| 研究生: |
卓訓瑋 Cho, Hsun-Wei |
|---|---|
| 論文名稱: |
異質介面增益光伏元件效能之研究 Heterojunction formation for efficient photovoltaic devices |
| 指導教授: |
吳季珍
Wu, Jih-Jen |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 氧化石墨烯 、光還原 、混成高分子太陽能電池 、還原氧化石墨烯 、氧化物奈米結構 、能階匹配 、載子動力學 、鈣鈦礦太陽能電池 |
| 外文關鍵詞: | Graphite oxide, Photoreduction, Hybrid polymer solar cell, Reduced graphene oxide, Oxide nanoarchitecture, Energy match, Charge dynamics, Perovskite solar cell |
| 相關次數: | 點閱:108 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中,我們驗證了使用光還原法來還原氧化石墨烯。在研究開始時,我們著重在如何去還原氧化石墨烯。而在光還原法的部分,我們分別添加了硫化鈉以及亞硫酸鈉(Na2S/Na2SO3)還有三乙醇胺(triethanolamine)作為還原反應溶液中的犧牲試劑。犧牲試劑的添加,提升了光還原氧化石墨烯的效果,我們也觀察過程中其還原的程度以及所需要的時間。藉由螢光光譜分析結果,可以發現在添加犧牲試劑即硫化鈉以及亞硫酸鈉還有三乙醇胺後,氧化石墨烯的放光峰會有明顯的削弱,即使兩種犧牲試劑都能使照光後的氧化石墨烯有效的發生電荷轉移,當使用硫化鈉以及亞硫酸鈉該組犧牲試劑時,還原過程中會使得氧化石墨烯或是已經部分還原的還原氧化石墨烯產生聚集的現象,因而使得後續的還原反應受到限制,而當使用三乙醇胺作為還原反應溶液中的犧牲試劑時,由於三乙醇胺能使得過氧化石墨烯在反應過程中持續分散,因而相較於使用硫化鈉以及亞硫酸鈉來的有效果。
而第二部分,我們嘗試添加還原的氧化石墨烯在以二氧化鈦(TiO2)奈米柱為基底使用氧化鋅奈米粒子(nanoparticle)與聚(3-己基噻吩)(P3HT)混參的高分子太陽能電池。在添加氧化石墨烯後,觀察由時間解析螢光光譜與阻抗分析的結果,發現添加了還原的氧化石墨烯可幫助奈米氧化物與聚(3-己基噻吩)的電荷分離效果,與此同時也降低了電子的生命週期。藉由添加還原氧化石墨烯適當的量,可得到一最佳光伏電池的效率。我們也在本研究中討論了在聚(3-己基噻吩)與還原氧化石墨烯以及氧化鋅於二氧化鈦奈米柱的能階匹配,由時間解析螢光光譜以及凱文探針力(Kelvin probe force)顯微技術的量測,可以確認電子能在吸光層中有效的從聚(3-己基噻吩)傳給還原氧化石墨烯再由還原氧化石墨烯傳到氧化鋅奈米粒子,因而能確認在氧化物混參聚(3-己基噻吩)的高分子太陽能電池中還原氧化石墨烯可以做為一輔助的電子接受者。在使用了九百奈米厚度的二氧化鈦奈米柱陣列為基底且無使用任何表面修飾劑的條件下,添加還原氧化石墨烯於氧化物混參聚(3-己基噻吩)的高分子太陽能電池可得到3.79%的效率。
鑒於發現添加還原氧化石墨烯後可提升高分子太陽能電池的效率,最後一個部分,我們嘗試添加還原氧化石墨烯於以甲基胺基鉛碘為基底的鈣鈦礦中來改善其太陽能電池的效率,而為了使還原氧化石墨烯能順利分散在有機溶劑中,首先我們對氧化石墨烯利用1-芘羧酸(1-pyrenecarboxylic acid, PCA)進行表面修飾並利用維他命c來將其還原成還原氧化石墨烯。由螢光光譜以及時間解析螢光光譜的分析結果,我們能證實經由添加1-芘羧酸修飾的還原氧化石墨烯能幫助其在鈣鈦礦層中的電荷分離效果,即證實了1-芘羧酸修飾後的還原氧化石墨烯能作為一個電子接受者來幫助電池中短路電流的提升,由電池的效率參數可發現在添加了0.5μl的1-芘羧酸修飾還原氧化石墨烯於電池中可提升27%的電流密度。
In this thesis, we demonstrated the photoreduction of graphene oxides (GOs) to obtain reduced GO (RGO). The first part, we focus on the reduction of GOs. The photoreduction of graphene oxides (GOs) was carried out in the presence of a sacrificial agent of Na2S/Na2SO3 and triethanolamine (TEA) separately in the solution. The photoreduction of GOs was enhanced with the addition of the sacrificial agent, which was examined in terms of reduction extent and needed reduction period. The quench of the GO emission was observed in the photoluminescence spectra of both GO solutions with Na2S/Na2SO3 and TEA. Although both sacrificial agents facilitated the charge transfer in the irradiated GO solutions, the aggregation of GO/reduced GO (RGO) occurred in the Na2S/Na2SO3-contained solution during photoreduction, which limited further photoreduction of GOs with the assistance of Na2S/Na2SO3. By keeping good dispersion characteristic during the whole process, the photoreduction efficiency of GO in the presence of TEA was therefore superior to that with the assistance of Na2S/Na2SO3.
