream. The above unsteady processes were preceded in a short time as the diameter of the nozzle was increased due to the increased inertia of the liquid column. Results also showed that the intact-length of the micro-jet increased with Reynolds number as Re< 392. However, the intact length reached a maximum and then began to decrease as Reynolds number was further increased. The instability modes of the liquid jet changed from the axi-symmetric mode to helical mode as Reynolds number reached 392. The helical instability was transformed to the sinusoidal motion as Reynolds number was further increased (i.e., Re>635). It was also found that the diameter of the orifice was the control parameter of the spray production rate and the particle size. The spray production rate increased with the orifice diameter to the second power. The particle size of the spray also increased with the orifice diameter. For example, under the injection pressure of 125bar, the spray production rates were 3.95 kg/hr, 8.4 kg/hr, and 12.33 kg/hr and mean particle sizes were 6.65μm, 9.42μm, and 11.53μm for the cases of orifice diameters of 100μm, 150μm, and 200μm, respectively. The spray production rate was further increased with the multiple-orifice design. For example, under the liquid infection pressure of 125bar and the orifice diameter of 100μm, the spray production rate increased from 3.95kg/hr to 6.91 kg/hr as the number of orifice was doubled. However, the particle size of the spray was insensitive to the change of the number of orifice. Hence one may control the spray production rate by increasing the number of orifice without degrading the quality of the spray. The pitch of the multiple orifice design also affected the atomization performance. Ultra-fine spray could be obtained as the ratio of the pitch to orifice diameter was more than 10. It turned out that the interaction between the spray jets with the multi-injection design could be used to enhance the atomization processes of the micro-jet.

    目 錄 中文摘要 英文摘要 致謝 目錄 Ⅰ 表目錄 Ⅲ圖目錄 Ⅳ 符號說明 Ⅷ 第一章 緒論 1 1-1 簡介 1 1-2 文獻回顧 1 1-2-1霧化之原理 1 1-2-2液體碎化過程 3 1-2-3噴霧流場中之空氣動力現象 5 1-2-4噴霧流場中液滴破裂模式 7 1-2-5壓力式霧化器 ..8 1-3研究動機與目的 11 第二章 實驗設備及儀器 29 2-1 實驗設備 29 2-1-1噴嘴性能測試台架 29 2-1-2高壓液體供應系統 29 2-1-3抽氣整流系統 30 2-1-4霧化裝置 30 2-2 量測儀器 31 2-2-1 RT-Sizer粒徑分析儀 31 2-2-2 RT-Sizer粒徑分析儀校正記錄 32 2-2-3攝影器材及影像處理系統 32 2-2-4影像擷取系統 32 2-3主要量測參數 33 第三章 實驗步驟及方法 48 3-1 實驗量測條件 48 3-2 流量的量測 48 3-3 微管流之視流觀察 49 3-4 RT-Sizer粒徑分析儀的量測 49 3-5 數據取樣與分析 50 第四章 結果與討論 53 4-1 壓力式微管流液柱噴射之視流實驗 53 4-1-1 微管流液柱噴射之暫態演變過程………………..…………….53 4-1-2 微管流之出口視流觀測……………………..……………...….55 4-1-3 壓力式微管流之液柱破裂長度量測 56 4-2 具共振效應之高壓力式微型噴嘴霧化特性 58 4-2-1 孔徑變化對霧化特性之影響 58 4-2-1-1孔徑變化對噴霧產生率之影響…….………………..…….58 4-2-1-2孔徑變化對雷諾數之影響…….……………………………59 4-2-1-3孔徑變化對噴霧平均粒徑之影響…….……………………59 4-2-1-4孔徑變化對噴嘴霧化效率之影響…….……………………61 4-2-2 共振腔尺寸對霧化特性之影響 62 4-2-2-1共振腔高度對噴霧平均粒徑之影響…….……………..….63 4-2-2-2共振腔直徑對噴霧平均粒徑之影響…….…………………64 4-2-2-3共振腔尺寸對噴嘴霧化效率之影響…….…………………66 4-2-3 多孔噴頭孔數與孔距對霧化特性之影響 .67 4-2-3-1多孔噴頭孔數對噴霧產生率之影響…….……………..….68 4-2-3-2多孔噴頭孔數對噴霧平均粒徑之影響…….………………69 4-2-3-3多孔噴頭孔距對噴霧平均粒徑之影響…….………………69 4-2-3-4多孔噴頭孔距對噴嘴霧化效率之影響…….………………71 第五章 結論……………………………………………………………………109 參考文獻………………………………………………………………………..111 自述……………………………………………………………………………..116

    參考文獻
    1. 古晉光, 加濕工程應用手冊, 翰寧股份有限公司, pp.10-28, 2000.
    2. A. H. Lefebvre, “Gas Turbine Combustion,” Chapter10, Hemisphere Publishing Corporation, New York, 1983.
    3. R. A. Castleman Jr., “The Mechanism of the Atomization of Liquids,” Burean of Standards Journal of Research, Vol.6, pp.369-376, 1930.
