簡易檢索 / 詳目顯示

研究生: 賴俊仰
Lai, Jiun-Yang
論文名稱: 多孔隙瀝青混凝土應用於高速公路的績效評估
Evaluation of Porous Asphalt Concrete Used in Highway Performance
指導教授: 蕭志銘
Shiau, Jih-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 88
中文關鍵詞: 排水性鋪面多孔隙瀝青混凝土IRIBPN
外文關鍵詞: Porous Asphalt Concrete (PAC), International Roughness Index (IRI), British Pendulum Number (BPN), Drainage paving
相關次數: 點閱:78下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣地區屬於季風氣候,每年降雨的天數超過一百天,使用傳統密集配的道路於下雨天時行車容易產生水膜或水霧的現象,為了避免這種現象的產生,發展了排水性鋪面,本研究針對此類型路面進行現地試驗的績效評估。
      本研究分為九個路段,現地試驗項目有五個,分別是現地透水試驗、現地車轍試驗、平坦度試驗、路面抗滑試驗以及環境噪音試驗,而試驗室所做的試驗只有輪跡試驗。利用這些試驗所收集的資料進行探討比較主要是針對通車前後路面的變化,使用不同瀝青材料於路面的差異,鋪築在橋面版或路堤段的差異性、試驗室輪跡試驗與現地車轍試驗的比較以及環境噪音於不同類型路面的差異。
      由研究顯示,各個路段在材料使用方面只有在瀝青材料有差異,級配、瀝青含量以及孔隙率皆在規範值內差異不大。而橋面版與路堤段的比較,研究顯示沒有明顯的差異,所以針對鋪築不同瀝青材料進行各項的試驗結果顯示,於現地透水試驗的結果以及車轍試驗的結果顯示,使用高黏瀝青的路段透水能力比使用傳統瀝青AR-80好,車轍深度使用AR-80的路段比較高,高黏瀝青的路面抗車轍能力較佳。而平坦度以及路面抗滑的試驗結果顯示,平坦度皆符合要求,新工的路面以及通車一年後的IRI皆在範圍內,而抗滑能力BPN值也都在50以上,抗滑能力佳。環境噪音的數據方面,在傳統密集配道路以及剛性路面所收集的資料顯示,比多孔隙瀝青路面高達8dB之多,顯示多孔隙瀝青混凝土路面有減少噪音的效果。

    Taiwan is a monsoon-climate country with annual rainfall of 100 days. This phenomenon makes the road which is made by traditional dense asphalt easily covered with water film or mists. In order to prevent this situation, a drainage pavement is developed.

    There were nine pavement test sections with five major tests in this research. The five tests consist of field permeameter, rutting, roughness, skid resistance, and noise tests. Of the five tests, the wheel tracking test was conducted in the laboratory. These experiments aimed to collect data on the following issues: the road conditions before and after open to the traffic; the different paving on the bridge deck or road embankment; comparison between the in-lab wheel tracking and field rutting test; the noise level in different road types.

    The research concluded that using various sections from various materials with different asphalts, gradations, asphalt contents and porosity values. In comparison between the bridge deck and the road embankment sections, the results showed no significant difference. For asphalt paving materials, the field permeameter test and rutting test results revealed that using of high-viscosity asphalt had better performance on permeability. High-viscosity asphalt had better rutting resistance than using AR-80. After one-year traffic, the International Roughness Index (IRI) of the road surface was still within the required standard, and the skid resistance ability was also in good condition of which above 50 BPN. The results of environmental noise in dense asphalt pavement and rigid pavement were more than porous asphalt pavement by as much as up to 8 dB, showing porous asphalt concrete pavement was effective to reduce noise.