Furthermore, to improve the performance of organic hybrid polymer solar cell, pristine reduced graphene oxide (RGO) sheets are added in the nanoarchitectural TiO2 nanorod (NR)-ZnO nanoparticle (NP)/P3HT hybrid polymer solar cells. The second part, we try to add RGO into polymer solar cell. With the addition of RGOs, the enhancement of the charge separation and the decrease of the electron lifetime in the nanoarchitectural metal oxide/P3HT hybrid are determined by time-resolved photoluminescence (TRPL) and impedance spectroscopy, respectively. The photovoltaic performance of the hybrid solar cell is therefore optimized by an appropriate addition of RGOs in the active layer. Moreover, intensity modulation of photocurrent spectroscopy measurements indicate that the electron transport rates in the hybrid solar cells are improved as adding RGOs in the active layer. Energy matching among P3HT, RGOs, and ZnO NPs is demonstrated in the TiO2 NR-ZnO NP/RGO/P3HT hybrid solar cell. It is respectively confirmed by TRPL and Kelvin probe force microscopy measurements that electron transfers occur effectively from P3HT to RGOs and from RGOs to ZnO NPs in the active layer. The pristine RGOs are concluded to be an energy-matched auxiliary electron acceptor in the nanoarchitectural metal-oxide/P3HT hybrid solar cell. An efficiency of 3.79% is achieved in the RGO-incorporated nanoarchitectural metal oxide/P3HT hybrid solar cell fabricated free of interfacial modification using the 900 nm-thick TiO2 NR array.
In view of the additive of RGO, it gives the improvement in polymer hybrid solar cell. The final stages, RGOs have been added into the CH3NH3PbI3-based perovskite solar cells to improve the photovoltaic performance. In order to make it possible for RGO to be dispersed in polar organic solvents, GOs were first modified with 1-pyrenecarboxylic acid (PCA) and reduced using vitamin C. Both PL and TRPL evidence the efficient charge separation as the existence of PCA-RGO into perovskite layer. It confirm that PCA-RGO can sever as an electron acceptor into perovskite to enhance the short-circuit photocurrent. The short-circuit photocurrent density exhibited a 27% enhancement with the addition of 0.5 μl PCA-RGOs into the cells.
[1] M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, A.W.Y. Ho‐Baillie, Solar cell efficiency tables (version 49), Prog. Photovoltaics: Research and Applications 25(1) 3-13(2017).
[2] C. Grätzel, S.M. Zakeeruddin, Recent trends in mesoscopic solar cells based on molecular and nanopigment light harvesters, Mater. Today 16(1) (2013) 11-18.
[3] M. Grätzel, The Rise of Highly Efficient and Stable Perovskite Solar Cells, Acc. Chem. Res. 50(3) 487-491(2017).
[4] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J.-i. Fujisawa, M. Hanaya, Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes, Chem. Commun. 51(88) 15894-15897(2015).
[5] X. Li, D. Bi, C. Yi, J.-D. Décoppet, J. Luo, S.M. Zakeeruddin, A. Hagfeldt, M. Grätzel, A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells, Science 353(6294) 58-62(2016).
[6] A. Pivrikas, H. Neugebauer, N.S. Sariciftci, Charge Carrier Lifetime and Recombination in Bulk Heterojunction Solar Cells, IEEE J. Sel. Top. Quant. 16(6) 1746-1758(2010).
[7] L. Lu, T. Zheng, Q. Wu, A.M. Schneider, D. Zhao, L. Yu, Recent Advances in Bulk Heterojunction Polymer Solar Cells, Chem. Rev. 115(23) 12666-12731(2015).
[8] H. Kang, G. Kim, J. Kim, S. Kwon, H. Kim, K. Lee, Bulk‐Heterojunction Organic Solar Cells: Five Core Technologies for Their Commercialization, Adv. Mater. 28(36) 7821-7861(2016).
[9] L.M. Chen, Z. Hong, G. Li, Y. Yang, Recent Progress in Polymer Solar Cells: Manipulation of Polymer:Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells, Adv. Mater. 21(14‐15) 1434-1449(2009).
[10] S.D. Oosterhout, M.M. Wienk, S.S. van Bavel, R. Thiedmann, L. Jan Anton Koster, J. Gilot, J. Loos, V. Schmidt, R.A.J. Janssen, The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells, Nat. Materials 8 818-824(2009).
[11] J. Albero, P. Riente, J.N. Clifford, M.A. Pericàs, E. Palomares, Improving CdSe Quantum Dot/Polymer Solar Cell Efficiency Through the Covalent Functionalization of Quantum Dots: Implications in the Device Recombination Kinetics, J. Phys. Chem. C 117(26) 13374-13381(2013).
[12] J.A. Chang, J.H. Rhee, S.H. Im, Y.H. Lee, H.-j. Kim, S.I. Seok, M.K. Nazeeruddin, M. Gratzel, High-Performance Nanostructured Inorganic−Organic Heterojunction Solar Cells, Nano Lett. 10(7) 2609-2612(2010).
[13] W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Hybrid Nanorod-Polymer Solar Cells, Science 295(5564) 2425-2427(2002).
[14] S. AbdulAlmohsin, J.B. Cui, Graphene-Enriched P3HT and Porphyrin-Modified ZnO Nanowire Arrays for Hybrid Solar Cell Applications, J. Phys. Chem. C 116(17) 9433-9438(2012).
[15] D. Yu, K. Park, M. Durstock, L. Dai, Fullerene-Grafted Graphene for Efficient Bulk Heterojunction Polymer Photovoltaic Devices, J. Phys. Chem. Lett. 2(10) 1113-1118 (2011).