    4. N. Dombrowski and W. R. Johns, ”The Aerodynamic Instability and Disintegration of Viscous Liquid Sheets,” Chem. Eng. Sci., Vol.18, pp.203-214, 1963.
    5. B. E. Stapper, W. A. Sowa and G. S. Samuelsen, “An Experimental Study of the Effects of Liquid Properties on the Breakup of a Two-dimensional Liquid Sheet,” ASME, Journal of Engineering for Gas Turbines and Power, Vol.114, pp.39-45, 1992.
    6. C.H. Lee, Rolf D. Reitz, “An experimental study of the effect of gas density on the distortion and breakup mechanism of dropsin high speed gas stream”, International Journal of Multiphase Flow 26(2000) 229-244.
    7. R. P. Fraser, “Liquid Fuel Atomization,” Sixth Symposium (International) on Combustion, Rein-hold, New York, pp.687-701, 1957.
    8. M.C. Butler Ellis and C.R. Tuck, “ How Adjuvants Influence Spray Formation with Different Hydraulic Nozzle, “ Crop Protection, Vol.18, pp.101-109, 1999.
    9. P.C.H Miller, M.C. Butler Ellis, “Effects of formulation on spray nozzle performance for applications from ground-based boom sprayers”, Crop Protection 19 (2000) 609-615.
    10. M.C. Butler Ellis, C.R. Tuck and P,C.H. Miller, “ How Surface Tension of Surfactant Solution Influences the Characteristics of Sprays Produced by Hydraulic Noozle Used for Pesticide Application, “ Colloids and Surface A: Physicochemical and Engineering Aspects, Vol. 180, pp.267-276, 2001.
    11. G. D. Crapper, N. Dombrowski, W. P. Jepson and G. A. D. Pyott, ”A Note on the Growth of Kelvin-Helmholtz Waves on Thin Liquid Sheets,” J. Fluid Mech., Vol.57, part 4, pp.671-672, 1973.
    12. Lefebvre, A. H., “Atomization and Sprays,” Hemisphere Publishing Corporation, New York, 1989.
    13. H. C. Simmons, “The Atomization of Liquid, Principles and Methods,” Parker Hannifin Report No.8, pp.61-92, 1982.
    14. 許耀仁, “氣衝式平面噴嘴液膜霧化特性之研究,” 國立成功大學碩士論文, 1993.
    15. 高韶壕, “微型噴嘴單束噴霧流在側吹下之粒子分布,” 國立成功大學碩士論文, 2003.
    16. Zhang, F.R. , Wakabayashi, S. and Tokuoka, N. , “ The Spray Structure from Swirl Atomizer (1st Report, General Characteristics and Structure of A Spray of Swirl Atomizer), ” Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineerings, Part B, Vol. 60, No. 570, pp. 675-680, 1994.
    17. Chin, J.S. , Nickolaus, D and Lefebvre, A.H. , “ Influence of Distance on the Spray Characteristics of Pressure-Swirl Atomizers, “ ASME, Journal of Engineering for Gas Turbines and Power, Vol. 108, pp. 219-224, 1986.
    18. 趙金容,“相差都卜勒粒子分析儀應用於燃油噴嘴特性之研究”, 國立成功大學碩士論文, 1988。
    19. 蔡清洲, “漩渦噴流中氣液兩相交互作用實驗分析,” 國立成功大學碩士論文, 1989。
    20. 洪嘉宏,”中空錐形噴霧中連續相及離散相之動力特性研究, “ 國立成功大學博士論文, 1991。
    21. 楊坤和,“研究型氣助式噴霧特性研究,” 國立成功大學博士論文, 1992。
    22. 賴維祥,“噴霧發展過程中粒子之輸送現象及其紊流條調制之研究,” 國立成功大學博士論文, 1995。
    23. 徐明生,“雙流體式平面噴嘴霧化特性之研究,” 國立成功大學碩士論文, 1995。
    24. 曾安康,”超微噴嘴液滴在噴流中之演變過程,“ 國立成功大學碩士論文, 2001。
    25. C.K. Chiang, J.Y. Poo, and T.H. Lin “ Number of Result Drops In Binary Liquid Drop Collision “ Picast,Cofference Proceedings Vol. II, pp. 577-589, 1994.
    26. J.D. McTaggart and R. List, “ Collision and Breakup of Water Drops at Terminal Velocity, “ J. of the Atmospheric Sciences, col. 32, pp. 1401-1411.
    27. J.R. Adam, N.R. Lindblad and C.D. Hendricks, “ The Collision, Coalescence, and Disruption of Water Droplets, “ J. Appl. Phys. , Vol. 39, pp. 5173-5180, 1968.
    28. A.M. Podvysotsky and A.A. Shraiber, “ Coalescence and Breakup of Drops in Two-Phase Flows, “ Imt. J. Multiphase Flow, Vol. 10, No. 2, pp. 195-209, 1984.