    中文摘要 I 英文摘要 III 目錄 IV 表目錄 VIII 圖目錄 IX 第一章 緒論 1-1 1.1前言 1-1 1.2 研究動機 1-2 1.3 研究目的 1-2 1.4 研究範圍 1-3 1.5 預期成果 1-3 第二章 文獻回顧 2-1 2.1 多孔隙瀝青混凝土簡介 2-1 2.2 多孔隙瀝青混凝土材料的特性 2-1 2.2.1 瀝青材料 2-1 2.2.2 粗粒料 2-5 2.2.3 細粒料 2-6 2.2.4 級配規格 2-7 2.2.5 填充料 2-8 2.2.6 纖維穩定劑 2-8 2.3 多孔隙瀝青混凝土鋪面之效益 2-9 2.3.1排水效果 2-9 2.3.2 降低噪音效果 2-10 2.4 多孔隙瀝青混凝土在國內的應用 2-10 2.5 多孔隙瀝青混凝土相關研究 2-11 第三章 研究計畫 3-1 3.1 研究流程 3-1 3.2 現地試驗的時間規劃 3-4 3.3 多孔隙瀝青混凝土拌合料輪跡試驗 3-5 3.4 現地試驗 3-7 3.4.1 現地透水試驗 3-7 3.4.2 平坦度試驗 3-10 3.4.3 現地車轍試驗 3-11 3.4.4 路面抗滑試驗 3-13 3.4.5 環境噪音檢測 3-15 第四章 試驗結果與討論 4-1 4.1 各路段所使用的材料 4-1 4.2 現地透水試驗結果 4-3 4.2.1 現地透水試驗通車前後比較分析 4-3 4.2.2 各個路段於通車前現地透水試驗的比較 4-6 4.2.3 不同瀝青材料的PAC於通車前後透水試驗比較 4-7 4.3 現地車轍試驗結果 4-10 4.3.1 現地車轍試驗通車前後比較分析 4-10 4.3.2 各路段於通車前車轍深度的比較分析 4-13 4.3.3 不同瀝青材料的PAC於通車前後現地車轍試驗比較 4-14 4.4 平坦度試驗結果 4-17 4.4.1 平坦度試驗通車前後比較分析 4-17 4.4.2 各路段於通車前平坦度的比較分析 4-20 4.4.3 不同瀝青材料的PAC於通車前後平坦度試驗比較 4-20 4.5 路面抗滑試驗結果 4-22 4.5.1 路面抗滑試驗通車前後比較分析 4-22 4.5.2 各路段於通車前路面抗滑試驗比較分析 4-25 4.5.3 不同瀝青材料的PAC於通車前後路面抗滑試驗比較 4-26 4.6 環境噪音檢測結果 4-29 4.6.1 環境噪音試驗通車前後比較分析 4-29 4.6.2 不同鋪面類型的環境噪音 4-30 4.7 試驗室輪跡試驗數據分析 4-31 4.8 試驗室輪跡試驗數據與現地車轍試驗數據比較 4-32 4.9 橋樑段與路堤段現地試驗分析比較 4-33 4.9.1 透水試驗於不同結構類型鋪面 4-33 4.9.2 現地車轍試驗於不同結構類型鋪面 4-34 4.9.3 平坦度試驗於不同結構類型鋪面 4-35 4.9.4路面抗滑試驗於不同結構類型鋪面 4-36 第五章 結論與建議 5-1 5.1 結論 5-1 5.2 建議 5-2 參考文獻 參-1 簡歷

    1、 日本道路協會,「排水性鋪裝技術指針(案)」,日本,(1996)。
    2、 日本道路協會,「排水性鋪裝技術指針(案)」,日本,(1999)。
    3、 林志棟,張廖年禧,「國道高速公路鋪設石膠泥及排水性瀝青混凝土成效之研究」,國立中央大學土木研究所碩士論文,桃園,(2004)
    4、 陳建旭,「國道六號南投段多孔性瀝青混凝土」,中興工程顧問公司,南投,(2007)。
    5、 陳建旭,張孟孔,「生命週期成本分析鋪面平坦度付款調整因子」,國立成功大學土木研究所博士論文,台南,(2008)。
    6、 蔡攀鰲,瀝青混凝土,三民書局,p493~p501,2004。
    7、 蕭志銘,林昶穆,「不同配合設計方法對排水性瀝青混凝土成效之比較」,國立成功大學土木研究所碩士論文,台南,(2003)。
    8、 蕭志銘,王建偉,「添加纖維對排水性瀝青混凝土成效之影響」,國立成功大學土木研究所碩士論文,台南(2004)。
    9、 David A. Anderson, Donald W. Christensen and Hussein Bhatia, “Physical Properties of Asphalt Cement and The Development of Performance-Related Specifications”, AAPT, Vol.60, 1991, pp.437-532.
    10、 DUKATZ ERVIN L. JR. "AGGREGATE PROPERTIES RELATED TO PAVEMENT PERFORMANCE ",AAPT Vol. 58, pp.492~501, 1989.
    11、 Lottman, R. P.,”Laboratory Test System for Prediction of Asphalt Concrete Moisture Damage,” Transportation Research Record 515, pp.18-26(1974)
    12、 Nunm, M. E.,"Prediction of permanent deformation in bituminous pavement layers",TRRL,research report 26.
    13、 Thrower, E. N.,"Methods for predicting permanent deformation in flexible pavements",TRRL contractor report 38.
    14、 Von Quintus, H.L., J. A. Scherocman, C. S. Hughes and T.W. Kennedy,” Asphalt-Aggregate Mixture Analysis System: AAMAS,"NCHRP Report 338.

    下載圖示 校內:2012-06-24公開
    校外:2019-06-24公開
    QR CODE