[16] S. Yun, Y. Qin, A.R. Uhl, N. Vlachopoulos, M. Yin, D. Li, X. Han, A. Hagfeldt, New-generation integrated devices based on dye-sensitized and perovskite solar cells, Energy Environ. Sci. 11(3) 476-526(2018).
[17] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F.E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, M. Grätzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers, Nat. Chemistry 6 242-247(2014).
[18] H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J.E. Moser, M. Grätzel, N.-G. Park, Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%, Sci. Rep. 2 591(2012).
[19] M.D.G.a.M. McHenry, Structure of materials: an introduction to crystallography, diffraction and symmetry, Cambridge University2007.
[20] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, J. Am. Chem. Soc. 131(17) 6050-6051(2009).
[21] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science 306(5696) 666-669(2004).
[22] Y.H. Ng, S. Ikeda, M. Matsumura, R. Amal, A perspective on fabricating carbon-based nanomaterials by photocatalysis and their applications, Energy Environ. Sci. 5(11) 9307-9318(2012).
[23] I.V. Lightcap, T.H. Kosel, P.V. Kamat, Anchoring Semiconductor and Metal Nanoparticles on a Two-Dimensional Catalyst Mat. Storing and Shuttling Electrons with Reduced Graphene Oxide, Nano Lett. 10(2) 577-583(2010).
[24] V.C. Tung, J. Kim, J. Huang, Graphene Oxide:Single‐Walled Carbon Nanotube‐Based Interfacial Layer for All‐Solution‐Processed Multijunction Solar Cells in Both Regular and Inverted Geometries, Advanced Energy Materials 2(3) 299-303(2012).
[25] A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Materials 6 183-191(2007).
[26] C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-Based Supercapacitor with an Ultrahigh Energy Density, Nano Lett. 10(12) 4863-4868(2010).
[27] W.S. Hummers, R.E. Offeman, Preparation of Graphitic Oxide, J. Am. Chem. Soc. 80(6) 1339-1339(1958).
[28] D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R.D. Piner, S. Stankovich, I. Jung, D.A. Field, C.A. Ventrice, R.S. Ruoff, Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy, Carbon 47(1) 145-152(2009).
[29] V.C. Tung, M.J. Allen, Y. Yang, R.B. Kaner, High-throughput solution processing of large-scale graphene, Nat. Nano. 4 25-29(2008).
[30] N. Liu, F. Luo, H. Wu, Y. Liu, C. Zhang, J. Chen, One‐Step Ionic‐Liquid‐Assisted Electrochemical Synthesis of Ionic‐Liquid‐Functionalized Graphene Sheets Directly from Graphite, Adv. Funct. Mater. 18(10) 1518-1525(2008).
[31] Y. Matsumoto, M. Koinuma, S.Y. Kim, Y. Watanabe, T. Taniguchi, K. Hatakeyama, H. Tateishi, S. Ida, Simple Photoreduction of Graphene Oxide Nanosheet under Mild Conditions, ACS Appl. Mater. Interfaces 2(12) 3461-3466(2010).
[32] V. Eswaraiah, S.S. Jyothirmayee Aravind, S. Ramaprabhu, Top down method for synthesis of highly conducting graphene by exfoliation of graphite oxide using focused solar radiation, J. Mater. Chem. 21(19) 6800-6803(2011).
[33] S. Pei, J. Zhao, J. Du, W. Ren, H.-M. Cheng, Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids, Carbon 48(15) 4466-4474(2010).
[34] W.-P. Liao, J.-J. Wu, Efficient Electron Collection in Hybrid Polymer Solar Cells: In-Situ-Generated ZnO/Poly(3-hexylthiophene) Scaffolded by a TiO2 Nanorod Array, J. Phys. Chem. Lett. 4(11) 1983-1988(2013).
[35] V. Georgakilas, M. Otyepka, A.B. Bourlinos, V. Chandra, N. Kim, K.C. Kemp, P. Hobza, R. Zboril, K.S. Kim, Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications, Chem. Rev. 112(11) 6156-6214(2012).
[36] H. Yang, F. Li, C. Shan, D. Han, Q. Zhang, L. Niu, A. Ivaska, Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement, J. Mater. Chem. 19(26) 4632-4638(2009).
[37] H. Yang, C. Shan, F. Li, D. Han, Q. Zhang, L. Niu, Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid, Chem. Commun. (26) 3880-3882(2009).
[38] R. Hao, W. Qian, L. Zhang, Y. Hou, Aqueous dispersions of TCNQ-anion-stabilized graphene sheets, Chem. Commun. (48) 6576-6578(2008).
[39] S. Park, R.S. Ruoff, Chemical methods for the production of graphenes, Nat. Nano. 5 (309) 217-224(2010).
[40] H. Ago, Y. Ito, N. Mizuta, K. Yoshida, B. Hu, C.M. Orofeo, M. Tsuji, K.-i. Ikeda, S. Mizuno, Epitaxial Chemical Vapor Deposition Growth of Single-Layer Graphene over Cobalt Film Crystallized on Sapphire, ACS Nano 4(12) 7407-7414(2010).
[41] X. Wang, P.F. Fulvio, G.A. Baker, G.M. Veith, R.R. Unocic, S.M. Mahurin, M. Chi, S. Dai, Direct exfoliation of natural graphite into micrometre size few layers graphene sheets using ionic liquids, Chem. Commun. 46(25) 4487-4489(2010).
[42] W. Strupinski, K. Grodecki, A. Wysmolek, R. Stepniewski, T. Szkopek, P.E. Gaskell, A. Grüneis, D. Haberer, R. Bozek, J. Krupka, J.M. Baranowski, Graphene Epitaxy by Chemical Vapor Deposition on SiC, Nano Lett. 11(4) 1786-1791(2011).