    29. N. Ashgrize and P. Grivi, “ Coalescence Collision of Fuel Droplets, “ AIAA-87-0135.
    30. Q.V. Nguyen and R.H. Rangle and D. Dunn-Rankin, “ Measurement and Prediction of Trajectories and Collision of Droplets, “ Int. J. Multiphase Flow, Vol. 10, No. 2, pp. 159-177, 1991.
    31. C.HAAS Frederick, “Stability of Droplets Suddenly Exposed to a High Velocity Gas Stream, “ A.I.CH.E. Journal Page, 920, November, 1964.
    32. A.R. Jones, “ Design Optimization of a Large Pressure-Jet Atomizer for Power Plant,” Proceedings of the 2nd International Conference on Liquid Atomization and Sprays, Madison, Wis. , pp. 181-185, 1982.
    33. H.C. Simmons and C.F. Harding, “ Some Effects on Using Water as a Test Fluid in Fuel Noozle Spray Analysis, “ ASME Paper 80-GT-90, 1980.
    34. H.C. Simmons, “ The Prediction of Sauter Mean Diameter for Gas Turbine Fuel Nozzles of Different Types, “ ASME, Journal of Engineering for Power, Vol. 102, pp. 646-652, 1980.
    35. J.B. Kendy, “ High Weber Number SMD Correlations for Pressure Atomizers, “ Transactions of ASME Journal of Engineering for Gas Turbines and Power, Vol. 108, pp. 191-195, 1986.
    36. X.F. Wang and A.H. Lefebvre, “ Mean Drop Sizes from Pressure Swirl Nozzles, “ Journal of Propulsion and Power , Vol. 3, No. 1, pp. 11-18, 1987.
    37. S.M. De Corso, “ Effect of Ambient and Fuel Pressure on Spray Drop Size, “ ASME, Journal of Engineering for Power, Vol. 82, pp. 10, 1960.
    38. S.M. De Corso and G.A. Kemeny, “ Effect of Ambient and Fuel Pressure on Nozzle Spray Angle, “ ASME, Journal of Engineering for Power, Vol. 79, No. 3, pp. 607-615, 1957.
    39. J. Ortman and A.H. Lefebvre, “ Fuel Distributions from Pressure Swirl Atomizers, “ Journal of Propulsion and Power, Vol. 1, No. 1, pp.11-15, 1985.
    40. M.M. Elkotb and N.M. Rafat and M.A. Hanna, “ The Influence of Swirl Atomizer Geometry on the Atomization Performance, “ Proceedings of the 1st International Conference on Liquid Atomization and Spray System, Tokyo, pp. 109-115, 1978.
    41. M. Suyari and A.H. Lefebvre, “ Film Thickness Mesaurements in A Simplex Swirl Atomizer, “ Journal of Propulsion and Power, Vol. 2, No. 6, pp. 528-533, 1986.
    42. P.S. Kutty and M.V. Narasimhan and K. Narayanaswamy, “ Design and Prediction of Discharge Rate, Cone Angle and Aircore Diameter of Swirl Chamber Atomizers, “ Proceedings of 1st International Conference on Liquid Atomization and Spray Systems, pp. 93-100, 1978.
    43. K.R. Babu and M.V. Narasimhan and K. Narayanaswamy, “ Correlation for Prediction of Discharge Rate, Cone Angle and Aircore Diameter of Swirl Spray Atomizers, “ Proceedings of 2nd International Conference on Liquid Atomizer and Spray Systems, pp. 91-97, 1982.
    44. W.C. Nieuwkamp, “ Flow Analysis of a Hoolow Cone Nozzle With Potential Flow Theory, “ Proceedings of 3rd International Conference on Liquid Atomization and Spray Systems, pp. IIIC/1/1-9, 1985.
    45. N.K. Rizk and A.H. L EFEBVRE, “ Internal Flow Characteristics of Simplex Swirl Atomization, “ AIAA-84-0124, 1984.
    46. 林富祈,”壓力式渦漩霧化器噴霧錐角控制之研究,” 國立成功大學碩士論文, 1997.
    47. K. Ramamurthi and T.John Tharakan, “ Atomization Characteristics of Swirled Annular Liquid Sheets, “ ICLASS-“97, 1997.
    48. Wang M.R. ,Lin F.C. ,Sheu M.S. ,Wang C.K. ,1999, ” Control of Spray Angle in a Pressure Swirling Atomizer,” Trans. Of the Aeronautical and Astronautical Society of ROC, Vol. 31, No. 2, pp. 99-107.
    49. 林嘉宏,”渦漩霧化器之設計製造及模擬分析,” 國立成功大學碩士論文, 1996。
    50. 小栗富士雄原著,”標準機械設計圖表便覽,” 台隆書店出版, 1972。

    下載圖示 校內:立即公開
    校外:2006-08-24公開
    QR CODE