[43] S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y.I. Song, Y.-J. Kim, K.S. Kim, B. Özyilmaz, J.-H. Ahn, B.H. Hong, S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nat. Nano. 5 574-578(2010).
[44] M. Lotya, P.J. King, U. Khan, S. De, J.N. Coleman, High-Concentration, Surfactant-Stabilized Graphene Dispersions, ACS Nano 4(6) 3155-3162(2010).
[45] W. Qian, R. Hao, Y. Hou, Y. Tian, C. Shen, H. Gao, X. Liang, Solvothermal-assisted exfoliation process to produce graphene with high yield and high quality, Nano Research 2(9) 706-712(2009).
[46] Y. Gong, C. Pan, Preparation of High-quality Graphene via Electrochemical Exfoliation in Acidic Electrolytes: A Review, MRS Advances 2(30) 1611-1619(2017).
[47] C.-Y. Su, A.-Y. Lu, Y. Xu, F.-R. Chen, A.N. Khlobystov, L.-J. Li, High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation, ACS Nano 5(3) 2332-2339(2011).
[48] B.C. Brodie, On the Atomic Weight of Graphite, Philos. Trans. R. Soc. London 149 12-16(1859).
[49] S. L, Verfahren zur Darstellung der Graphits¨aure, Berichte der Deutschen Chemischen Gesellschaft 31 (1898).
[50] S. Park, R.S. Ruoff, Chemical methods for the production of graphenes, Nat. Nano. 4 217-224(2009).
[51] D.W. Lee, J.W. Seo, sp2/sp3 Carbon Ratio in Graphite Oxide with Different Preparation Times, J. Phys. Chem. C 115(6) 2705-2708(2011).
[52] C.-Y. Su, Y. Xu, W. Zhang, J. Zhao, A. Liu, X. Tang, C.-H. Tsai, Y. Huang, L.-J. Li, Highly Efficient Restoration of Graphitic Structure in Graphene Oxide Using Alcohol Vapors, ACS Nano 4(9) 5285-5292(2010).
[53] W. Chen, L. Yan, In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures, Nanoscale 3(8) 3132-3137(2011).
[54] H. Kang, A. Kulkarni, S. Stankovich, R.S. Ruoff, S. Baik, Restoring electrical conductivity of dielectrophoretically assembled graphite oxide sheets by thermal and chemical reduction techniques, Carbon 47(6) 1520-1525(2009).
[55] H.-M. Ju, S.H. Huh, S.-H. Choi, H.-L. Lee, Structures of thermally and chemically reduced graphene, Mater. Lett. 64(3) 357-360(2010).
[56] O. Akhavan, The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets, Carbon 48(2) 509-519(2010).
[57] D. Torres, P. Arcelus-Arrillaga, M. Millan, J.L. Pinilla, I. Suelves, Enhanced Reduction of Few-Layer Graphene Oxide via Supercritical Water Gasification of Glycerol, Nanomaterials 7(12) 447-451(2017).
[58] C. Liu, G. Hu, Highly efficient reduction of graphene oxide by sub/supercritical water and their application for thermal interface materials, Appl. Therm. Eng. 90 193-198(2015).
[59] H. Wang, J.T. Robinson, X. Li, H. Dai, Solvothermal Reduction of Chemically Exfoliated Graphene Sheets, J. Am. Chem. Soc. 131(29) 9910-9911(2009).
[60] K. Ai, Y. Liu, L. Lu, X. Cheng, L. Huo, A novel strategy for making soluble reduced graphene oxide sheets cheaply by adopting an endogenous reducing agent, J. Mater. Chem. 21(10) 3365-3370(2011).
[61] D. Mhamane, W. Ramadan, M. Fawzy, A. Rana, M. Dubey, C. Rode, B. Lefez, B. Hannoyer, S. Ogale, From graphite oxide to highly water dispersible functionalized graphene by single step plant extract-induced deoxygenation, Green Chemistry 13(8) 1990-1996(2011).
[62] Y. Zhou, Q. Bao, L.A.L. Tang, Y. Zhong, K.P. Loh, Hydrothermal Dehydration for the “Green” Reduction of Exfoliated Graphene Oxide to Graphene and Demonstration of Tunable Optical Limiting Properties, Chem. Mater. 21(13) 2950-2956(2009).
[63] J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, S. Guo, Reduction of graphene oxide vial-ascorbic acid, Chem. Commun. 46(7) 1112-1114(2010).
[64] M.J. Fernández-Merino, L. Guardia, J.I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, J.M.D. Tascón, Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions, J. Phys. Chem. C 114(14) 6426-6432(2010).
[65] G. Williams, B. Seger, P.V. Kamat, TiO2-Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide, ACS Nano 2(7) 1487-1491(2008).
[66] H. Li, S. Pang, X. Feng, K. Mullen, C. Bubeck, Polyoxometalate assisted photoreduction of graphene oxide and its nanocomposite formation, Chem. Commun. 46(34) 6243-6245(2010).
[67] H. Li, S. Pang, S. Wu, X. Feng, K. Müllen, C. Bubeck, Layer-by-Layer Assembly and UV Photoreduction of Graphene–Polyoxometalate Composite Films for Electronics, J. Am. Chem. Soc. 133(24) 9423-9429(2011).
[68] Y. Zhang, H.-L. Ma, Q. Zhang, J. Peng, J. Li, M. Zhai, Z.-Z. Yu, Facile synthesis of well-dispersed graphene by [gamma]-ray induced reduction of graphene oxide, J. Mater. Chem. 22(26) 13064-13069(2012).
[69] B. Zhang, L. Li, Z. Wang, S. Xie, Y. Zhang, Y. Shen, M. Yu, B. Deng, Q. Huang, C. Fan, J. Li, Radiation induced reduction: an effective and clean route to synthesize functionalized graphene, J. Mater. Chem. 22(16) 7775-7781(2012).
[70] L.J. Cote, R. Cruz-Silva, J. Huang, Flash Reduction and Patterning of Graphite Oxide and Its Polymer Composite, J. Am. Chem. Soc. 131(31) 11027-11032(2009).
[71] B.R. Saunders, M.L. Turner, Nanoparticle–polymer photovoltaic cells, Adv. Colloid Interface Sci. 138(1) 1-23(2008).
[72] T. Ameri, G. Dennler, C. Lungenschmied, C.J. Brabec, Organic tandem solar cells: A review, Energy Environ. Sci. 2(4) 347-363(2009).
[73] T. Xu, Q. Qiao, Conjugated polymer-inorganic semiconductor hybrid solar cells, Energy Environ. Sci. 4(8) 2700-2720(2011).
[74] H.-L. Yip, A.K.Y. Jen, Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells, Energy Environ. Sci. 5(3) 5994-6011(2012).
[75] Z. Liang, Q. Zhang, L. Jiang, G. Cao, ZnO cathode buffer layers for inverted polymer solar cells, Energy Environ. Sci. 8(12) 3442-3476(2015).
[76] G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, K. Y., C. S., T.S. M., C.S. A., N.D.J. R., B.D.D. C., G. M., M. I., H.C. S., R. M., High efficiency double heterojunction polymer photovoltaic cells using highly ordered TiO2 nanotube arrays, Appl. Phys. Lett. 91(15) 152111-152114(2007).
[77] J. Liu, J. Wu, S. Shao, Y. Deng, B. Meng, Z. Xie, Y. Geng, L. Wang, F. Zhang, Printable Highly Conductive Conjugated Polymer Sensitized ZnO NCs as Cathode Interfacial Layer for Efficient Polymer Solar Cells, ACS Appl. Mater. Interfaces 6(11) 8237-8245(2014).
[78] A. Iwan, A. Chuchmała, Perspectives of applied graphene: Polymer solar cells, Prog. Polym. Sci. 37(12) 1805-1828(2012).
[79] M.S. White, D.C. Olson, S.E. Shaheen, N. Kopidakis, D.S. Ginley, B.C. J., S.N. S., H.J. C., Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer, Appl. Phys. Lett. 89(14) 143517-143521(2006).
[80] S. Park, J. An, J.R. Potts, A. Velamakanni, S. Murali, R.S. Ruoff, Hydrazine-reduction of graphite- and graphene oxide, Carbon 49(9) 3019-3023(2011).
[81] Q. Liu, Z. Liu, X. Zhang, L. Yang, N. Zhang, G. Pan, S. Yin, Y. Chen, J. Wei, Polymer Photovoltaic Cells Based on Solution‐Processable Graphene and P3HT, Adv. Funct. Mater. 19(6) 894-904(2009).
[82] G.H. Jun, S.H. Jin, B. Lee, B.H. Kim, W.-S. Chae, S.H. Hong, S. Jeon, Enhanced conduction and charge-selectivity by N-doped graphene flakes in the active layer of bulk-heterojunction organic solar cells, Energy Environ. Sci. 6(10) 3000-3006(2013).
[83] Z. Liu, D. He, Y. Wang, H. Wu, J. Wang, Solution-processable functionalized graphene in donor/acceptor-type organic photovoltaic cells, Sol. Energy Mater. Sol. Cells 94(7) 1196-1200(2010).
[84] Z. Liu, Q. Liu, Y. Huang, Y. Ma, S. Yin, X. Zhang, W. Sun, Y. Chen, Organic Photovoltaic Devices Based on a Novel Acceptor Material: Graphene, Adv. Mater. 20(20) 3924-3930(2008).
[85] H. Chang, Y. Liu, H. Zhang, J. Li, Pyrenebutyrate-functionalized graphene/poly(3-octyl-thiophene) nanocomposites based photoelectrochemical cell, J. Electroanal. Chem. 656(1) 269-273(2011).
[86] Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou, L. Qu, An Electrochemical Avenue to Green‐Luminescent Graphene Quantum Dots as Potential Electron‐Acceptors for Photovoltaics, Adv. Mater. 23(6) 776-780(2011).
[87] Z. Liu, D. He, Y. Wang, H. Wu, J. Wang, Graphene doping of P3HT:PCBM photovoltaic devices, Synth. Met. 160(9) 1036-1039(2010).
[88] S.-S. Li, K.-H. Tu, C.-C. Lin, C.-W. Chen, M. Chhowalla, Solution-Processable Graphene Oxide as an Efficient Hole Transport Layer in Polymer Solar Cells, ACS Nano 4(6) 3169-3174(2010).
[89] V. Gupta, N. Chaudhary, R. Srivastava, G.D. Sharma, R. Bhardwaj, S. Chand, Luminscent Graphene Quantum Dots for Organic Photovoltaic Devices, J. Am. Chem. Soc. 133(26) 9960-9963(2011).
[90] Y.-M. Sung, F.-C. Hsu, D.-Y. Wang, I.S. Wang, C.-C. Chen, H.-C. Liao, W.-F. Su, Y.-F. Chen, Enhanced charge extraction in inverted hybrid photovoltaic cells assisted by graphene nanoflakes, J. Mater. Chem. 21(43) 17462-17467(2011).
[91] J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, N.-G. Park, 6.5% efficient perovskite quantum-dot-sensitized solar cell, Nanoscale 3(10) 4088-4093(2011).
[92] M. Grätzel, The light and shade of perovskite solar cells, Nature Materials 13 838-842(2014).
[93] M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites, Science 338(6107) 643-647(2012).
[94] P. Gao, M. Gratzel, M.K. Nazeeruddin, Organohalide lead perovskites for photovoltaic applications, Energy Environ. Sci. 7(8) 2448-2463(2014).
[95] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature 499 316-319(2013).
[96] M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature 501 395-398(2013).
[97] Z. Yu, L. Sun, Recent Progress on Hole‐Transporting Materials for Emerging Organometal Halide Perovskite Solar Cells, Adv. Ene. Materials 5(12) 1500213-1500229(2015).
[98] S.H. Kang, S.H. Choi, M.S. Kang, J.Y. Kim, H.S. Kim, T. Hyeon, Y.E. Sung, Nanorod‐Based Dye‐Sensitized Solar Cells with Improved Charge Collection Efficiency, Adv. Mater. 20(1) 54-58(2008).
[99] Y. Liao, W. Que, Q. Jia, Y. He, J. Zhang, P. Zhong, Controllable synthesis of brookite/anatase/rutile TiO2 nanocomposites and single-crystalline rutile nanorods array, J. Mater. Chem. 22(16) 7937-7944(2012).
[100] X. Feng, K. Shankar, O.K. Varghese, M. Paulose, T.J. Latempa, C.A. Grimes, Vertically Aligned Single Crystal TiO2 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis Details and Applications, Nano Lett. 8(11) 3781-3786(2008).
[101] B. Liu, E.S. Aydil, Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells, J. Am. Chem. Soc. 131(11) 3985-3990(2009).
[102] E. Hendry, M. Koeberg, B. O'Regan, M. Bonn, Local Field Effects on Electron Transport in Nanostructured TiO2 Revealed by Terahertz Spectroscopy, Nano Lett. 6(4) 755-759(2006).
[103] G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Grätzel, S. Mhaisalkar, T.C. Sum, Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3, Science 342(6156) 344-347(2013).
[104] Q. Lin, A. Armin, R.C.R. Nagiri, P.L. Burn, P. Meredith, Electro-optics of perovskite solar cells, Nat. Photon. 9 106-112(2014).
[105] S.-H. Lin, Y.-H. Su, H.-W. Cho, P.-Y. Kung, W.-P. Liao, J.-J. Wu, Nanophotonic perovskite solar cell architecture with a three-dimensional TiO2 nanodendrite scaffold for light trapping and electron collection, J. Mater. Chem. A 4(3) 1119-1125(2016).
[106] S. Mokkapati, K.R. Catchpole, G.M. A., E. K., H. Y., W. W., Nanophotonic light trapping in solar cells, J. Appl. Phys. 112(10) 101101-101120(2012).
[107] M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray‐Weale, U. Bach, Y.B. Cheng, L. Spiccia, A Fast Deposition‐Crystallization Procedure for Highly Efficient Lead Iodide Perovskite Thin‐Film Solar Cells, Angew. Chem. Int. Ed. 53(37) 9898-9903(2014).
[108] N. Ahn, D.-Y. Son, I.-H. Jang, S.M. Kang, M. Choi, N.-G. Park, Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide, J. Am. Chem. Soc. 137(27) 8696-8699(2015).
[109] J.Y. Jeng, Y.F. Chiang, M.H. Lee, S.R. Peng, T.F. Guo, P. Chen, T.C. Wen, CH3NH3PbI3 Perovskite/Fullerene Planar‐Heterojunction Hybrid Solar Cells, Adv. Mater. 25(27) 3727-3732(2013).
[110] Y.-F. Chiang, J.-Y. Jeng, M.-H. Lee, S.-R. Peng, P. Chen, T.-F. Guo, T.-C. Wen, Y.-J. Hsu, C.-M. Hsu, High voltage and efficient bilayer heterojunction solar cells based on an organic-inorganic hybrid perovskite absorber with a low-cost flexible substrate, PCCP 16(13) 6033-6040(2014).
[111] J.Y. Jeng, K.C. Chen, T.Y. Chiang, P.Y. Lin, T.D. Tsai, Y.C. Chang, T.F. Guo, P. Chen, T.C. Wen, Y.J. Hsu, Nickel Oxide Electrode Interlayer in CH3NH3PbI3 Perovskite/PCBM Planar‐Heterojunction Hybrid Solar Cells, Adv. Mater. 26(24) 4107-4113(2014).
[112] D. Liu, T.L. Kelly, Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques, Nat. Photon. 8 133-138(2013).
[113] J. Lian, Q. Wang, Y. Yuan, Y. Shao, J. Huang, Organic solvent vapor sensitive methylammonium lead trihalide film formation for efficient hybrid perovskite solar cells, J. Mater. Chem. A 3(17) 9146-9151(2015).
[114] Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, J. Huang, Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers, Energy Environ. Sci. 7(8) 2619-2623(2014).
[115] A. Dualeh, N. Tétreault, T. Moehl, P. Gao, M.K. Nazeeruddin, M. Grätzel, Effect of Annealing Temperature on Film Morphology of Organic–Inorganic Hybrid Pervoskite Solid‐State Solar Cells, Adv. Funct. Mater. 24(21) 3250-3258(2014).
[116] G. Yang, H. Tao, P. Qin, W. Ke, G. Fang, Recent progress in electron transport layers for efficient perovskite solar cells, J. Mater. Chem. A 4(11) 3970-3990(2016).
[117] J. Zhang, T. Pauporté, Effects of Oxide Contact Layer on the Preparation and Properties of CH3NH3PbI3 for Perovskite Solar Cell Application, J. Phys. Chem. C 119(27) 14919-14928(2015).
[118] K. Mahmood, B. S. Swain, A. Amassian, Double-layered ZnO nanostructures for efficient perovskite solar cells, Nanoscale 6(24) 14674-14678(2014).
[119] J.P. Correa Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner, T. Matsui, F. Giordano, T.J. Jacobsson, A.R. Srimath Kandada, S.M. Zakeeruddin, A. Petrozza, A. Abate, M.K. Nazeeruddin, M. Gratzel, A. Hagfeldt, Highly efficient planar perovskite solar cells through band alignment engineering, Energy Environ. Sci. 8(10) 2928-2934(2015).
[120] J. You, L. Meng, T.-B. Song, T.-F. Guo, Y. Yang, W.-H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. De Marco, Y. Yang, Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers, Nat. Nano. 11 75-81(2015).
[121] P.W. Liang, C.Y. Liao, C.C. Chueh, F. Zuo, S.T. Williams, X.K. Xin, J. Lin, A.K.Y. Jen, Additive Enhanced Crystallization of Solution‐Processed Perovskite for Highly Efficient Planar‐Heterojunction Solar Cells, Adv. Mater. 26(22) 3748-3754(2014).
[122] Y. Zhao, K. Zhu, CH3NH3Cl-Assisted One-Step Solution Growth of CH3NH3PbI3: Structure, Charge-Carrier Dynamics, and Photovoltaic Properties of Perovskite Solar Cells, J. Phys. Chem. C 118(18) 9412-9418(2014).
[123] C. Zuo, L. Ding, An 80.11% FF record achieved for perovskite solar cells by using the NH4Cl additive, Nanoscale 6(17) 9935-9938(2014).
[124] T.-B. Song, Q. Chen, H. Zhou, C. Jiang, H.-H. Wang, Y. Yang, Y. Liu, J. You, Y. Yang, Perovskite solar cells: film formation and properties, J. Mater. Chem. A 3(17) 9032-9050(2015).
[125] N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S.I. Seok, Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells, Nat. Mater. 13(9) 897-903(2014).
[126] H.-B. Kim, H. Choi, J. Jeong, S. Kim, B. Walker, S. Song, J.Y. Kim, Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells, Nanoscale 6(12) 6679-6683(2014).
[127] S. Gilje, S. Han, M. Wang, K.L. Wang, R.B. Kaner, A Chemical Route to Graphene for Device Applications, Nano Lett. 7(11) 3394-3398(2007).
[128] T. Mahmoudi, W.-Y. Rho, H.-Y. Yang, S.R.P. Silva, Y.-B. Hahn, Highly conductive and dispersible graphene and its application in P3HT-based solar cells, Chem. Commun. 50(63) 8705-8708(2014).
[129] W.-P. Liao, J.-J. Wu, Wet chemical route to hierarchical TiO2 nanodendrite/nanoparticle composite anodes for dye-sensitized solar cells, J. Mater. Chem. 21(25) 9255-9262(2011).
[130] M.-S. Kim, M.-G. Kang, L.J. Guo, J. Kim, K.J. Y., L. K., C.N. E., M. D., N. T.-Q., D. M., H.A. J., Choice of electrode geometry for accurate measurement of organic photovoltaic cell performance, Appl. Phys. Lett. 92(13) 133301-133315(2008).
[131] D.-D. Qin, Y.-P. Bi, X.-J. Feng, W. Wang, G.D. Barber, T. Wang, Y.-M. Song, X.-Q. Lu, T.E. Mallouk, Hydrothermal Growth and Photoelectrochemistry of Highly Oriented, Crystalline Anatase TiO2 Nanorods on Transparent Conducting Electrodes, Chem. Mater. 27(12) 4180-4183(2015).
[132] M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray‐Weale, U. Bach, Y.B. Cheng, L. Spiccia, A Fast Deposition‐Crystallization Procedure for Highly Efficient Lead Iodide Perovskite Thin‐Film Solar Cells, Angew. Chem. 126(37) 10056-10061(2014).
[133] W.-P. Liao, S.-C. Hsu, W.-H. Lin, J.-J. Wu, Hierarchical TiO2 Nanostructured Array/P3HT Hybrid Solar Cells with Interfacial Modification, J. Phys. Chem. C 116(30) 15938-15945(2012).
[134] F. Fabregat-Santiago, J. Bisquert, L. Cevey, P. Chen, M. Wang, S.M. Zakeeruddin, M. Grätzel, Electron Transport and Recombination in Solid-State Dye Solar Cell with Spiro-OMeTAD as Hole Conductor, J. Am. Chem. Soc. 131(2) 558-562(2009).
[135] H.J. Snaith, A.J. Moule, C. Klein, K. Meerholz, R.H. Friend, M. Grätzel, Efficiency Enhancements in Solid-State Hybrid Solar Cells via Reduced Charge Recombination and Increased Light Capture, Nano Lett. 7(11) 3372-3376(2007).
[136] D.K.P. Wong, C.H. Ku, Y.R. Chen, G.R. Chen, J.J. Wu, Enhancing Electron Collection Efficiency and Effective Diffusion Length in Dye‐Sensitized Solar Cells, ChemPhysChem 10(15) 2698-2702(2009).
[137] S. Kumar, ORGANIC CHEMISTRY Spectroscopy of Organic Compounds, 2006.
[138] A.A. Ismail, F.R. van de Voort, J. Sedman, Chapter 4 Fourier transform infrared spectroscopy: Principles and applications, in: J.R.J. Paré, J.M.R. Bélanger (Eds.), Techniques and Instrumentation in Analytical Chemistry, Elsevier1997, pp. 93-139.
[139] R.K.A. W.K. Metzger, P. Dippo, J. Geisz, M.W. Wanlass, and S. Kurtz, Time-Resolved Photoluminescence and Photovoltaics A national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy, National Renewable Energy Laboratory, 2004.
[140] P.M. DiCarmine, O.A. Semenikhin, Intensity modulated photocurrent spectroscopy (IMPS) of solid-state polybithiophene-based solar cells, Electrochim. Acta 53(11) 3744-3754(2008).
[141] S. Soedergren, A. Hagfeldt, J. Olsson, S.-E. Lindquist, Theoretical Models for the Action Spectrum and the Current-Voltage Characteristics of Microporous Semiconductor Films in Photoelectrochemical Cells, The Journal of Physical Chemistry 98(21) 5552-5556(1994).
[142] G. Schlichthörl, S.Y. Huang, J. Sprague, A.J. Frank, Band Edge Movement and Recombination Kinetics in Dye-Sensitized Nanocrystalline TiO2 Solar Cells: A Study by Intensity Modulated Photovoltage Spectroscopy, The Journal of Physical Chemistry B 101(41) 8141-8155(1997).
[143] T. Oekermann, T. Yoshida, H. Minoura, K.G.U. Wijayantha, L.M. Peter, Electron Transport and Back Reaction in Electrochemically Self-Assembled Nanoporous ZnO/Dye Hybrid Films, The Journal of Physical Chemistry B 108(24) 8364-8370(2004).
[144] G. Franco, L.M. Peter, E.A. Ponomarev, Detection of inhomogeneous dye distribution in dye sensitised nanocrystalline solar cells by intensity modulated photocurrent spectroscopy (IMPS), Electrochem. Commun. 1(2) 61-64(1999).
[145] W. Melitz, J. Shen, A.C. Kummel, S. Lee, Kelvin probe force microscopy and its application, Surf. Sci. Rep. 66(1) 1-27(2011).
[146] W.-H. Lin, J.-J. Wu, M.M.C. Chou, Y.-M. Chang, M. Yoshimura, Charge Transfer in Au Nanoparticle–Nonpolar ZnO Photocatalysts Illustrated by Surface-Potential-Derived Three-Dimensional Band Diagram, J. Phys. Chem. C 118(34) 19814-19821(2014).
[147] H.-W. Cho, J.-J. Wu, Photoreduction of graphene oxide enhanced by sacrificial agents, J. Colloid Interface Sci. 438 291-295(2015).
[148] D. Li, M.B. Müller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets, Nat. Nano. 3 101(2008).
[149] J.I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, J.M.D. Tascón, Graphene Oxide Dispersions in Organic Solvents, Langmuir 24(19) 10560-10564(2008).
[150] A. Lerf, H. He, M. Forster, J. Klinowski, Structure of Graphite Oxide Revisited, The J. Phys. Chem. B 102(23) 4477-4482(1998).
[151] H.K. Jeong, M.H. Jin, K.P. So, S.C. Lim, Y.H. Lee, Tailoring the characteristics of graphite oxides by different oxidation times, J. Phys. D: Appl. Phys. 42(6) (2009) 065418-065423.
[152] P. Vallée, J. Lafait, M. Ghomi, M. Jouanne, J.F. Morhange, Raman scattering of water and photoluminescence of pollutants arising from solid–water interaction, J. Mol. Struct. 651–653(0) 371-379(2003).
[153] M. Li, S.K. Cushing, X. Zhou, S. Guo, N. Wu, Fingerprinting photoluminescence of functional groups in graphene oxide, J. Mater. Chem. 22(44) 23374-23380(2012).
[154] C. Mattevi, G. Eda, S. Agnoli, S. Miller, K.A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, M. Chhowalla, Evolution of Electrical, Chemical, and Structural Properties of Transparent and Conducting Chemically Derived Graphene Thin Films, Adv. Funct. Mater. 19(16) 2577-2583(2009).
[155] H.-W. Cho, W.-P. Liao, W.-H. Lin, M. Yoshimura, J.-J. Wu, Pristine reduced graphene oxide as an energy-matched auxiliary electron acceptor in nanoarchitectural metal oxide/poly(3-hexylthiophene) hybrid solar cell, J. Power Sources 293 246-252(2015).
[156] Y.-H. Sung, V.D. Frolov, S.M. Pimenov, J.-J. Wu, Investigation of charge transfer in Au nanoparticle-ZnO nanosheet composite photocatalysts, PCCP 14(42) 14492-14494(2012).
[157] G.-J. Chang, S.-Y. Lin, J.-J. Wu, Room-temperature chemical integration of ZnO nanoarchitectures on plastic substrates for flexible dye-sensitized solar cells, Nanoscale 6(3) 1329-1334(2014).
[158] G. Eda, Y.Y. Lin, C. Mattevi, H. Yamaguchi, H.A. Chen, I.S. Chen, C.W. Chen, M. Chhowalla, Blue Photoluminescence from Chemically Derived Graphene Oxide, Adv. Mater. 22(4) 505-509(2010).
[159] H.-S. Kim, N.-G. Park, Parameters Affecting I–V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer, J. Phys. Chem. Lett. 5(17) 2927-2934(2014).
校內:2023-04-16公開